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Abstract. In this work we extend several DWT-based wavelet and wavelet
packet feature extraction methods to use the dual-tree complex wavelet
transform. This way we aim at alleviating shortcomings of the different
algorithms which stem from the use of the underlying DWT.
We show that, while some methods benefit significantly from extending
them to be based in the dual-tree complex wavelet transform domain
(and also provide the best overall results), for other methods there is
almost no impact of this extension.

1 Introduction

In the past, various different wavelet-based feature extraction methods have al-
ready been successfully applied to the problem of texture classification. However,
since most of the approaches are based on the discrete wavelet transform (DWT)
or the discrete wavelet packets transform (DWPT), they also inherit two major
shortcomings inherent to the DWT when used for image processing and classi-
fication. First, the DWT is not able to capture directional information. Second,
the DWT lacks shift-invariance.

An extension to the pyramidal DWT, which aims at coping with these prob-
lems, is the dual-tree complex wavelet transform (DT-CWT) [1]. In the past it
has already been shown that features based on the DT-CWT are able to deliver
superior classification results as compared to the pyramidal DWT and other
feature extraction methods [2].

To exploit the benefits of the DT-CWT we extend a set of wavelet-packet-
based feature extraction approaches originally defined to be used with the DWT
to use the DT-CWT (resulting in a DT-CWPT). We then use these methods to
extract features from two different image databases and investigate the classi-
fication performances as compared to the original (i.e. non-complex) version of
the algorithms.

The remaining part of this work is organized as follows: in Section 2 we
provide a rough overview of the DT-CWT and the complex wavelet packets
transform (DT-CWPT). We then describe the methods evaluated and their ex-
tension to the complex domain in Section 3. Details on the experimental setup



used are given in Section 4, followed by the results obtained in Section 5. We
conclude this work in Section 6.

2 Background

2.1 Dual-Tree Complex Wavelet Transform

To overcome the limitations of the DWT the original DT-CWT uses 2D pyrami-
dal DWTs for a D-dimensional transform (i.e. for a 2-D DT-CWT four DWTs
are needed). The outcomes of these transforms are then combined to obtain
six complex-valued subbands in the 2-D case. These subbands capture image
details at ±15◦,±45◦, and ±75◦. In addition, the DT-CWT is approximately
shift-invariant.

The complex-valued wavelet, which forms the basis for the D-dimensional
DT-CWT, can be expressed as

ψc(t) = ψh(t) + jψg(t), (1)

where ψh(t) and jψg(t) are the real and imaginary part of the complex wavelet,
respectively. The complex scaling function can be defined analogously as

φc(t) = φh(t) + jφg(t). (2)

Based on the separable implementation of the 2D-DWT the complex equivalent
can be written as:

ψ
(−)
LH (x, y) = φc(x)ψc(y) (3)

ψ
(−)
HL (x, y) = ψc(x)φc(y) (4)

ψ
(−)
HH (x, y) = ψc(x)ψc(y) (5)

ψ
(+)
LH (x, y) = φc(x)ψc(y) (6)

ψ
(+)
HL (x, y) = ψc(x)φc(y) (7)

ψ
(+)
HH (x, y) = ψc(x)ψc(y). (8)

The four DWTs needed for the DT-CWT can now be easily developed by sub-
stituting Equs. 1 and 2 into Equs. 3 to 5 and computing the real and imaginary
parts of the results. This way we obtain the DWTs needed for the negative orien-
tations (i.e. −15◦,−45◦, and −75◦). To obtain the DWTs for the positive angles
(i.e. +15◦,+45◦, and +75◦) the same computations must be carried out based
on Equs. 6 to 8.

For the DT-CWT we need two filter banks for the first stage and two filter
banks for the the remaining stages. These filter banks are then combined in all
possible ways to obtain the filter banks for the four DWTs needed (i.e. different
filters are used for the row- and column-wise transform of the separable 2-D
transform).

We refer to the first stage real part filters as h0 (low-pass) and h1 (high-
pass). The imaginary part filters for the first stage are denoted by g0 and g1.
The remaining stages filters are denoted by h•0, h

•
1, g

•
0 , and g•1 . To get an analytic

wavelet (i.e. ability to capture directional information), h1 and g1 must form a



Hilbert transform pair (the same applies to h•1 and g•1). In addition, to obtain
a shift-invariant transform, h0 and g0 must meet the requirement of a one-
sample shift between them. The remaining stages low-pass filters h•0 and g•0
must have a half-sample shift between them. Fig. 1 shows the different 2-D
frequency partitionings produced by the DWT and the DT-CWT. We notice
that the DWT affects all four quadrants equally. Contrasting, the DT-CWT
produces differently oriented parts which enables the DT-CWT to differentiate
between more directions of details (i.e. two neighboring quadrants are colored
differently).
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Fig. 1. A comparison of the 2-D frequency plane partitioning between (a) the DWT
and (b) the real and imaginary part of the DT-CWT. The plots show the 70%-peak
magnitude as contour lines for the first three levels of decomposition (different direc-
tions, i.e. positive and negative angles in case of the DT-CWT, are shown in red and
blue, respectively).

