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Abstract—In automated hippocampus segmentation, issues
related to ground truth rater variability, subject variability and
variability of software segmentation accuracy are investigated
in the context of 3 publicly available, out-of-the-box software
packages. Ground truth variability among three manual raters
is controlled using a majority voting based label fusion scheme
and observed subject variability underpins the importance of
availability of large scale ground truth.
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I. INTRODUCTION

The hippocampus is reduced in size in individuals with

obesity, diabetes mellitus, hypertension, hypoxic brain injury,

obstructive sleep apnoea, bipolar disorder, clinical depression,

and head trauma, it is atrophic in mild cognitive impairment

and dementia [1], and it is sclerotic in specific subtypes of

epilepsy [2]. Since the hippocampal formation plays a core

role in memory formation and consolidation [3], pathological

reduction in size and other structural pathologies correlates

with cognitive decline [4], [1]. The most established applica-

tion of hippocampus volumetry is the prediction of conversion

from normal aging to mild cognitive impairment, and further

to Alzheimer disease [5], [6], [7], [8], [9].

Thus, a large variety of techniques and algorithms for

automated hippocampus segmentation have been published

over the last years, some of them targeted to specific disease

or deformation classes (see e.g. [10], [11], [12], [13], [14],

[15], [16], [17], [18], [19]). In order to assess these software

solutions, the classical evaluation approach requires manually

established expert ground truth segmentations, a tedious and

time-consuming effort, especially when larger datasets are

used. For the state-of-the-art algorithms for automated hip-

pocampus segmentation [20], [21] based on multi-atlas seg-

mentation (MAS [22]) it is not only assessment that requires

reliable ground truth, but each involved atlas usually relies on

a manually established expert ground truth segmentation.

Therefore, in literature, alternatives have been pointed out

recently: [23] introduces a generic learning-based approach

based on a set of segmentation features which are trained to

predict overlap error and Dice coefficient of a segmentation of

unseen data without available ground truth. Crowdsourcing has

been identified as a further approach to at least approximate

expert label quality by combining several non-expert segmen-

tations [24] and other medical image data label generation

tasks [25], [26].

As a consequence of the significant effort in generating

expert ground truth segmentations, many studies involve only

a single rater groundtruth per MRI volume for hippocampus

segmentation accuracy assessment (e.g. [13], [14], [15], [16],

[17], [18], [27], [19], [12]) and/or are restricted to a low

subject number (e.g. < 13: [13], [15], < 25: [16], [12], the

latter for OASIS and IBSR subsets). This is supposed to be

problematic wrt. generalisation, but even inter- and intra rater

variability of manual segmentations has only been investigated

between two raters and 23 subjects [28]. Few studies / datasets

exist relying on at most two manual raters: A possibility how

to cope with this problem is exhibited by the Radiology Re-

search Database1 [29], which provides ground truth created by

one rater and verified by two other raters. However, of course

this approach involves laborious synchronisation among three

raters and eventually, the verifying raters are already biased

by the ground truth of the first rater. The approach in [30]

uses 2 raters in a complicated and randomised collaborative

protocol to avoid such a bias. Another approach chosen is to

document inter-rater agreement of the rater employed in the

study to another rater using a different (usually smaller) dataset

[14], [16], which has the obvious problem of questionable

generalisation of the results. In case multiple rater results

are available per MRI volume, the generation of a reliable

fused ground truth can be accomplished using the STAPLE

technique [31] or any other technique as used in MAS label

fusion like (locally weighted) majority voting [22]. While

such techniques have of course been used in hippocampus

MAS (e.g. [20]), to the authors knowledge this has not

been applied so far to generate a single ground truth from

multiple rater segmentations of the same MRI volume due

to the non-availability of corresponding multiple ground truth

hippocampal segmentations.

