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Abstract—In this work, we evaluated the effectiveness of the
Photo Response Non-Uniformity (PRNU) to detect presenta-
tion/spoofing attacks for finger vein imagery. The performance
is evaluated on two publicly-available finger vein presenta-
tion/spoofing attack datasets (IDIAP and SCUT-FVD). Maximum
likelihood estimation (MLE) is used to estimate the sensor’s
PRNU. To decide whether a query image is real or spoofed,
we compare its residual to the estimated sensor PRNU using
PCE and NCC as similarity measures. We observe that the
classification performance is heavily dependent on the set of
images used for PRNU estimation. We assume different degrees
of variability in image content caused by distinct light scattering
properties in real tissue and artifacts to be one of the main
reasons for the differences in classification performance.

Index Terms—Photo Response Non-Uniformity, PRNU, image
residual, source camera identification, presentation attack detec-
tion, spoofing detection, finger vein

I. INTRODUCTION

Biometric systems deal with traits taken from a physical or
behavioral characteristic of a human used for authentication
purposes. In the last decade, biometric systems have become
popular and have started to cover a wide range of governmental
(e.g., border control), commercial (e.g., securing ATMs or
home banking), and private (front-door fingerprint authentica-
tion) applications. Specifically, biometrics are used in authen-
tication to complement or replace traditional authentication
techniques like passwords or tokens as biometric techniques
exhibit certain advantages. These advantages include higher
security, but also user convenience.

There are many different biometric modalities: E.g., face,
fingerprint, palmprint, voice, gait, signature, and iris. All of
them reflect unique personal characteristics and can (eventu-
ally) be used to identify a person. A modality of recent interest
is finger vein recognition, due to its (claimed) advantages as
compared to fingerprints, e.g., being independent of finger
surface conditions and difficult to be acquired covertly, respec-
tively. Also, the widespread usage of finger vein systems to
secure ATM cash withdrawals render this modality of current
interest.

A common way to compromise biometric systems is the
fabrication of a biometric trait’s copy and subsequent pre-
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sentation of this artifact to the sensor. This type of attack is
called presentation attack, aka sensor spoofing attack. Thus,
the biometric community came up with solutions to detect this
type of vulnerabilities and prevent such attacks. Corresponding
techniques are termed presentation attack detection (PAD)
methods, aka anti-spoofing techniques [1].

In [2], a review on PAD techniques for finger vein data
is provided. In general, PAs can be mounted using printouts
of the biometric trait, placing monitors/displays in front of the
sensor, or fabricating an artifact mimicking the biometric trait.
Corresponding PAD methods can be categorized into liveness-
based, motion-based, and texture-based ones, respectively. The
aim of all mentioned techniques to resolve the spoofing is to
discriminate the real biometric data from spoofing variations.

In this work, we apply photo response non-uniformity
(PRNU) methodology for PAD. PRNU is a digital hardware
fingerprint which is caused by pixel non-uniformity (PNU)
[3]. PRNU is an intrinsic property of the digital sensor. Each
silicon wafer which represents pixels has a slightly different
ability to convert photons to electrons. The mentioned inhomo-
geneity and imperfection caused by the sensor manufacturing
process lead us to a unique noise pattern for each sensor
type. Thus the noise-like pattern is cast onto every image
it captures. Thus, the PRNU methodology has been used to
identify imaging sensors, enabling discrimination at the sensor
instance level. In biometrics, most work has been done on
iris sensor identification [4]–[8], but also fingerprint sensors
have been addressed [9]. However, it has been demonstrated
that the PRNU can be forged [4] even maintaining recognition
performance [10].

However, PRNU-related techniques have been additionally
used to detect and localize image manipulations like image
splicing, copy-move attacks, among other malicious forgeries
(see, e.g. [11], [12]). In the biometric context, PRNU prop-
erties have recently been used to detect morphing in facial
imagery [13].

