
c© IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

ITERATIVE SINGLE TARDOS DECODER WITH CONTROLLED
PROBABILITY OF FALSE POSITIVE

Peter Meerwald and Teddy Furon

INRIA Rennes Bretagne Atlantique
Campus de Beaulieu, Rennes, France

ABSTRACT
We propose a blind iterative single Tardos decoder for traitor
tracing designed to catch as many colluders as possible while
controlling the probability of accusing an innocent. The key
idea is that users accused in the previous iterations are used
as side-information to build a more discriminative test. A fast
implementation supporting millions of users is presented and
compared with two recent fingerprinting codes.

Index Terms— Traitor tracing, fingerprinting, Tardos
code, transactional watermarking

1. INTRODUCTION

This paper deals with traitor tracing which is also known as
active fingerprinting, content serialization, user forensics or
transactional watermarking. A typical application is, for in-
stance, video-on-demand: a video portal distributes personal
copies of the same content to n buyers. Some are dishonest
users illegally redistributing pirated copies. The right holders
are interested in identifying these dishonest users. For this
purpose, a versioning process embeds a unique user identi-
fier (so-called codeword) consisting on a sequence of m sym-
bols in each video content thanks to a watermarking tech-
nique, thus producing n different (although perceptually sim-
ilar) copies. This allows tracing back which user has illegally
redistributed his copy. However, there might be a collusion of
c dishonest users, c > 1. This collusion mixes their copies in
order to forge a pirated content which contains none of their
identifiers but a mixture of them. Traitor tracing codes are
designed such that its decoding algorithm recovers some of
these c identifiers from their mixture.

Most academic articles so far have studied traitor trac-
ing codes from a theoretical point of view: For the following
requirements (n users, c colluders, Pfp global probability of
false positive), what is the shortest codelength m? and how
to built such a code? The traitor tracing code invented by Ga-
bor Tardos in 2003 [1] becomes more and more popular. It
is provably good in the sense that m has the optimum scal-
ing in O(c2 log n/Pfp). The reader will find a pedagogical
presentation of this code in [2].

Funded by national project MEDIEVALS ANR-07-AM-005.

Our paper doesn’t pertain to this trend of academic works.
We only focus on the accusation part of a Tardos code and our
setup is different: a pirated copy had been found, and m bits
have been decoded (depending on the bit rate of the water-
marking technique and the length of the content). This con-
tent has been purchased by n users. Our accusation algorithm
has no prior knowledge of the collusion process (i.e. its size c,
its mixing process). The only assumption is that the number
of colluders c is less than cmax. It tries to accuse a maximum
of colluders even if m is less than the required length theoret-
ically derived in the academics articles.

The first priority is to strictly control the probability of
false positive Pfp, which is the probability of accusing at least
an innocent. This task is not easy because a very small Pfp is
of course required. A rare event analysis help us estimating
this probability. Addressing a huge amount of users n is the
second priority. This implies to have a very fast accusation
process that scales well with n. Therefore, we restrict our-
self to a single decoder which computes a score per user and
accuses top ranked individuals. Some implementation tricks
speed up the scores computation. The last priority is to catch
as many colluders as possible as mentioned in overview ar-
ticle [3]. In an iterative process, we compute new and more
discriminative scores by conditioning on the suspects we ac-
cused at the previous iterations.

2. SETUP

We now present motivations for a two layers scheme combin-
ing a traitor tracing code and a watermarking technique.

2.1. Industrial requirements

Traitor tracing doesn’t prevent the act of piracy, it is a dissua-
sive weapon which is a second line of defense when the ac-
cess control mechanism (i.e. the encryption scheme) has been
broken or when the pirates capture the rendering of the con-
tent. This technique is often reserved for ‘premium’ contents
like extremely recent movies for Home Cinema in super high
quality sold at an expensive price. Watermarking is done giv-
ing consideration to the complex human audio visual systems
in order to preserve the quality of these premium contents.

This takes a lot of time, and for industrial deployment, it is
unacceptable to watermark a content on an user-by-user basis
when n is large1.