Another important issue for research efforts focusing on

medical / clinical questions related to segmented hippocampi

1Available at http://www.nitrc.org/projects/hippseg 2011



but not on segmentation techniques itself is that without proper

background and significant experience, a re-implementation

of proposed techniques is far from being trivial and usually

requires several man-years of programming effort. Therefore,

especially for research groups “only” interested in segmen-

tation results for further analysis, available (preferably cost-

free) out-of-the-box segmentation software without the need

for extensive optimisation and adaption is a highly attractive

(if not the only) option. Screening corresponding software

repositories and websites does not bring too many results –

e.g. providing a web-service for single volumes to be seg-

mented like at https://hipposeg.cs.ucl.ac.uk is highly valuable

for educational purposes, but actual employment in a study

requires batch-processing capabilities. So far, the authors were

not able to spot easy-to-use publicly available MAS software

for hippocampus segmentation.

In this paper, we assess variability in various segmentation

reliability and accuracy aspects when using three cost-free

and pre-compiled out-of-the-box hippocampus segmentation

software packages. Section 2 describes the experimental setup

in terms of dataset used, employed segmentation techniques,

and evaluation methodology. In Section 3, we present segmen-

tation results in terms of volume variability, shape accuracy

variability among techniques and subjects, as well as ground

truth variability among three manual raters and apply a simple

majority voting label fusion technique to profit from this

available ground truth at low cost.

II. METHODOLOGY

A. Data and Ground Truth

In this work we use a data set that has been acquired at

the Salzburg Paracelsus Medical University and consists of

56 T1-weighted MRI volumes, including patients with mild

cognitive impairment (MCI, 20 subjects), with temporal lobe

epilepsy (TLE, 17 subjects), and a healthy control group (CG,

19 subjects). One of the subjects has been removed from the

set since one of the programs evaluated consistently failed

to produce a segmentation result for that subject. Hence,

the final set consists of 55 volumes only, containing 27

males (18-76 years, mean age 53±19 years) and 28 females

(23-71 years, mean age 54±14 years). In this set we have

manual segmentations from 3 experienced raters (one senior

neurosurgeon and two junior neuroscientists supervised by a

senior neuroradiologist) for 9 identical subjects. This reduced

set consists of 4 males (20-59 years, mean age 42 ± 17 years)

and 5 females (28-49 years, mean age 47±17 years), all but

one with diagnosed TLE and the remaining woman with MCI.

For 39 subjects we have one manual segmentation from a

single rater (also part of the above rater group). In this subset

we have 17 males (18-74 years, mean age 46±20 years) and

22 females (23-71 years, mean age 51±15 years). This subset

includes 4 MCI, 17 TLE, and 18 CG subjects, respectively.

Manual segmentations have been performed on a Wacom

Cintiq 22HD graphic tablet device (resolution 1920x1200)

using a DTK-2200 pen and employing the 32-bit 3DSlicer

software for Windows (v. 4.2.2-1 r21513) to delineate hip-

pocampus voxels for each slice separately. The raters inde-

pendently used consensus on anatomical landmarks/boarders

of the hippocampus based on Henry Duvemoy’s hippocampal

anatomy [32]. The procedure used was to depict the hippocam-

pal outline in the view of all planes in the following order:

sagittal – coronal – axial with subsequent cross line control

through all planes.

B. Software Packages

We initially intended to use four different software pack-

ages, each relying on a different algorithmic principle, in

the context of an automated segmentation of hippocampi.

However, AutoSeg2, although found to be usable to segment

e.g. the Radiology Research Database [29], [33], was not

applicable in this study due to repeated and enduring failures

during the skull stripping process. In contrast to most of the

algorithms presented in literature, e.g. [12], all these software

packages are already pre-compiled and available for free.

FreeSurfer3 is a popular set of tools which allow an

automated labelling of subcortical structures in the brain.

Such a subcortical labelling is obtained by using the volume-

based stream which consists of five stages [10]. The result

is a label volume, containing labels for various different

subcortical structures (e.g. hippocampus, amygdala, and cere-

bellum). FreeSurfer is a highly popular tool to assess clinical

hypotheses [30], [27], [19], [17], [15] or to compare to newly

proposed segmentation techniques (e.g. [13], [16], [12]).