In this paper, we investigate if PRNU-based algorithms can
be used for the discrimination of real and spoofed finger
vein imagery. We used subsets of images from two publicly-
available finger vein presentation/spoofing attack datasets. The
classification performance is evaluated by applying two differ-
ent similarity measures: Normalized-Cross-Correlation (NCC)



and Peak-Correlation-Energy (PCE). These approaches seem
to be contradictory at first sight, as both real and spoofed data
are acquired by the same sensor. Thus the PRNU should not be
affected, and real and spoofed data could not be discriminated.
On the other hand, it is well known that the PRNU is massively
influenced by image content and the quality of PRNU sensor
fingerprints does rely on the availability of proper uncorrelated
data to average out image content related properties. This is
where our proposed techniques have its foundation: Spoofed
data exhibit a much lower variability compared to real data
as the artifacts do not model the variations in human tissue
(except for the vein structure layout). Thus, light scattering
is expected to be much more homogeneous for spoofed data,
resulting in low quality and different sensor fingerprints as
compared to fingerprints from real data, which we exploit in
this work. Consequently, we assume that our method delivers
best results when “training” on the real data (i.e., in fact,
we do not train, but we only generate the PRNU fingerprint
from training data). Thus, there is potential that this approach
also could work on unseen spoofing data types (which is not
investigated in this work).

This paper is structured as follows: Section II is dedicated to
the discussion of PRNU-based algorithms and describes how
to extract image residuals and compute the PRNU. In Section
III we discuss the workflow and PRNU enhancement methods.
We also introduce the datasets which are used in this paper.
In Section IV we discuss the experimental result, followed by
a conclusion in Section V.

II. METHODOLOGY

To extract the PRNU fingerprint we use the method pro-
posed by Fridrich in [14] which is based on maximum
likelihood estimation (MLE). For each image Ii the noise
residual Ri gets estimated as follows:

Ri = Ii − F (Ii) (1)

F (Ii) is a denoised version of the original image obtained by
applying an adaptive Wiener filter in the wavelet domain. As a
result, F (Ii) mainly contains low frequencies. After subtract-
ing the denoised version from the original image, we obtain
a high-frequency image containing the residual noise. This
method has originally been proposed by Mihcak et al. in [15].
Since the noise residual might be contaminated with undesired
artifacts often referred to as non-unique artifacts (NUAs) [16],
two different enhancement techniques are applied. Zero-Mean
(ZM) as proposed in [17] as well as Wiener filtering [5] to
suppress periodic artifacts. Both applied methods are described
in II-B.
A maximum likelihood estimator [14] is used to obtain the
PRNU factor K using the following equation:

K̂ =
N∑
i=1

RiIi

/
N∑
i=1

I2i (2)

K̂ is our zero-mean noise-like signal responsible for the
PRNU and Ii corresponds to images of the same sensor with

i = 1...N where N denotes the total number of images in
the dataset.

To evaluate the similarity between the PRNU fingerprint K̂
and the residual noise RI of a query image I two different
metrics are used: Normalized Cross Correlation (NCC) as
shown in (3) and Peak Correlation Energy (PCE) as proposed
in [18]. Note that, X and Y denotes two image patches of
the size W×H . X(i, j) and Y (i, j) denotes the pixel value
at position (i, j), X̄ and Ȳ denotes the arithmetic mean of
all pixel values.

NCC(X,Y ) =

W∑
i=1

H∑
j=1

((
X(i, j)− X̄) · (Y (i, j)− Ȳ

))
||X − X̄|| · ||Y − Ȳ ||

(3)

The presence of the PRNU fingerprint in the query image I
can be estimated by measuring the correlation between the
noise residual RI of a query image I and the PRNU factor K̂
weighted by the image content of I .

ρ[RI ,IK̂] = NCC(RI , IK̂) (4)

Peak Correlation Energy (5) is an alternative measure to
attenuate the influence of periodic noise contamination. It has
been shown to yield more stable results in scenarios where
images have been geometrically transformed and scaled [19].
Although Kang et al. [20] showed that PCE might increase
the false-positive rate if images have not been geometrically
transformed, we test PCE as a second metric in this work.

As in this work, only image patches of the same size
are compared, image transformations like scaling and
cropping are not taken into account. Consequently, the
formula for PCE simplifies as follows [17]:

PCE =
CNCC(0, 0)2

1
WH−|A|

∑
i,j 6=A CNCC(i, j)2

(5)

CNCC is the circular normalized cross correlation between
RI and IK̂. A is a small area around the peak located at
position (0, 0) and |A| represents the cardinality of the area.