2.2 Dual-Tree Complex Wavet Packets Transform

In order to extend methods which rely on a DWPT, we need a full wavelet packet
transform based on the DT-CWT. Unfortunately, analyticity gets lost for deeper
decomposition levels if the DT-CWT is just extended to decompose the high-
frequency subbands too [3]. But it has already been shown that a solution to
this problem can be obtained fairly easily [3, 4]. We decided to use the method
proposed in [3] due to its simplicity when it comes to integrate it into an existing
DT-CWT implementation.

As already pointed out above, in the pyramidal case of the DT-CWT four
different filter combinations are used among the four DWTs. The solution pro-
posed in [3] is quite simple: to retain analyticity even for deeper levels of the
transform, the filters used must remain the same across the different DWTs for
most nodes in the decomposition tree for decomposition levels greater two. For
more details on this extension we refer the reader to [3].

Fig. 2 shows the different 2-D frequency partitionings produced by the DWPT
and the DT-CWPT. Similar to the DWT, the DWPT affects all four quadrants
equally. Contrasting, the DT-CWPT produces differently oriented parts.
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Fig. 2. A comparison of the 2-D frequency plane partitioning between (a) the DWPT
and (b) the real and imaginary part of the DT-CWPT. The plots show the 70%-peak
magnitude as contour lines for the first three levels of decomposition.

3 Evaluated Feature Extraction Methods and Their
Extensions

3.1 DWT-based and DWPT-based Methods

The following methods are either based on the real DWT or the real DWPT:

WPC: Each image is decomposed using the DWT. The features to be clas-
sified are then extracted based on coefficients in the resulting high-frequency
subbands.

WT-BB [5]: Using the DWPT and the Best-basis algorithm [6], each image
is decomposed into an optimal basis with respect to a cost function (based on
the coefficients in the resulting subbands). The features are then extracted from
all resulting subbands, ignoring the approximation subband.

Since it is very likely that the optimal bases differ among different images,
the features would not be comparable directly in a meaningful way. As a con-
sequence, a feature vector is filled with zeros at positions which correspond to
subbands which are not present in that feature vector but which are present in
at least one image decomposition structure in the remaining images from the
image set. This way we end up with feature vectors which are comparable since
each position in a feature vector then corresponds to a certain subband.

WT-BBCB [5]: This method also relies on the DWPT and the Best-basis
algorithm. Hence, each image is decomposed into an optimal basis. Considering
the decomposition trees for the resulting bases, the decomposition tree which on
average is most similar to all other decomposition trees is searched for (we call
this tree the centroid). To compute the similarity between two decomposition
trees we employ the quadtree distance metric used in [5].

Once the centroid has been found, all images are decomposed into the respec-
tive basis. The features are then extracted from the resulting subbands, ignoring
the approximation subband.

WT-LDB [7]: Using the Local discriminant bases algorithm [8], which is
based on the DWPT, an optimal basis with respect to the discriminant power



of subbands among different image classes is computed. The discriminant power
is similar to the cost function used in the Best-basis algorithm.

Once the optimal basis has been found, all images are decomposed into the
respective basis and the features are extracted from the resulting subbands,
except for the approximation subband.

3.2 Extended Complex Methods

In case of WPC, extending the method to employ the DT-CWT is straight-
forward, since the originally proposed DT-CWT yields a pyramidal transform
already. There are just two differences:

– the DT-CWT yields complex coefficients. To extract features from the com-
plex subbands we simply compute the coefficient magnitudes and compute
the features from these.

– we obtain six high-frequency subbands instead of three, which doubles the
feature vector lengths.

For methods, which rely on the DWPT, we can use the complex variant DT-
CWPT, outlined in Section 2.2. Similar to WPC, we again extract the features
based on the magnitudes of the complex coefficients. However, in the complex
case we obtain subbands for features oriented at negative and positive angles,
which can be considered to be two separate decomposition trees (these are the
same in case of the DT-CWT). As a consequence we evaluate two different ways
to extract features in the complex case when dealing with the DT-CWPT:

– Symmetric case: For the positive and negative directions the same de-
composition structures are used. For each subband position considered for
feature extraction features are extracted for both directions and stored in an
interleaved fashion.