The trick indeed is to divide the content in m blocks (i.e.
scenes of a movie) and to watermark off-line each block once
embedding symbol ‘0’, once embedding symbol ‘1’. The
blocks are usually pre-encrypted for access control purposes
as well. The drawback is that the content takes twice the stor-
age size, but, versioning is made easy now: the server se-
quentially sends pre-watermarked pre-encrypted blocks con-
taining the symbols of the unique user identifier. If xj =
(xj(1), xj(2), . . . , xj(m)) is the codeword of user j, then
the server sends the first block of the content watermarked
with symbol xj(1), then the second block with symbol xj(2),
etc. This trick is used in the traitor tracing mechanism im-
plemented in AACS, the standard for Blu-ray disc protection.
There are two design issues: the first one concerns the traitor
tracing code (generation of the codewords and the accusation
algorithm), and the second one is the watermarking technique
(embedding and decoding processes). Again, this paper de-
tails only our work regarding the accusation algorithm.

2.2. Codeword generation

We use the famous Tardos code construction. At initializa-
tion, a sequence p = (p(1), . . . , p(m)) is randomly drawn.
Each component is independent and identically distributed
with law f(p) : [0, 1] → R+, p → (π2p(1 − p))−1/2.When
user j is buying the content, his codeword xj is generated as
follows. The binary symbols are independently drawn such
that P(xj(i) = 1) = p(i). Let the matrix X = [x1, . . . ,xn]
of size n×m represent the sequences for n users.

2.3. Collusion

In this paper, we assume that the colluders know the parti-
tion of the content used by the versioning process. There-
fore, they can create a pirated copy by swapping their blocks.
This has the effect of shuffling the bits embedded in the pi-
rated copy. Denote y the sequence extracted by the water-
mark decoder: ∀i ∈ [m], y(i) ∈ {xj1(i), . . . , xjc

(i)} where
C = {j1, . . . , jc} denotes the indices of the colluders. This
model of collusion is well-known as the marking assumption.

In traitor tracing literature, this collusion process is
usually modeled by a vector θ, with θ(σ) = P(yi =
1|∑j∈C xj(i) = σ). Basically, to decide which block (and
therefore symbol) the colluders paste in the pirated copy, they
flip a coin whose bias only depends on the number of ‘1’ they
have out of c. The marking assumption is enforced by setting
θ(0) = 0 (if they do not have any ‘1’, they are forced to put
a ‘0’) and θ(c) = 1 (if they all have a ‘1’, they are obliged to
put a ‘1’). The remaining c − 1 coefficients live in [0, 1]c−1

1However, for a small n like the size of the MPAA Oscar jury, this is often
done like that.

Collusion Model
Estimation

Single
Decoder

Thresholding

Scores

Side Information

Accusation

Collusion y θ

cmax cmax

Pfp

Fig. 1. Overview of the iterative, side-informed decoder.

and describe the collusion process. For instance, a majority
vote is sketched by θ(σ) = 0 if σ < c/2, θ(c/2) = 1/2 (if c
is even), and 1 otherwise. The interleaving attack is when the
colluders randomly paste one of their symbols in the pirated
copy. Statistically this implies that θ(σ) = σ/c.

3. ACCUSATION PROCESS

In this section, we assume that the accusation process knows
the size of the collusion and the collusion process θ. We call
this accusation process the optimal decoder. These assump-
tions are relaxed in the next sections.

3.1. Optimal single decoder

The best accusation is then based on the following log-
likelihood ratio [4, Sec. 3.1]:

sj =
m∑

i=1

log
P(y(i)|xj(i), p(i))

P(y(i)|p(i))
, (1)

with
P(y(i) = 1) =

∑c
σ=0 θ(σ)P(σ|p(i)), (2)

P(σ|p(i)) = (c
σ) p(i)σ(1− p(i))c−σ, (3)

P(y(i) = 1|xj(i)) =
∑c−1+xj(i)

σ=xj(i)
θ(σ)P(σ|xj(i), p(i)),(4)

P(σ|x, p(i)) =
(
c−1
σ−x

)
p(i)σ−x(1− p(i))c−1−σ+x. (5)

Colluders are expected to have higher scores than innocent
users. Three cases are possible: (i) m is big enough with
respect to c and n and the c colluders’ scores are ranked first,
(ii) m is almost in order of magnitude to cope with such c and
n and not all the colluders are ranked first, (iii) m is too short
and one innocent has the biggest score.