CNCC(x, y) =

1

WH

W∑
i=1

H∑
j=1

(X(i, j)− X̄) · (Y(i,j)⊕(x,y)(i, j)− Ȳ )
(6)

A. Wavelet-based residual extraction

Low-pass filters applied in Wavelet domain [15] have been
shown to be a well-suited tool for image denoising and residual
extraction. Denoising is typically achieved by applying a
Wiener filter like attenuation on high-frequency sub-bands
(incl. local variance estimation). Subtraction of the denoised
image from the original image (1) returns a high-frequency
signal containing the residual noise.

1) Apply 4-Level Wavelet decomposition using Daubechies
8-tap WMF. Coefficients in the horizontal, vertical and



diagonal high-frequency sub-bands are denoted v(i, j),
h(i, j) and d(i, j).

2) For each sub-band: Estimate the local variance by apply-
ing local MAP estimation using different window sizes
W where W ∈ {3, 5, 7, 9}.

σ̂2
w(i, j) = max

0, 1
W 2

∑
(i,j)∈N

h2(i, j)− σ2
0

 (7)

Choose the minimum local variance as final estimate:

σ̂2(i, j) = min
[
σ2
3(i, j), σ2

5(i, j), σ2
7(i, j), σ2

9(i, j)
]
(8)

3) Obtain the denoised coefficients by applying the Wiener
filter like attenuation for each coefficient C(i, j). σ0 = 3
has been chosen empirically.

CDen(i, j) = C(i, j)
σ2(i, j)

σ2(i, j) + σ2
0

(9)

4) Extract the noise residual by subtracting both images
in the wavelet domain and transforming it back into
the spatial domain. WF denotes the Wiener filter as
described in the previous steps. IDWT and DWT
denote the (inverse) discrete wavelet transformation.

R = IDWT
(
DWT (I)−WF

(
DWT (I)

))
(10)

B. Enhancement Techniques
In this work, we applied two different post-processing

techniques to further improve the extracted residuals and
PRNU fingerprints.

Wiener filter: Noise residuals might be contaminated
with undesired artifacts. A Wiener filter [8] applied in the
frequency domain allows to suppress these artifacts.

Zero-Mean filter: Noise residuals might also be contaminated
with non-unique artifacts (NUAs) introduced by demosaicing
algorithms that depend on the CFA (Color Filter Array).
Zero-mean filtering as proposed in [8] can remove these
periodic artifacts.

III. EXPERIMENTAL SETTING

A. Datasets
In this work, the applicability of PRNU fingerprints for

presentation attack detection was tested on a subset of images
from the following publicly-available datasets.

• IDIAP VERA (REAL & SPOOF) - The dataset [21]
consists of index fingers of 110 subjects. All images
are stored in PNG format with a size of 250×665.
Additionally, presentation-attacks were created for each
image by printing on high-quality paper and presenting
it to the same sensor. In our experiments, we take two
subsets (real and spoof). Each of them is composed
of 120 images from 60 different subjects obtained by
selecting two non-cropped images of the subject’s left

Figure 1: Samples of finger vein images of all datasets. The red
bounding box denotes the region used for residual extraction.

and right index finger. The images were taken from
the first 60 subjects in the dataset (subject id 001-072;
some ids have been skipped by the creators of the dataset)

• SCUT FVD (REAL & SPOOF) -The dataset [22] con-
sists of 3600 real and 3600 spoofed images. All images
are stored in BMP format with a size of 158×467. Images
were taken from 100 subjects. From each subject, images
of his/her index, middle and ring finger are provided. In
our experiments, we take two subsets of real and spoofed
images out of the dataset’s non-cropped train-subset. We
only keep the first shot of each finger. As the train-subset
consists of 20 clients, we collect a subset of 120 images
for our evaluation.

