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ABSTRACT

In this paper we investigate watermarking of digital cam-
era raw images and blind detection of spread-spectrum wa-
termarks in demosaicked images. We propose straightfor-
ward watermark embedding in sensor data combined with
a novel detector. To this end, we extend a detection ap-
proach which adaptively combines the components of the
demosaicked image to take advantage of the interpolated
and correlated image structure within and between color
channels. Experimental results confirm the benefits of the
novel detection approach. Further, we experimentally assess
the impact of several demosaicking methods on the detection
performance.

Categories and Subject Descriptors

I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications; K.4.4 [Computer and So-
ciety]: Electronic Commerce—Security

General Terms

Algorithms, Security

Keywords

Watermarking detection, demosaicking, color filter array,
raw images, copyright protection

1. INTRODUCTION
Digital cameras are in ubiquitous use. Most popular dig-

ital cameras use a single, monochrome image sensor with
a color filter array (CFA) on top, often arranged in the
Bayer pattern, see Figure 1. In order to provide a full-
resolution RGB image, the sensor data has to be interpo-
lated – a process called demosaicking – as well as color,
gamma and white point corrected [29]. Many different de-
mosaicking techniques exist, see [16, 2] for an overview, yet
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Figure 1: Color filter array (CFA) arranged in the
popular Bayer pattern

the basic processing steps are shared by most camera imple-
mentations. While the JPEG image format is widely use to
store the processed image data, most cameras also permit
to store the unprocessed, raw sensor data. The latter can
be considered the most valuable image asset and the digital
equivalent of the analog film negative.

The digital nature of the recorded images allows for easy
duplication and manipulation and poses challenges when
these images are to be used as evidence in court or when
resolving ownership claims. Active techniques, such as wa-
termarking methods [7] that imperceptibly embed a pseudo-
random signal in the image data, as well as passive or foren-
sic approaches have been suggested to address image in-
tegrity verification, camera identification and ownership res-
olution. Many different forensic techniques have been pro-
posed to detect image forgeries by exploiting camera charac-
teristics to link an image to a specific camera or to confirm
that certain processing artefacts are preserved. For example,
Chen et al. [5] exploit the inherent Photo-Response Non-
Uniformity (PRNU) noise of the image sensor for camera
identification and image integrity verification. Interpolation
artefacts due to demosaicking are used by Popescu et al. [28]
to verify the integrity of the image. Passive techniques have
the disadvantage that camera characteristics such as PRNU
have to be estimated before use.

Surprisingly, watermarking is generally not integrated in
the early stages of the image acquisition processes but added
later-on e.g. during JPEG compression [3]. Although the
raw image data is probably the most valuable asset, very lim-
ited research has been published on watermark protection of
the sensor data. One reason might be that the image data
volume and constrained power resources of digital cameras
demand efficient processing, favoring simple and hardware-
based solutions. In addition, it is not clear how the image
processing pipeline and the demosaicking step in particular
affect a watermark embedded in the sensor data. Nelson et
al. [25] propose a CMOS image sensor with watermarking



capabilities that adds pseudo-random noise. Meerwald et
al. [22] propose a software-only solution adding an addi-
tive, pseudo-random spread-spectrum watermark in camera
firmware. Mohanty et al. [24] describe a quantization-based
hardware implementation for combined robust and fragile
watermarking. Blythe et al. [3] discuss a secure digital cam-
era which uses lossless watermarking to embed a biometric
identifier of the photographer together with a cryptographic
hash of the image data. Their embedding method efficiently
changes the JPEG quantization tables and DCT coefficients
but precludes watermarking of raw images.

Digital watermarking has to be applied close to the im-
age acquisition stage in order to protect the copyright of
both, the raw and compressed image. In Section 2 we briefly
review main directions in image demosaicking and present
several available implementations. We consider watermark-
ing the raw CFA sensor data before the demosaicking stage
of a typical image processing pipeline [29] as outlined in
Section 3. For watermark detection, we adopt a scheme
that adaptively combines the polyphase components of an
interpolated image [10] and extend the approach for demo-
saicked images in Section 4, taking advantage also of the
correlation between color channels. In Section 5, we analyze
the performance of the novel detection approach after JPEG
compression. Concluding remarks are offered in Section 6.