In case an adaptive method is used to find an optimal basis, the pruning
process inherent to the basis finding methods computes the cost for a de-
composition tree node based on the sum of costs for the two directions.

– Asymmetric case: The decompositions for positive and negative directions
are allowed to be different. As a consequence the two decomposition trees
are pruned separately. The features are then extracted separately for both
decomposition trees and concatenated to obtain the final feature vectors.

Due to the fact that each subband in a complex decomposition depends on
all four DWPTs involved, the trees must be kept synchronous to be able
to perform an inverse transform. As a consequence we always perform a
full DWPT on an image in the asymmetric case and keep the coefficients
for all nodes at each decomposition stage. The pruning process is then not a
traditional pruning based on an inverse transform but we merely mark nodes
which should be included in the final basis for each direction (i.e. we end up
with two different bases for the different directions).



Since in case of the WPC method the decomposition structures are always pyra-
midal ones, asymmetric trees are not used for this method. For all other methods
hope is raised that using asymmetric decomposition trees allows the decompo-
sition to adapt better to the characteristics of an image.

To extend the WT-LDB method to a complex one, the so-called time fre-
quency energy map (TFEM) used in the Local discriminant bases algorithm
must also be extended. Simply spoken the TFEM contains the mean energy
at a certain coefficient position across all images of a class. Hence, we obtain
one TFEM for each image class. To extend the TFEM for our needs, we sim-
ply compute two different TFEMs for each class, one for each direction. Then,
depending on which decomposition tree is pruned, the right TFEM is used (in
the symmetric case both TFEMs are used to compute the sum of discriminant
powers for each node).

Fig. 3 shows the difference between the pyramidal DT-CWT, the symmetric
case, and the asymmetric case evaluated for feature extraction.

Positive directionsNegative directions

(a) Pyramidal

Positive directionsNegative directions

(b) Symmetric

Positive directionsNegative directions

(c) Asymmetric

Fig. 3. A comparison of the decomposition trees between (a) the pyramidal DT-CWT,
(b) an example symmetric decomposition structure, and (c) an example asymmetric
decomposition structure (in both cases a decomposition depth of 4 has been used).

4 Experimental Setup

4.1 Image Databases Used

Kylberg Database (KB-DB [9]): The original Kylberg database consists of
28 image classes, each containing 160 grayscale images with a size of 576×576
pixels. The balanced nature of this database (i.e. same number of images in each
class) and the high number of total images (4480) allowed us to split the database
into two separate, equally-sized sets for training and validation (each containing
2240 images). The database split has been done by using 80 images from each
class for training (Kylberg sample names c and d) and the remaining 80 images
for validation (Kylberg sample names a and b). In order to reduce the computa-
tion time, especially in case of time-consuming feature extraction methods, we
modified the image set by extracting center patches of size 128×128 pixels from
the original images. The cropped images are then used for the experiments.



High-magnification Colonic Polyp Database (HM-DB) [2]: This image
database is based on 327 endoscopic color images (either of size 624×533 pixels or
586×502 pixels) acquired between the years 2005 and 2009 at the Department of
Gastroenterology and Hepatology (Medical University of Vienna) using a zoom-
colonoscope (Olympus Evis Exera CF-Q160ZI/L) with a magnification factor of
150. In order to acquire the images 40 patients underwent colonoscopy. To obtain
a larger set of images we manually extracted subimages (regions of interest) with
a size of 256×256 pixels from the original images. This resulted in an extended
image set containing 716 images in total.

Lesions found during colonoscopy have been examined after application of
dye-spraying with indigocarmine, as routinely performed in colonoscopy. Biopsies
or mucosal resection have been performed in order to get a histopathological
diagnosis.

Details on the endoscopic image database used are provided in Table 1. In
these tables the columns NO, NE, and NP denote the number of original images
(i.e. the source images for patch extraction), the number of extracted patches,
and the number of patients, respectively. From table 1 we notice that the total
number of patients given is slightly higher as compared to the number of patients
who underwent endoscopy for the respective databases. The reason for this is
that in case of some patients different types of pathologies showed up across the
patient images. As a consequence a patient may be contained in more than one
class.

In case of the colonic polyp database we distinguish between a 2-classes case
and a 3-classes case. In the former we simply distinguish between normal mu-
cosa (non-neoplastic) and mucosal changes which need a medical intervention
(neoplastic). A more fine-grained classification was proposed in [10]. In this clas-
sification scheme the images are divided into three classes: normal lesions, non-
invasive lesions, and invasive lesions. This classification scheme is of particular
importance since normal mucosa needs not to be removed, non-invasive lesions
must be removed endoscopically, and invasive lesions must not be removed en-
doscopically.