B. Workflow
To assess the performance of our PRNU-based model we

used subject-wise 4-fold cross-validation. Out of 120 images
from each dataset, we used 90 images to estimate the sensor’s
PRNU in each fold. Thus, 150 images remained for testing
in each fold. As images of the SCUT dataset were provided
in portrait mode, we rotated them by 90 degrees. Finally, to
obtain image patches of the same size, we cropped a 460×130-
sized image region (containing biometric trait) from the center
of each image. This choice is motivated by our previous
experiments which showed that regions mainly containing
biometric trait should be preferred in the course of PRNU
estimation. Samples of all datasets are shown in Figure 1.

The PRNU estimation has already been explained in the
previous section. To estimate the residual we picked each
query image and calculated its similarity to the PRNU of
the same dataset using PCE or NCC. Considering the dis-
tribution of similarity scores, we aimed to find a threshold
that separates real from spoofed images of the same dataset.
For instance, the threshold should separate IDIAP REAL from
IDIAP SPOOF images. The model’s classification capability
was assessed concerning AUC ROC (Area under the ROC
curve) and AUC Precision-Recall (Area under the Precision-
Recall curve) scores since these metrics do not require a fixed
decision threshold. However, as the quantitative performance



of the developed models should also be compared according
to the metric developed in ISO/IEC 30107-3 in terms of
(i) attack presentation classification error rate (APCER), (ii)
normal presentation classification error rate (NPCER) and
(iii) average classification error rate (ACER), we have also
chosen a threshold to report the aforementioned metrics. This
threshold has been chosen based on the estimated EER and
is specific to the dataset/enhancement method, but remained
the same across all four folds. To decide on an appropriate
threshold, we calculate the EER for each fold and finally run
the metric computation (APEC, NPCER, ACER) using the
averaged threshold as the decision boundary. Note that the
error rates capture the capability of the model to distinguish
between real and spoofed images of the same dataset. We do
not compare, for instance, an IDIAP REAL fingerprint with
SCUT images, but we compare the IDIAP fingerprint with
IDIAP REAL and IDIAP SPOOF images.

IV. RESULT

In this section, we report the real-spoof classification results
achieved by means of the PRNU-based classification approach
described in Section II. More precisely, we are interested in
the following aspects:

• Applicability of PRNU-based algorithms to discriminate
between real and spoofed images

• Effect of different enhancement techniques and similarity
measures (NCC/PCE) on the classification performance

Table I shows the AUC ROC scores obtained when performing
real-spoof classification for the IDIAP and SCUT dataset using
different enhancement techniques and NCC as similarity mea-
sure. The ”FP Dataset” column denotes the set of images used
to estimate the PRNU fingerprint. The result is also graphically
visualized in Figure 2. It can be observed that classification
of images in the IDIAP dataset exhibits better performance
than for the SCUT dataset since the NCC AUC ROC scores
for IDIAP are superior to the scores for SCUT (true for all
enhancement methods). Furthermore, it is interesting to see
that for both datasets the obtained classification results are
not symmetric. For instance, a PRNU fingerprint generated
from real images of the SCUT datasets achieves an AUC ROC
score of 0.77 (without enhancement), while the classification
efficiency decreases to 0.39 when generating the fingerprint
from the dataset’s spoofed images. The same behavior can also
be observed in the case of the AUC Precision-Recall scores
which are shown in Table II as well as in Figure 3.

Surprisingly, the result also shows that fingerprints gener-
ated from real images do not always lead to better classifica-
tion performance. For instance, we observe that fingerprints
generated from IDIAP SPOOF outperform fingerprints gener-
ated from REAL. This at least contradicts with our expectation
that real fingerprints always work better for classification. In
the case of spoofed images we expected that the captured paper
does not exhibit varying texture as it is seen when generating
images from human tissue. Therefore, the light scattering

in a paper should be quite homogeneous, while scattering
should vary extremely due to locally changing properties of
human tissue like density. Consequently, this low extent of
variability in spoofed data (and thus higher correlation), should
degrade the quality of the PRNU fingerprint and thus impacts
on the classification performance. Nevertheless, fingerprints
generated from real images show good overall performance
(AUC ROC 0.792 for SCUT REAL / AUC ROC 0.903 for
IDIAP REAL) (using WF enhancement).