2. DEMOSAICKING
Demosaicking (or demosaicing) is a term describing color

interpolation techniques to reconstruct the missing color in-
formation from image sensor data overlaid with a color filter
array (CFA). Most often the 2×2 Bayer RGB pattern is as-
sumed, but most methods are also applicable to other pixel
arrangements or color models.

A tremendous amount of research has been published re-
cently on image demosaicking. In the following, we only
consider algorithms for which implementations are available
from the authors. Although demosaicking can be solved by
standard image interpolation techniques (e.g. bilinear or
edge-directed interpolation (EDI) [17]), exploiting the intra
and inter channel dependencies can significantly improve the
visual appearance of the full resolution image. Note that the
actual implementation in a digital cameras is generally not
known and might be covered by patents [2].

Table 1 provides an overview of the demosaicking methods
considered in this paper. Most demosaicking methods be-
long to the class of sequential interpolation algorithms [16]
where first the luminance (green) channel is reconstructed
which then aids in recovering the chrominance channels.
Edge-directed interpolation of the green component forms
the basis of many sequential, spatial domain demosaicking
methods: adaptive color plane interpolation (ACPI) [12],
primary-consistent soft-decision demosaicking (PCD) [33],
directional linear mean square-error estimation (DLMMSE)
[34], data-adaptive filtering (DAF) [21], variance of color dif-
ferences (VCD) method [6], directional filtering (DF) [23],
spatial and spectral correlation based demosaicking (SSC) [4].
Alternatively, the missing luminance data can also be recov-
ered by frequency-domain filtering approaches such as filter-
ing based on HVS properties (FHVS) [1], frequency domain
filtering (FD) [9], adaptive filtering (AF) [18] or adaptive
homogeneity-directed (AHD) filtering [13].

The last scheme is the basis for many open-source imple-
mentations such as dcraw1.

Having a full-resolution luminance (green) channel facili-
tates the recovery of the chrominance channels by enforcing
constant hue rules. The assumption is that the ratio of color
differences (i.e. R-G, B-G) is constant within image objects.
The color-difference signals are interpolated based on the
full-resolution green channel and the down-sampled chromi-
nance channels [12]. Later methods include effective color
interpolation (ECI) [27] and normalized color-ratio modeling
(NCRM) [20].

In order to suppress visually annoying artefacts such as
false colors and zipper patterns, several post-processing meth-
ods such as median filtering [19], iterative methods based on
alternating projections (AP) [11], successive approximation
(SA) [15] as well as three-step demosaicking (TSD) [31] have
been put forward. Recently, combined denoising and demo-
saicking techniques have been proposed including the joint
denoising and demosaicking (JDD) [35] and local polyno-
mial approximation (LPA) [26] methods. Note that the wa-
termark embedded in the CFA image data is a noise source
independent from the image data. Two aspects are of inter-
est: First, the watermark may interfere with the demosaick-
ing approach which makes assumptions on the correlation
between color bands to guide the image reconstruction pro-
cess [4]. To avoid the problem, we embed the watermark
in only one CFA component. Second, results indicate that
joint denoising and demosaicking is superior to demosaicking
followed by denoising [35, 14, 26] and thus the demosaicking
stage may suppress noise (such as PRNU [5]) but also the
watermark as a noise source.

3. WATERMARKING RAW IMAGE DATA
In this work, we focus on a simple additive, spread-spec-

trum watermark embedded in the spatial domain such as
performed by the CMOS image sensor with watermarking
capabilities described by Nelson et al. [25]. Alternatively,
the software-only solution embedding the watermark in cam-
era firmware can be employed [22]. After embedding the
watermarked raw image can be stored at this point for later
post-processing with third party software or, alternatively,
the data is upsampled in the demosaicking stage of the cam-
era and stored in the JPEG format. Watermarking the raw
image data has the advantage that copyright protection is
incorporated at an early point in the image life cycle. The
most valuable original sensor data as well as all derived im-
ages are protected by the same watermark. On the down-
side, a watermarked raw image has to withstand many pro-
cessing steps when turned into a full-resolution RGB image
which we explore in Section 5.