To take a decision, we translate score sj into the probabil-
ity πj that user j is innocent [4, Sec. 3.2.2]:

πj =
1

1 + c(n− c)−1 · exp(sj)
. (6)

Denote ǫ as the probability of accusing a given innocent user
whereas Pfp is the probability of accusing at least one in-
nocent over the whole set of innocent users. Thus, Pfp =

1 − (1 − ǫ)n−c ≈ ǫ · n. Therefore, we only accuse users s.t.
πj < ǫ. This is equivalent to accusing users whose score are
higher than threshold τ with:

τ = log
(
(ǫ−1 − 1)(nc−1 − 1)

)
. (7)

If Pfp = 10−4 and n = 106, this amounts to accusing only
when we are very sure, i.e. πj is as low as 10−10. In the
first case (i) above-mentioned, all the colluders have such a
low probability. In the third case (iii), no user j fulfilled this
constraint and the accusation fails (false negative).

3.2. Iterative single decoder

In the second case (ii), at least one colluder is caught. How
to make him/her denounce the remaining accomplices? This
idea is simply translated into hypothesis testing by condition-
ing the test by this new side information. This is the main idea
of the iterative decoder we propose in this paper. The first it-
eration is the single decoder as detailed above. Now suppose
that from the previous iterations, we accused k < c users.
Denote XSI this set and ρi =

∑
j∈XSI

xj(i). Conditioning the
test by this side information changes equations (2) - (5) to:

(2) ←
c−k+ρi∑

σ=ρi

θ(σ)P(σ|p(i)),

(3) ← (
c−k
σ−ρi

)
p(i)σ−ρi(1− p(i))c−k−σ+ρi ,

(4) ←
c−k−1+xj(i)+ρi∑

σ=xj(i)+ρi

θ(σ)P(σ|xj(i), p(i)),

(5) ← (
c−k−1
σ−ρi−x

)
p(i)σ−ρi−x(1− p(i))c−k−1−σ−ρi+1.

We accuse and include in the set XSI all users whose new
score is higher than τ . Algorithm 1 and Figure 1 summaries
our iterative single Tardos decoding algorithm.

Algorithm 1 Iterative Single Tardos Decoder.
Require: y, X, p, cmax, Pfp

1: X ← {j|1 ≤ j ≤ n}, XSI ← {}
2: ǫ← n−1Pfp

3: repeat
4: θ̂ ← estimate(y,p,XSI, cmax)
5: W← weights(y,p, θ̂,XSI, cmax)
6: s← scores(X \ XSI,X, W)
7: τ ← threshold(ǫ)
8: A ← {j|sj > τ}
9: XSI ← XSI ∪ A

10: until A = ∅ or |XSI| ≥ cmax

11: return XSI

4. DETAILS OF IMPLEMENTATION

In reality, the accusation algorithm is blind in the sense that it
knows neither the collusion size nor its process. This prevents

us from using the optimal score (1) and its translation (6) into
probability πj . Moreover, the single decoder is exhaustive
with complexity O(n) because it has to compute scores for all
users. Because n can be large and scores must be computed
at each iterations, we really need a fast implementation.

4.1. Collusion Model Estimation

For an estimated collusion size ĉ, the estimation of the collu-
sion process θ is possible from the observation of y. We do
this by maximizing the log-likelihood ratio:

θ̂ = arg max
θ∈[0,1]ĉ+1s.t.θ(0)=0,θ(ĉ)=1

log P(y|p, θ), (8)

with P(y|p, θ) =
∏m

i=1 P(y(i)|p(i)) (see expression in (2)).
However, due to a lack of identifiability, this approach cannot
estimate c, but only θ̂ for a given ĉ. We have heuristically
noticed that efficient scores are obtained when plugging es-
timation θ̂ in (1) provided that ĉ is bigger than the real c.
Therefore, we impose ĉ = cmax. This describes the estima-
tion algorithm of the first iteration. In the following itera-
tions, side information is beneficial not only for computing
more efficient scores, but also for obtaining a more accurate
estimation θ by using expressions of 3.2. This iterative blind
decoder is sketched in Fig. 1.

4.2. Thresholding

The second issue is the translation of the scores into proba-
bilities. Since θ̂ is a priori different than θ, (1) is not the true
log-likelihood ratio that user j is guilty and (6) is not the true
probability of being an innocent.

However, at a given iteration, all the scores are computed
in the same way. The idea is to generate new codewords based
on the sequence p and to compute their scores. We are then
sure to observe scores of innocents since these codewords
could not have been used to forge y. With a Monte Carlo sim-
ulation, we can estimate the probability that the score of an
innocent is bigger than threshold τ , or the other way around,
the threshold τ such that the probability of being an innocent
is below ǫ. Colluding traitors with scores bigger than τ will be
accused and integrated in the side information. This approach
works whatever the way scores are computed.