Table III / Figure 4 and Table IV / Figure 5 show the
classification performance using PCE as similarity measure.
In general, the PCE results show a similar characteristic as
the NCC results. The PRNU-based spoofing attack detection
achieves better results on the IDIAP dataset than on the SCUT
dataset. Also, we are not able to identify a clear winner
among both similarity measures in terms of their classification
performance.

Table V and VI report the performance of the different
models in terms of APCER, NPCER and ACER (see Section
III-B). Again, the ”FP Dataset” column denotes the set of
images used to estimate the PRNU fingerprint. As explained in
Section III-B, these metrics only capture the model’s capability
to distinguish between real and spoofed images of the same
dataset, but not between different datasets.

FP Dataset No Enh. WF WF+ZM

SCUT REAL 0.770 (±0.017) 0.792 (±0.023) 0.713 (±0.024)
SCUT SPOOF 0.390 (±0.031) 0.479 (±0.005) 0.516 (±0.005)
IDIAP REAL 0.866 (±0.010) 0.903 (±0.015) 0.904 (±0.014)
IDIAP SPOOF 0.966 (±0.007) 0.984 (±0.005) 0.982 (±0.006)

Table I: NCC: AUC ROC (using diff. enhancement tech-
niques)

FP Dataset No Enh. WF WF+ZM

SCUT REAL 0.680 (±0.016) 0.620 (±0.026) 0.445 (±0.043)
SCUT SPOOF 0.159 (±0.013) 0.190 (±0.001) 0.218 (±0.004)
IDIAP REAL 0.661 (±0.028) 0.796 (±0.031) 0.793 (±0.029)
IDIAP SPOOF 0.904 (±0.016) 0.952 (±0.011) 0.945 (±0.012)

Table II: NCC: AUC Precision-Recall (using diff. enhance-
ment techniques)

FP Dataset No Enh. WF WF+ZM

SCUT REAL 0.701 (±0.023) 0.728 (±0.025) 0.662 (±0.028)
SCUT SPOOF 0.483 (±0.021) 0.496 (±0.007) 0.516 (±0.007)
IDIAP REAL 0.618 (±0.053) 0.896 (±0.016) 0.902 (±0.015)
IDIAP SPOOF 0.856 (±0.014) 0.985 (±0.005) 0.982 (±0.006)

Table III: PCE: AUC ROC (using diff. enhancement tech-
niques)

FP Dataset No Enh. WF WF+ZM

SCUT REAL 0.626 (±0.015) 0.598 (±0.019) 0.485 (±0.010)
SCUT SPOOF 0.177 (±0.025) 0.173 (±0.008) 0.195 ±(0.006)
IDIAP REAL 0.403 (±0.053) 0.760 (±0.037) 0.794 (±0.028)
IDIAP SPOOF 0.604 (±0.035) 0.954 (±0.012) 0.943 (±0.011)

Table IV: PCE: AUC Precision-Recall (using diff. enhance-
ment techniques)
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Figure 2: AUC ROC for NCC
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Figure 3: AUC Precision-Recall for NCC

0

0.2

0.4

0.6

0.8

1

 SCUT REAL SCUT SPOOF IDIAP REAL IDIAP SPOOF

 A
U

C
-R

O
C

 

No Enh. WF WF+ZM

Figure 4: AUC ROC for PCE
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Figure 5: AUC Precision-Recall for PCE

FP Dataset Threshold ACER (%) APCER (%) NPCER (%)

SCUT REAL (No Enh.) 0.059368 28.53 (±1.07) 25.89 (±0.52) 31.18 (±1.67)
SCUT REAL (WF) 0.019746 26.16 (±2.06) 26.84 (±0.66) 25.49 (±3.79)
SCUT REAL (WF+ZM) 0.014821 33.24 (±1.26) 32.52 (±1.15) 33.96 (±2.72)
SCUT SPOOF (No Enh.) 0.057664 57.79 (±3.18) 58.26 (±5.51) 57.31 (±0.88)
SCUT SPOOF (WF) 0.020367 53.83 (±0.09) 54.44 (±0.68) 53.21 (±0.56)
SCUT SPOOF (WF+ZM) 0.014674 50.87 (±0.68) 51.81 (±1.20) 49.93 (±0.32)
IDIAP REAL (No Enh.) 0.639553 18.39 (±1.13) 18.51 (±0.45) 18.26 (±2.36)
IDIAP REAL (WF) 0.642744 17.19 (±2.25) 16.81 (±0.51) 17.57 (±4.32)
IDIAP REAL (WF+ZM) 0.639613 16.88 (±2.14) 15.99 (±0.45) 17.78 (±4.08)
IDIAP SPOOF (No Enh.) 0.627337 9.97 (±1.05) 10.28 (±1.98) 9.67 (±1.21)
IDIAP SPOOF (WF) 0.642059 5.36 (±0.63) 5.97 (±1.82) 4.76 (±0.64)
IDIAP SPOOF (WF+ZM) 0.635989 4.39 (±1.02) 3.75 (±2.47) 5.03 (±0.48)