Figure 2 depicts a simplified model of the image pro-
cessing pipeline with the intercalated watermark embed-
ding stage and the following demosaicking and JPEG com-
pression stages. The CFA image data can be written as
x = [R0 G0; G1 B0] where R0, G0, G1 and B0 denote the
CFA components’ pixels according to the 2×2 Bayer pattern.
Each CFA component is comprising N pixels. In the embed-
ding stage we select one CFA component c ∈ {R0, G0, G1, B0}
and generate a pseudo-random bipolar spread-spectrum wa-
termark w with the same size as c. w is derived from a
secret seed value k identifying the copyright owner. The ad-

1http://www.cybercom.net/~dcoffin/dcraw/



Table 1: Classification of demosaicking methods

Intra
Sequential Inter Channel Interpolation

Spatial Domain Frequency Domain

bilinear,
EDI [17]

ACPI [12], DAF [21], DF [23], DLMMSE [34], ECI [27],
JDD [35], LPA [26], NCRM [20], NM [19], PCD [33],
SA [15], SSC [4], TSD [31], VCD [6]

AF [18], AHD [13], AP [11],
FD [9], FHVS [1]

Figure 2: Watermarking embedding and image pro-
cessing pipeline

ditive embedding operation can then be written as cw[m] =
c[m]+α·w[m] where m ∈ N2 denotes pixel indices and α > 0
controls the embedding strength. In the following we con-
sider two cases: embedding in B0, and in G1, respectively,
to construct the watermarked CFA data xw.

The choice of the blue channel is motivated by the fact
that the human visual system is least sensitive to blue color
stimuli, thus embedding in the blue channel causes the least
perceptual distortion. Most demosaicking methods first es-
timate the overall luminance from the green CFA pixels and
then interpolate the chrominance components based on the
estimate because there are twice as many green CFA pixels
in the Bayer pattern (compare Fig. 1). Further, the green
channel mainly contributes to the luminance information
best preserved by JPEG compression, therefore we expect
higher watermark robustness for green channel embedding.
From the viewpoint of constrained processing resources (e.g.
in software-only implementation [22]), computational effort
can be saved by just processing one color band.

The schematic demosaicking stage comprises an upsam-
pling operation and an interpolation filter which turns the
watermarked data into a full-resolution RGB image x̃. Note
that post-processing (e.g. median filtering [19]) or denoising
[35] may also affect the image but are not detailed here. The
watermark detector does not know which demosaicking algo-
rithm and post-processing operations have been applied on
the watermarked raw image. Nevertheless, we can approxi-
mate the effect of the demosaicking step with an expansion
of the data with a matrix M = [2 0; 0 2] which yields an
image xe twice the size in each dimension and interpolation
with a low-pass filter hI = [1/4 1/2 1/4; 1/2 1 1/2; 1/4 1/2 1/4] re-
sulting in an upsampled image x̃. Finally, we roughly model
the impact of the post-processing and JPEG compression
stage as an additive noise source n.

Demosaicking basically upsamples the CFA image data
and interpolates missing pixels. A framework for blind wa-
termark detection in noisy, interpolated images has been
proposed by Giannoula et al. [10]. In [22], this framework
has been successfully applied to demosaicked images, irre-
spective of a particular interpolation technique. Only three
demosaicking implementations have been tested. In this
work we extend the results to 22 different algorithms (see
Table 1).

The actual implementation of the demosaicking, post- pro-
cessing and compression stage is unknown. However, we
can make assumptions on the interpolation and demosaick-
ing step and utilize the interpolated structure of the de-
mosaicked image for efficient watermark detection. In this
work, we separately assess the impact of demosaicking on
a watermark embedded in the blue color channel and the
green color channel.

4. WATERMARKDETECTION FROMTHE

DEMOSAICKED IMAGE
The received RGB image data is denoted by s = [R G B].

The pixels of each color band sb ∈ {R, G, B} can be further
separated into its noisy polyphase components sb

i where 0 ≤
i ≤ 3 refers to one of the four components [32] and b indicates
the color band. The simplest detector uses just the low-
resolution watermarked polyphase component sb

0 from the
demosaicked image and employs a linear correlator where b
selects the watermarked CFA color channel. However, for
blind watermark detection the host signal has to be con-
sidered as noise interferes with the detection of the signal.
Direct linear correlation (LC) detection gives poor results, so
we ignore this option and seek to reduce the interference in
the following. It is well known that detection performance
can be significantly improved by applying a whitening fil-
ter (e.g. hwf = [1/4 −2/4 1/4; −2/4 1 −2/4; 1/4 −2/4 1/4]) on the
received image and thus reducing correlation between neigh-
boring pixels and host signal interference [8]. The detection
statistic is given by

ρpf =
1

N

X
m

(hwf ∗ s0)[m] · w[m] (1)

where the ∗ operator represents convolution. We denote the
resulting pre-filtering detector with PF-LC. We now look
into reducing host signal interference by taking advantage
of the demosaicked image structure.