The only problem is that a large n implies a very low prob-
ability ǫ = n−1Pfp, and a Monte Carlo simulation is then bad
at estimating accurately threshold τ . This is the reason why
we implemented an estimator based on rare event analysis [5].

4.3. Fast Score Computation

Essentially, the runtime of the score computation – and, for
large number of users, the time comsumption for the iterative
decoder – depends on the memory throughout when accessing

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Naive 1 2 4 8 16

A
v
e

ra
g

e
 R

u
n

ti
m

e
 (

s
e

c
)

Aggregation

Fig. 2. Average runtime for score computation of n = 105

users, code length m = 2048, with different aggregation fac-
tors a.

the codewords of the individual users. We highlight two char-
acteristics of the implementation: precomputation of weights
and data aggregation/table lookup.

Computation of an individual’s score sj can be written as
sj =

∑m
i=1 W [xj(i)](i) where W is a 2×m matrix contain-

ing the precomputed log-likelihood ratios:

W [0](i) = log
P(y(i)|p(i))

P(y(i)|0, p(i))
,

W [1](i) = log
P(y(i)|p(i))

P(y(i)|1, p(i))
.

In order to store the binary elements of an user’s code-
word in an efficient way, b bits are grouped together into an
unsigned integer data type native to the processor, e.g. b = 32
or b = 64 typically. Instead of sequentially processing the
bits, chunks of a ≤ b bits, e.g. a = 4 or a = 8, can be
processed in parallel using a table lookup. b and m should
be evenly divisible by a for practical purposes. The weight
matrix W is turned into an aggregated weight matrix W′ of
size 2a × ⌈m/a⌉ with elements

W ′[q](i′) :=
a∑

l=1

W [bit(q, l)](a(i′ − 1) + l) (9)

where 1 ≤ i′ ≤ ⌈m/a⌉, q ∈ {0, 1}a, and bit(q, l) denotes
the l-th bit of value q. Hence, summation of weights can be
partially replaced by a table lookup of a consecutive code-
word bits in the precomputed, accumulated weight matrix
W′. Clearly, there is a limit on the aggregation factor a de-
pending on the processor’s cache size which is illustrated in
Fig. 2. Best performance is obtained for a = 8 according to
our experiments on an Intel Core2 (E6700) processor. The
column labelled naive refers to an implementation storing the
elements xj(i) in individual bytes of memory.

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 I

d
e

n
ti
fi
e

d
 C

o
llu

d
e

rs

Number of Colluders

Optimal Decoder
Blind Decoder (cmax= 8)
Blind Decoder (cmax=12)

Optimal, Iterative
Blind, Iterative (cmax= 8)

Blind, Iterative (cmax=12)

Fig. 3. Identified traitors performing interleaving collusion
(n = 105, m = 2048, Pfp = 10−4) comparing the optimal
and blind decoders with different cmax.

5. EXPERIMENTAL RESULTS

The iterative single Tardos decoder is implemented in C++
and compiled using GNU g++ version 4.4.5 on a x86
Ubuntu/Linux 10.10 system with -O3 -march=native
-fomit-frame-pointer -mfpmath=sse. The esti-
mation of θ uses approximate vectorized single-precision
floating point arithmetic and Shigeo Mitsunari’s fast approx-
imative log() function2; the remaining components are im-
plemented with double-precision. Pseudo-random numbers
are generated with the SIMD-oriented Fast Mersenne Twister
(dSFMT)3 [6].

We first assess the performance of the proposed blind de-
coders against the optimal decoder having knowledge of the
number of colluders and the chosen collusion strategy. Fig. 3
plots the average number of identified colluders versus the
true number of colluders performing an interleaving collu-
sion attack. The code length is set to m = 2048 and the
number of users is n = 100 000. The false-positive rate is set
to Pfp = 10−4. 1 000 experiments have been performed for
each setting. As expected, the blind decoders which rely on
cmax and θ̂ are slightly less efficient in terms of traitor tracing
ability than the optimal decoders. A value of cmax closer to the
true number of colluders c involved in the collusion process
results in better performance. We set cmax to 8 and 12, re-
spectively, and vary c ∈ {2, 3, . . . , 10}. In case c > cmax, the
false-negative rate Pfn, i.e. the probability that no accusation
can be made, increased dramatically. Note that the estimate θ̂
of the collusion process is very reliable and extremely close
to the true θ when ĉ = c, hence we omit plots where c is
known and θ estimated. Finally, we observe that the iterative

2Available from http://homepage1.nifty.com/herumi/
soft/fmath.html, version of February 16, 2010.