Table V: Error Rates for NCC

FP Dataset (Enh. Technique) Threshold ACER (%) APCER (%) NPCER (%)

SCUT REAL (No Enh.) 35.333797 35.37 (±2.10) 35.37 (±1.92) 35.37 (±2.47)
SCUT REAL (WF) 35.794293 32.24 (±1.08) 32.74 (±2.03) 31.73 (±3.69)
SCUT REAL (WF+ZM) 20.377283 37.30 (±1.34) 37.00 (±2.77) 37.61 (±4.62)
SCUT SPOOF (No Enh.) 55.654238 51.13 (±1.92) 49.93 (±4.87) 52.34 (±2.30)
SCUT SPOOF (WF) 37.527895 52.39 (±0.94) 52.15 (±2.18) 52.63 (±0.61)
SCUT SPOOF (WF+ZM) 19.628648 50.77 (±1.26) 50.59 (±2.18) 50.95 (±1.12)
IDIAP REAL (No Enh.) 28.934256 42.03 (±4.57) 41.35 (±2.69) 42.71 (±6.49)
IDIAP REAL (WF) 28149.56916 18.21 (±1.94) 18.44 (±0.85) 17.99 (±3.87)
IDIAP REAL (WF+ZM) 31731.80043 17.22 (±2.22) 16.88 (±0.47) 17.57 (±4.32)
IDIAP SPOOF (No Enh.) 41.487235 22.52 (±2.44) 23.47 (±4.31) 21.56 (±0.62)
IDIAP SPOOF (WF) 28575.26147 4.31 (±1.12) 4.03 (±2.47) 4.60 (±0.24)
IDIAP SPOOF (WF+ZM) 31550.43941 5.33 (±0.65) 5.97 (±1.82) 4.69 (±0.68)

Table VI: Error Rates for PCE



V. CONCLUSION

In this work, we studied the applicability of PRNU-based
methods (typically used for sensor identification) to detect
image spoofing attacks for finger vein imagery. To accomplish
this, PRNU fingerprints were generated from two publicly-
available finger vein spoofing datasets and used to classify
different query images either as a real or spoofed image
versions. We observed that the effectiveness of the PRNU-
based approach is heavily dependent on the set of images
used to estimate the PRNU. For both datasets fingerprints
generated from real images showed an adequate classification
performance (AUC ROC 0.792 for SCUT / AUC ROC 0.903
for IDIAP). This is fortunate, as the availability of real data
to generate a PRNU fingerprint is a realistic scenario in any
case, while spoofed data might not be available at all in
case of unseen attack types. Surprisingly, it turned out that
fingerprints generated from real images did not always result
in better classification performance. For instance, a fingerprint
generated from IDIAP’s spoofed images allowed to almost
perfectly discriminate between real and spoofed data. We
speculate that it might relate to the size of the spoofing
artifacts. While in case of SCUT the spoofing artifacts had the
same size as the finger, IDIAP’s spoofed images were larger
thus covering background parts of the sensor. Therefore, this
might interfere with the PRNU generation. The results shown
in this work strongly motivate further research on the effec-
tiveness of PRNU-based techniques to detect image spoofing.
More precisely, further investigations on how the finger vein
PRNU is effected by light scattering, different tissue types
and artifacts introduced during the process of spoofing need
to be conducted, to better understand the effectiveness of such
PRNU-based PAD approaches.
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