4.1 Intra color band fusion
Relying on the assumptions about the image processing

pipeline given in Section 3, we can adapt the watermark de-
tection strategy proposed by Giannoula et al. [10] for inter-
polated, noisy images. While the watermark is embedded
in the low-resolution raw data, watermark detection takes
place using the high-resolution data of the demosaicked and
usually compressed image. We aim at exploiting the addi-
tional watermark information being spread out due to inter-
polation.

Figure 3 illustrates the process for the blue color band, i.e.
sb = B. To simplify notation, we do not explicitly denote
the color band. s0 thus represents the low-resolution water-
marked blue CFA data (remember that cw = B0+α·w), cor-



Figure 3: Polyphase fusion of the received image
with four components

rupted by a noise component n0, y0[m] = s0[m] = cw[m] +
n0[m]. With the help of two linear filters for estimation and
interference cancellation,

hi[m] = β ·hI [m] and hc
i [m] = β ·hI [m]∗hI [m]−δ[m], (2)

respectively, further noisy estimates of cw are computed,
such that

yi[m] = cw[m]+ni[m] = hi[m]∗si[m]−hc
i [m]∗s0[m]. (3)

The components si, i 6= 0 correspond to the reconstructed
pixels of the blue color band. The scaling factor β is ad-
justed such that hc

i [0] = 0 for 1 ≤ i ≤ 3, δ[m] is the Kro-
necker delta. Finally, the components yi are fused according
to optimal weight factors ai ∈ [0, 1],

P
i ai = 1, depend-

ing on the estimated noise variance σ2
ni

of each component,
yf [m] =

P
i ai · yi[m] where

(a0, ..., a3) =

0@ 1

σ2
n0

P
i

1
σ2

ni

, ...,
1

σ2
n3

P
i

1
σ2

ni

1A . (4)

Giannoula et al. [10] suggest to estimate the noise variance
σ2

ni
by filtering the initial component samples s0 and sub-

tracting the result from si, i.e.

σ̂2
ni

= var (si[m]− hI [m] ∗ s0[m]) . (5)

The fused image yf is suitable for watermark detection.
So far we have assumed watermark embedding occurs in

the blue CFA component (i.e. c = B0). For the case where
the watermark is embedded in one of the green CFA compo-
nents (either c = G0 or c = G1), the polyphase component
fusion approach described above is constrained to only three
components as only half of the pixels in the green color band
are interpolated.

4.2 Inter color band fusion
As discussed in Section 2, most demosaicking methods

perform sequential inter band interpolation and therefore
the watermark signal is carried over to the other color bands
as well. Optimal fusion of polyphase components of one
color band was discussed in the previous Section. In a sim-
ilar way, we can try to exploit inter band correlation by
fusing polyphase components from all color bands. Consid-
ering the case where the watermark is embedded in the blue
CFA component, we note that the red and green pixels in
the full-resolution image have to be reconstructed at those
locations where the CFA data has a blue pixel. The original

pixel values contribute to in the reconstruction and so the
watermark signal is transfered to all bands.

In case of blue CFA component embedding, the color fused
image is computed as

ycf [m] = aR
0 · yR

0 [m] +

3X
i=0

aB
i · yB

i [m] + aG
0 · yG

0 [m] (6)

where yB
0 = sB

0 , otherwise yb
i [m] = hi[m] ∗ sb

i [m] − hc
i [m] ∗

sB
0 [m]. The fusion weights ab

i ,
P

i,b ab
i = 1 are determined as

before depending on the individual components’ estimated
noise variances

σ̂2
nb

i
= var

“
sb

i [m]− hI [m] ∗ sB
0 [m]

”
. (7)

When the watermark is embedded in the green CFA com-
ponent, component fusion is confined to three intra and two
inter components.

4.3 Detection problem
The watermark detection problem can be formulated as a

binary hypothesis test on the received image:

H0 : test image contains no or other watermark

H1 : test image is watermarked with w.
(8)

We apply the widely-used linear correlation (LC) detector on
the pre-filtered (PF-LC), fused (F-LC), color fused (CF-LC)
and pre-filtered, color fused image (PFCF-LC). The detec-
tion statistic of the F-LC detector can be expressed as

ρf =
1

N

X
m

yf [m] · w[m] (9)

and follows a Gaussian distribution under both, H0 and H1.
In order to decide on the valid hypothesis, ρf is compared
against a suitable threshold T selected for a given probability
of false-alarm (Pf ) under the Neyman-Pearson criterion and
the performance of the detector can be expressed in terms
of probability of miss (Pm). See [10] for a detailed analysis
of the fused detector.