3Available from http://www.math.sci.hiroshima-u.ac.
jp/˜m-mat/MT/SFMT/, version 2.1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

A
v
e

ra
g

e
 I

d
e

n
ti
fi
e

d
 C

o
llu

d
e

rs

Number of Colluders

Kuribayashi et al.
Blind Decoder
Blind, Iterative

Fig. 4. Identified traitors performing majority collusion in
the Kuribayashi setup ([7], n = m = 104, Pfp = 10−4);
cmax = 80.

decoders (be it optimal or blind) can on average accuse more
colluders than their non-iterated versions.

5.1. Decoding Comparison

We compare our iterative blind Tardos decoder with one of
the few results reporting the number of detected colluders.
Kuribayashi et al. [7] set the number of users n = 10 000, the
code length m = 10 000; the collusion strategy is majority
voting. The goal is to detect as many colluders as possible
with a false-positive probability Pfp = 10−4.

Fig. 4 plots the average number of identified colluders ver-
sus the number of users c taking part in the collusion attack,
c ∈ {2, 3, 6, . . . , 60}. cmax has been set to 80, smaller values
did improve the decoding performance only slightly. Experi-
ments have been performed 1 600 times for each setting. We
observe that the blind non-iterated decoder [4] outperforms
the decoder of Kuribayashi et al. by a large margin. Our iter-
ative blind decoder achieves to increase the average number
of identified colluders. We omit detailed plots showing the
experimental false-negative rate, i.e. the chance that no col-
luder can be accused. For both, [4] and our blind iterative
decoders, no false-negatives occur for up to 48 colluders; for
comparison, Kuribayashi et al. report false-negatives for 13
colluders and above.

Further, we provide results for a large-scale fingerprint-
ing setup proposed by Jourdas and Moulin [8] involving
n = 33 554 432 users and a code of length m = 7440.
Codeword bits go through an antipodal modulation (+1,−1);
colluders interleave their modulated signals and add white
Gaussian noise with unit variance. Jourdas and Moulin only
consider c = 5 colluders and report an error probability
Pe = Pfp + Pfn = 0.004 – yet only a single traitor is accused.
Fig. 5 shows the average number of identified colluders for
our blind iterative decoder for Pfp = 10−3. Experiments have

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

A
v
e

ra
g

e
 I

d
e

n
ti
fi
e

d
 C

o
llu

d
e

rs

Number of Colluders (c)

Blind Decoder
Blind, Iterative
Symm. Tardos

Fig. 5. Identified traitors performing interleaving collusion
and AWGN attack (σ2 = 1) in the Jourdas & Moulin setup
([8], n ≈ 3.3 · 107, m = 7440, Pfp = 10−3); cmax = 8.

been performed 3 000 times for each setting, cmax = 8. For
c = 5, on average 4.83 colluders are accused at the end of the
first round, while 4.95 of them are identified at the end of the
iterative decoding. We observe Pfn = 0.0016. While the Pfn

is only slightly improved over [8], our blind iterative decoder
allows to identify several more colluders on average which
can be turned into additional evidence against the collaborat-
ing adversaries. We also compare against symmetric Tardos
decoding for reference; soft decoding will likely improve the
results and is subject to future work.

5.2. Runtime and Complexity Analysis

Fig. 6 shows the runtime of the blind iterative decoder in
seconds averaged over 100 test runs for the Kuribayashi
setup. The tests have been performed on an Intel Core2 CPU
(E6700) clocked at 2.6 GHz in 32-bit mode with 4 GB of
memory running Ubuntu/Linux 2.6.35. The runtime is split
with respect to the components of the decoder (cf. Fig. 1):
model estimation, thresholding, score computation. Model
refinement aims to improve the initial estimation of the collu-
sion model using side information. Fewer number of search
steps are spent in refinement than in the initial estimation.
Runtime is dominated by the rare event simulation to find the
threshold for accusation.

We also plot the average number of iterations after the first
round. For up to 18 colluders, all of them are usually accused
in the first iteration and the accusation stops after the second
round since no scores exceed the threshold. The maximum
number of iterations is reached for 45 colluders. We have
marked the regimes introduced in Section 3.1: cases (i) has 2
rounds, (ii) has several rounds, (iii) has 1 round.