Table 1. The detailed ground truth information for HM-DB.

Image Class
3 classes 2 classes

NO NE NP NO NE NP

Normal 72 198 14 72 198 14
Non-Invasive 212 420 27

255 518 32
Invasive 43 98 6

Total 327 716 47 327 716 46



4.2 Wavelet-Transform Setup

In case of the complex methods we use Kingsbury’s Q-Shift (14,14)-tap filters
(for decomposition stages ≥ 2) in combination with (13,19)-tap near-orthogonal
filters (for the first decomposition stage). For the DT-CWPT we use the Q-
Shift filters for the decomposition nodes needing special treatment (using the
methodology proposed in [3]). To make the real and complex methods more
comparable, we use the Q-Shift filters also for the real methods (i.e. just one of
the filter banks).

For methods which are based on the Best-basis algorithm we use the entropy
as cost function. For the Local discriminant bases algorithm we use the l2-norm
as discriminant measure.

4.3 Feature Extraction and Classification

The feature we use for all methods is the entropy which is computed from the
coefficients (magnitude) in the high-frequency subbands.

To reduce the dimensionality of the feature vectors and to improve the com-
parability of the techniques we perform a principal component analysis (PCA).
Prior to applying the PCA to the features, we center the training feature vectors
by subtracting the feature-wise mean from each feature. Then, after computing
the eigenvalues and eigenvectors for a given set of training feature vectors, the
eigenvalues and eigenvectors are sorted in descending manner with respect to
the eigenvalues. This is followed by computing the number of components p to
retain from the cumulative sum of the eigenvectors, such that the cumulative
sum for the first p largest eigenvalues is above 0.99.

Once the validation features have been extracted and centered (using the
means from the original training features), the feature projection computed from
the training features is also applied to the validation features.

For the classification we use the k-Nearest neighbors (k-NN) classifier using
the l1-norm to compute the distances between feature vectors. This rather weak
classifier has been chosen to emphasize more on the effect of extending the feature
extraction methods to complex ones. We carried out experiments with different
values for k (i.e. k = 1, . . . , 25) and present the average results.

To estimate the classification accuracies in case of the colonic polyp database
we use the leave-one-patient-out cross-validation (LOPO-CV).

5 Results

Fig. 4 provides an overview of the overall classification rates we obtained in our
experiments. The red, green, and blue bars denote the mean overall rates for
real, complex, and complex asymmetric versions of the respective methods (over
all choices for the k-value from the k-NN classifier). On top of each bar the we
also indicate the range of classification rates over all choices for k.

As can be seen from Fig. 4(a), switching to the complex domain consistently
improves the mean overall classification rates by up to 10% in case of KB-DB.
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Fig. 4. An overview of the results from our experiments.

Only WT-BBCB is able to slightly benefit from switching from the complex
symmetric mode to the complex asymmetric mode. WT-BB delivers the lowest
rates for KB-DB when compared to the other methods.

We notice from Fig. 4(b) that switching to the complex domain only improves
the mean overall classification rates for WT-BB in case of HM-DB. In the 3-
classes case we even observe a slight results drop slightly for WT-LDB and
WPC. However, we also notice that, while the result range over all choices for
k is rather small for all other methods, it is wider in case of WT-BB. When
comparing the symmetric and asymmetric modes we again notice (similar to the
results of the KB-DB) that only in case of WT-BBCB an improvement can be
observed (although it is only a minor one). In all other cases switching to the
asymmetric mode leads to a small result drop.

It is interesting to note that for the regular textures of the KB-DB the comlex
version of the WT-BBCB approach gives the best results (which employs a
single decomposition structure to all images subject to classification – still this
is adaptively chosen), while for the less regular (only texture-like) images of
the endoscopical HM-DB the complex version of the WT-BB technique provides
superior results, for which each image is potentially decomposed into a different
decomposition structure. It seems that for the less homogeneous imagery the
higher adaptivity potential of the WT-BB approach is beneficial.

6 Conclusion

The results obtained show that at least one method (WT-BB) is able to consis-
tently improve the classification rates when using the complex version of it. For
all other methods there is a dependency on the data set: For the KB-DB, the com-
plex version improves the results for all considered feature extraction technique,
partially significantly so. For the endoscopic HM-DB, we see improvments for
WT-BB only, thus confirming results on earlier investigations on high-definition
endoscopic data [11].

However, it also turned out that, at least for most of the methods evaluated,
it is sufficient to use complex symmetric decomposition trees. Only WT-BBCB
is able to consistently improve the classification rates when using the complex
asymmetric version.
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