Based on the color fused image, we can define the CF-LC
detector with detection statistic

ρcf =
1

N

X
m

ycf [m] · w[m] (10)

and the PFCF-LC detector operating on the pre-filtered,
color fused image

ρpfcf =
1

N

X
m

(hwf ∗ ycf )[m] · w[m]. (11)

Similarly, the detection statistic of ρpf , ρcf and ρpfcf fol-
low a Gaussian law under the assumption that the host sig-
nal is i.i.d. and the central limit theorem can be invoked.
The parameters of the detection statistics can be estimated
experimentally under H0 and H1 by performing numerous
detection attempts, which we undertake in the next section.

5. RESULTS
For our experiments we choose 12 landscape color im-

ages from the Kodak Photo-CD set which are commonly
used for demosaicking experiments. The images have been
scanned from film. Artificial CFA image data is obtained by
selecting pixels in the Bayer pattern and discarding the re-
maining pixels. Next, we generate two sets of watermarked



Figure 4: Test images from the Kodak Photo-CD
set (768 × 512 pixels)

images by embedding 330 randomly generated bipolar, ad-
ditive spread-spectrum watermarks in the blue component
pixels (c = B0), or, for the other set of watermarked im-
ages, in half of the green component pixels (c = G1). The
watermark embedding strength is set to α = 4.

The full resolution RGB images are then restored by de-
mosaicking the watermarked CFA image data with 22 differ-
ent demosaicking methods, resulting in approximately 185
GB of data. We also include a set of images where the wa-
termark is embedded directly in the full-resolution image for
reference.

Watermark detection is performed on the full-resolution
images. The Python source code of the watermark detectors
is available at http://www.wavelab.at/sources. To simu-
late the impact of noise, the images are subjected to JPEG
compression with the quality factor varying from 20 up to
100 with increments of 5. At the detector side, we crop the
center 256× 256 pixels from the received images. The crop-
ping mitigates the problem of incorrect border handling of
some of the demosaicking implementations and provides for
a challenging detection scenario.

We compare the detection performance of the four water-
mark detection methods described in Section 4: the fused
(F-LC) and color fused (CF-LC) detector, the linear-corre-
lation detector on the high-pass pre-filtered image (PF-LC)
and a LC detector operating on the high-pass pre-filtered
color fused image (PFCF-LC). In total, 6272640 detection
attempts have been performed to estimate the parameters
of the detection statistic under H0 and H1 for all cases.

In Table 2 the percentage of detection errors (false pos-
itives and false negatives) is given for the watermark em-
bedded in the blue CFA component and for the green CFA
component for a probability of false-alarm (Pf ) of 10−4. The
errors have been summed for each demosaicking scheme over
all 12 images and 18 JPEG compression settings (including
no compression). The lowest error rates have been marked
in bold. We note that overall significantly more errors occur
detecting the blue channel watermark versus the green chan-
nel watermark which is due to the different processing of the
color channels during JPEG compression and demosaicking.

In case of the blue channel watermark (left column of Ta-
ble 2), the error rates are very high for the images gener-
ated by intra only demosaicking schemes (and the reference
schemes denoted by ’none’ where the watermark is embed-
ded in the full-resolution image): not surprisingly, PF-LC
results in the best detection performance as no gain can be

expected from taking other color bands into account. For
all other demosaicking approaches, the lowest error rates
are obtained by PFCF-LC, yet the advantage over PF-LC
is very slim. Pre-filtering leads to a significant reduction in
error rate. The watermark embedded in green CFA compo-
nent spreads out during demosaicking as discussed in Sec-
tion 2 and is therefore best picked up by the CF-LC and
PFCF-LC detector (see right column of Table 2).