Iterative decoding takes up to 50 seconds which is more
than the hierarchical decoder proposed by Kuribayashi et

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

A
v
e
ra

g
e
 R

u
n
ti
m

e
 (

s
e
c
)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Number of Colluders

case (i) case (ii)

Model Estimation
Model Refinement

Thresholding
Score Computation

Iterations

Fig. 6. Average number of iterations and runtime in seconds
for the irterative decoder in the Kuribayashi setup.

al. [7]. However, thresholding in [7] is based on the simpli-
fying assumption that scores of users not involved in the col-
lusion follow a Gaussian distribution. When the number of
users increases, the runtime impact of our rare event simula-
tion for threshold determination (which makes no assumption
about the scores’ distribution) diminishes compared to score
computation. Score computation for n = 10 000 users takes
about 0.04 seconds. The implementation of our score compu-
tation appears to be at least 20 times more efficient analyzing
the time consumption for different n given in [7].

The runtime results for the large scale scenario (Jourdas &
Moulin [8]) are given in Fig. 7. Due to the storage require-
ments of the users’ codewords, the runtime results are re-
ported for an Intel Xeon CPU (X5650) clocked at 2.6 GHz
in 64-bit mode with 48 GB of memory running Debian/Linux
2.6.26. The time consumption of the iterative decoder is less
than 350 seconds and determined by the score computation.
Note that only a single CPU core is used although the compu-
tation of accusation scores can be trivially parallelized. Also
the memory requirements can be easily alleviated by group-
ing the codewords into chunk that fit in memory and loading
the chunks sequentially from external storage.

6. CONCLUSION

We have proposed an iterative blind single Tardos decoder
which allows to accuse more than one colluder while con-
trolling the false-positive probability by means of rare event
simulation. The fast implementation is fit for traitor tracing
in large-scale multimedia distribution environments with mil-
lions of users. Our decoder can not improve the false-negative
rate in case (i), i.e. when the code is so short that not a single
accusation can be made. We plan to improve this with a joint
decoder computing scores of tuples of users.

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 3 4 5 6 7 8

 0

 1

 2

 3

 4

 5

A
v
e
ra

g
e
 R

u
n
ti
m

e
 (

s
e
c
)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Number of Colluders

case (i) case (ii)

case (ii) case (iii)

Model Estimation
Model Refinement

Thresholding
Score Computation

Iterations

Fig. 7. Average number of iterations and runtime in seconds
for the iterative decoder in the Jourdas & Moulin setup.

References
[1] G. Tardos, “Optimal probabilistic fingerprint codes,” in

Proc. 35th ACM Symposium on Theory of Computing,
San Diego, CA, USA, 2003, pp. 116–125.

[2] T. Furon, A. Guyader, and F. Cérou, “On the design
and optimisation of Tardos probabilistic fingerprinting
codes,” in Proc. 10th Information Hiding Workshop,
Santa Barbara, CA, USA, May 2008, vol. 5284 of LNCS,
pp. 341–356.

[3] M. Wu, W. Trappe, Z. J. Wang, and K. J. R
Liu, “Collusion-resistant fingerprinting for multimedia,”
IEEE Signal Processing Magazine, vol. 21, no. 2, pp. 15–
27, Mar. 2004.

[4] L. Pérez-Freire and T. Furon, “Blind decoder for bi-
nary probabilistic traitor tracing codes,” in Proc. First
IEEE Int. Workshop on Information Forensics and Secu-
rity, London, UK, Dec. 2009, pp. 56–60.

[5] F. Cérou, T. Furon, and A. Guyader, “Experimental as-
sessment of the reliability for watermarking and finger-
printing schemes,” EURASIP Jounal on Information Se-
curity, 2008, ID 414962, 12 pages.

[6] M. Saito and M. Matsumoto, “A PRNG specialized in
double precision floating point numbers using an affine
transition,” in Proc. Int. Conference on Monte Carlo and
Quasi-Monte Carlo Methods, MCQMC ’08, Montréal,
Canada, July 2008, pp. 589–602, Springer.

[7] M. Kuribayashi, N. Akashi, and M. Morii, “On the sys-
tematic generation of Tardoss fingerprinting codes,” in
Proc. IEEE Workshop on Multimedia Signal Processing,
MMSP ’08, Cairns, Australia, Oct. 2008, pp. 748–753.

[8] Jean-Francois Jourdas and Pierre Moulin, “High-rate
random-like spherical fingerprinting codes with linear de-
coding complexity,” IEEE Transactions on Information
Forensics and Security, vol. 4, no. 4, pp. 768–780, Dec.
2009.