We now take a closer look at the probability of missing
the watermark for select images and compression rates for
a given false-alarm rate Pf = 10−9. Table 3 compares the
detection results obtained by the four detectors for the blue
channel watermark using the Girl image (left column) af-
ter JPEG compression with quality factor Q = 80 and the
Archipel image (right column) with Q = 70. It is evident
that pre-filtering significantly improves the detection perfor-
mance. Detection on the color fused image further enhances
the results. In Table 4 we present the detection results for
the green channel watermarks using the Motorbike and Val-
ley image after JPEG compression with Q = 70 and Q = 30,
respectively. We observe that the CF-LC detectors performs
best for most instances. Interestingly, also for the intra only
demosaicked images, the color fused detector is superior and
even outperforms detectors relying on pre-filtering. We spec-
ulate that the host interference is reduced by incorporating
all color channels in the fusion process.

From the results we see that the demosaicking and com-
pression step have an impact on the watermark embedded
in the raw image data. A watermark detector can benefit
from the resulting interpolated image structure and corre-
lation between color channels. The particular demosaicking
method used is of secondary importance; neither spatial nor
frequency domain demosaicking hinders watermark detec-
tion. AP demosaicking is troublesome for the blue channel
watermark, while ECI demosaicking gives worst results for
the green channel watermark detection. The two joint de-
noising and demosaicking methods, JDD and LPA, do not
show severe adverse effects related to watermark detection
although their noise estimator conditioned on the character-
istics of the additive, spread-spectrum watermark.

In this work we have focused on simple additive, spread-
spectrum embedding and linear correlation detection after
pre-processing the received image in order to study the ef-
fect of demosaicking. Perceptual shaping of the watermark
and more accurate modelling of the host signal (e.g. as-
suming a Cauchy model [30]) might improve the detection
performance.

6. CONCLUSION
Digital watermarking has to be applied close to the image

acquisition stage in order to protect the copyright of both,
the raw and compressed image. We have investigated em-
bedding of a simple additive, spread-spectrum watermark
in the CFA sensor data which can be applied even under
very constrained processing resources. We have proposed
watermark detection schemes that allow to exploit the in-
tra and inter color band correlation in the full-resolution
demosaicked image which leads to improved detection per-
formance compared to using the low-resolution component
only. The impact of different demosaicking methods on wa-
termark detection performance was evaluated separately for
embedding in the blue and green CFA component of the raw
image.



Table 2: Percentage of detection errors (false positive and false negative), Pf = 10−4

Method
Blue Channel Watermark Green Channel Watermark

F-LC CF-LC PF-LC PFCF-LC F-LC CF-LC PF-LC PFCF-LC

bilinear 38.92 39.97 26.50 26.60 5.63 3.24 1.79 1.72
EDI 32.57 37.77 31.68 32.21 1.13 0.82 0.91 0.91
none 44.07 44.37 42.25 42.27 15.39 9.97 9.34 8.98
ACPI 16.21 15.78 7.09 6.95 1.75 0.52 0.85 0.76
DAF 20.90 17.21 3.57 3.38 4.45 2.12 1.38 1.25
DF 11.38 9.79 3.84 3.64 2.47 0.83 1.40 1.24

DLMMSE 13.24 11.34 4.08 3.95 2.09 0.62 1.11 0.98
ECI 13.26 12.6 5.55 5.33 1.57 0.52 0.84 0.77
JDD 16.67 14.62 5.29 5.16 4.61 2.04 2.66 2.45
SA 7.79 5.20 2.54 2.39 3.64 1.53 1.82 1.66

LPA 11.93 10.08 3.97 3.83 2.47 0.79 1.36 1.21
NCRM 10.41 11.54 4.23 3.97 5.18 2.48 1.21 1.11

NM 15.93 15.13 6.23 6.05 1.56 0.46 0.80 0.71
PCD 19.17 17.42 5.51 5.33 3.08 1.03 0.98 0.87
SSC 7.00 6.93 3.35 3.16 3.71 1.59 1.46 1.33
TSD 9.39 7.21 3.01 2.84 2.89 1.11 1.55 1.42
VCD 24.47 20.31 3.62 3.49 7.23 3.93 1.35 1.25
AF 10.78 8.88 3.71 3.50 2.77 1.05 1.53 1.40

AHD 14.83 13.78 5.97 5.79 1.09 0.27 0.60 0.53
AP 38.38 39.77 24.92 24.65 11.72 6.17 2.61 2.49
FD 8.60 6.39 2.72 2.54 0.54 0.25 0.43 0.35

FHVS 9.81 7.33 2.80 2.55 2.75 1.10 1.73 1.63

Table 3: Probability of missing the blue channel watermark, Pf = 10−9

Method
Girl (Q=80) Archipel (Q=70)

F-LC CF-LC PF-LC PFCF-LC F-LC CF-LC PF-LC PFCF-LC

bilinear 1.00 1.00 9.1 e−1 9.2 e−1 1.00 1.00 9.6 e−1 9.6 e−1

EDI 1.00 1.00 9.9 e−1 9.9 e−1 1.00 1.00 1.00 1.00
none 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ACPI 9.8 e−1 9.2 e−1 2.4 e−5 9.6 e−6 9.8 e−1 1.3 e−1 3.7 e−4 1.6 e−4

DAF 1.00 1.00 1.5 e−18 2.5 e−20 1.00 1.00 1.0 e−11 3.3 e−13

DF 6.0 e−1 1.9 e−1 8.9 e−19 4.4 e−21 6.4 e−1 3.6 e−6 1.1 e−11 2.3 e−13

DLMMSE 8.3 e−1 4.8 e−1 3.3 e−14 1.2 e−15 9.2 e−1 1.5 e−3 3.9 e−10 2.0 e−11

ECI 8.4 e−1 5.1 e−1 4.7 e−10 5.5 e−11 5.9 e−1 3.9 e−4 3.0 e−7 5.3 e−8

JDD 1.00 9.9 e−1 4.9 e−4 3.0 e−4 1.00 8.2 e−1 2.4 e−2 1.5 e−2

LAP 8.2 e−1 4.8 e−1 2.7 e−15 1.0 e−16 7.7 e−1 8.1 e−5 7.3 e−11 2.7 e−12

NCRM 3.2 e−1 8.9 e−1 6.6 e−12 5.4 e−13 9.7 e−1 7.4 e−2 3.7 e−10 3.1 e−11

NM 9.7 e−1 9.0 e−1 2.9 e−7 6.9 e−8 9.7 e−1 8.7 e−2 3.2 e−5 9.0 e−6

PCD 1.00 1.00 3.8 e−10 5.7 e−11 6.4 e−1 7.3 e−1 1.6 e−6 2.4 e−7

SA 1.4 e−1 4.2 e−3 1.8 e−28 8.5 e−32 2.3 e−1 6.9 e−14 2.3 e−18 5.4 e−21

SSC 1.1 e−2 4.4 e−1 1.2 e−20 5.3 e−23 1.6 e−2 4.7 e−8 1.5 e−13 2.1 e−15

TSD 3.4 e−1 4.4 e−2 1.5 e−23 2.3 e−26 4.2 e−1 1.5 e−9 1.2 e−15 6.5 e−18

VCD 1.00 1.00 3.8 e−18 2.8 e−19 1.00 1.00 9.8 e−13 5.5 e−14

AF 6.4 e−1 2.4 e−1 1.2 e−16 1.5 e−18 6.8 e−1 6.7 e−6 3.8 e−11 9.7 e−13

AHD 9.4 e−1 7.3 e−1 1.4 e−8 1.3 e−9 9.5 e−1 2.1 e−2 7.0 e−6 1.4 e−6

AP 1.00 1.00 7.2 e−1 6.5 e−1 1.00 1.00 9.6 e−1 9.6 e−1

FD 1.7 e−1 9.3 e−3 1.9 e−27 4.5 e−31 2.3 e−1 5.4 e−12 7.0 e−18 1.1 e−20

FHVS 6.1 e−1 2.4 e−1 2.8 e−29 4.4 e−32 4.9 e−1 8.5 e−8 8.4 e−17 1.7 e−19



Table 4: Probability of missing the green channel watermark, Pf = 10−9

Method
Motorbike (Q=70) Valley (Q=30)

F-LC CF-LC PF-LC PFCF-LC F-LC CF-LC PF-LC PFCF-LC

bilinear 8.8 e−8 2.0 e−11 5.7 e−8 3.7 e−8 3.0 e−14 9.4 e−21 1.7 e−10 4.7 e−12

EDI 8.0 e−10 5.6 e−15 3.3 e−10 1.8 e−10 1.3 e−19 1.5 e−28 4.0 e−14 2.1 e−16

none 2.3 e−5 4.2 e−8 1.7 e−5 1.4 e−5 2.7 e−11 4.3 e−17 3.0 e−8 1.1 e−9

ACPI 2.9 e−1 1.2 e−2 2.0 e−4 2.1 e−4 1.2 e−2 2.8 e−6 9.4 e−5 4.7 e−5

DAF 6.4 e−5 7.1 e−9 1.0 e−7 7.1 e−8 6.1 e−6 6.5 e−14 5.7 e−10 2.9 e−11

DF 4.1 e−6 1.3 e−9 3.5 e−7 2.4 e−7 3.0 e−8 1.9 e−16 8.3 e−10 2.1 e−11

DLMMSE 3.8 e−6 5.8 e−9 2.8 e−7 2.4 e−7 8.0 e−11 1.1 e−15 3.9 e−9 1.6 e−10

ECI 6.7 e−1 3.8 e−1 4.8 e−1 4.9 e−1 2.5 e−1 5.6 e−2 2.2 e−1 1.4 e−1

JDD 1.5 e−5 3.8 e−9 1.1 e−7 7.3 e−8 1.2 e−8 1.5 e−15 8.5 e−11 1.8 e−12

LPA 6.4 e−7 4.3 e−10 1.6 e−7 1.4 e−7 5.5 e−9 4.6 e−12 1.0 e−7 1.1 e−8

NCRM 7.0 e−5 2.3 e−8 2.1 e−7 1.7 e−7 3.6 e−7 5.4 e−12 1.8 e−9 6.2 e−11

NM 7.0 e−6 1.8 e−8 9.0 e−7 7.5 e−7 1.0 e−11 3.9 e−17 2.7 e−9 1.0 e−10

PCD 8.8 e−8 2.5 e−11 2.5 e−8 1.4 e−8 3.2 e−16 1.5 e−22 6.5 e−12 1.4 e−13

SA 1.2 e−7 3.2 e−7 4.3 e−5 3.6 e−5 1.0 e−14 6.2 e−20 5.9 e−14 9.2 e−14

SSC 1.4 e−2 6.4 e−5 9.9 e−5 6.4 e−5 2.7 e−4 3.6 e−10 4.2 e−7 2.4 e−7

TSD 6.0 e−7 2.9 e−10 2.5 e−7 1.9 e−7 4.5 e−12 1.5 e−18 8.2 e−9 2.0 e−10

VCD 3.8 e−5 2.6 e−8 3.9 e−7 3.3 e−7 3.2 e−9 3.5 e−12 2.1 e−9 6.2 e−11

AF 1.2 e−5 2.4 e−8 4.9 e−7 4.0 e−7 4.2 e−9 4.0 e−14 1.9 e−8 9.5 e−10

AHD 8.5 e−8 9.1 e−12 9.3 e−9 5.3 e−9 8.7 e−16 9.1 e−23 3.9 e−13 4.9 e−15

AP 2.0 e−9 6.3 e−11 1.3 e−6 3.3 e−7 1.0 e−20 1.2 e−26 1.3 e−11 3.7 e−14

FD 6.3 e−4 1.2 e−8 1.1 e−7 8.8 e−8 8.7 e−6 1.1 e−14 4.1 e−9 3.0 e−10

FHVS 5.0 e−5 3.3 e−7 6.7 e−6 7.4 e−6 2.0 e−8 6.4 e−14 2.0 e−8 2.1 e−9
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Optimum watermark detection in color images. In
Proceedings of the IEEE International Conference on
Image Processing, ICIP ’99, volume 2, pages 231–235,
Kobe, Japan, Oct. 1999.

[31] C.-Y. Su. Low-complexity hybrid demosaicing for
color filter arrays. Journal of the Chinese Institute of
Engineers, 31(1):173–179, Jan. 2008.

[32] P. P. Vaidyanathan. Multirate digital filters, filter
banks, polyphase networks, and applications: a
tutorial. Proceedings of the IEEE, 78(1):56–93, Jan.
1990.

[33] X. Wu and N. Zhang. Primary-consistent soft-decision
color demosaicking for digital cameras. IEEE
Transactions on Image Processing, 13(9):1263–1274,
Sept. 2004.

[34] L. Zhang and X. Wu. Color demosaicking via
directional linear minimum mean square-error
estimation. IEEE Transactions on Image Processing,
14(12):2167–2178, Dec. 2005.

[35] L. Zhang, X. Wu, and D. Zhang. Color reproduction
from noisy CFA data of single sensor digital cameras.
IEEE Transactions on Image Processing,
16(9):2184–2197, Sept. 2007.