AHEAD (Automatic Hippocampal Estimator using Atlas-

based Delineation4) is specifically targeted at an automated

segmentation of hippocampi [11].

After an initial rigid registration step, a deformable reg-

istration is carried out using the Symmetric Normalisation

algorithm. From the result of these steps, the volume is

normalised to the atlas. The hippocampus segmentation from

the atlas is then warped back to the input volume. Based on

multiple atlases and a statistical learning method, the final

segmentation is obtained.

Although BrainParser5 is usually able to label various

different subcortical structures, we use a version of BrainParser

which is specifically tailored to hippocampus segmentation.

After re-orienting the input volume to the coordinate system

of the included, pre-trained atlas, skull stripping is performed.

This is followed by computing an affine transform between

the input volume and the reference brain volume. Then a

deformable registration between the input and the reference

volume is carried out. Then, according to the trained atlas, the

input volume is labelled.

C. Segmentation Quality Assessment Metrics

To allow inter-rater comparisons of ground truth segmen-

tations as well as assessment of the quality of the automated

hippocampus segmentation methods, metrics are needed.

2v. 2.9, available at http://www.nitrc.org/projects/
3v. 51.0, available at http://surfer.nmr.mgh.harvard.edu
4v. 1.0, available at http://www.nitrc.org/projects/
5available at http://www.nitrc.org/projects/



In the following the automated segmentation is denoted

by S, the ground truth segmentation is called G, and v(·)
is a volume operator which computes the volume of a voxel

volume with respect to the actual dimensions of a voxel.

• Similarity index (SI)

The similarity index (also known as the Dice coefficient)

is a quite frequently used measure to assess the similarity

between two sets of voxels.

SI(G,S) =
2v(G ∩ S)

v(G) + v(S)
(1)

• Symmetric Hausdorff distance (SHD)

This metric is based on the actual structure of a voxel

volume. It is defined as

SHD(G,S) = max(HD(G,S), HD(S,G)) (2)

where

HD(X,Y ) = max
x∈X

(min
y∈Y

d(x, y)). (3)

is the non-symmetric Hausdorff distance, x and y are

vectors in R
3 and d(·, ·) denotes the Euclidean distance

between two vectors.

While low values in [0, 1] correspond to little similarity /

quality for SI, the SHD produces large values (differences)

between dissimilar segmentations.

III. EXPERIMENTAL SEGMENTATION RESULTS

The following results are always based on both hippocampi

simultaneously. That is, we do not present results for the left

and right hippocampus separately but treat both hippocampi

from each scan as one segmentation object.

A. Volume Variability

Figure 1 provides an overview of the segmentation outcomes

of the different program packages and three raters (thus 9

subjects are covered). In particular, this figure shows the

volumes (in mm3) for the hippocampi segmented from each

subject, ignoring shape variations of course.

This figure shows that FreeSurfer segmentations have much

higher volumes as compared to the raters, while AHEAD and

BrainParser yield volumes comparable to those of the manual

raters (corresponding results are also confirmed for all sub-

jects, not displayed). FreeSurfer tends to over-segmentations

in general, which has also been shown already in other

studies [27], [19], thus demonstrating that our setup produces

reasonable results in accordance with previous literature.

We also observe from this figure that rater variability is

in the same order of magnitude as the differences between

AHEAD and BrainParser, at least for these volume results.

B. Automated Segmentation Variability

Table I shows the metric results for the similarity index

and the symmetric Hausdorff distance, respectively, when

comparing the segmentation outcomes among the automated

segmentation programs, thus now reflecting shape similarity as

well (mean scores along with the respective standard deviation
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Figure 1. Comparison between the volumes for the automated segmentations
and the volumes for the manual segmentations.

over all subjects). The results are shown for the complete set

of subjects (55) and for the subset for which three manual

segmentations from human raters were available (9).

The results clearly show that the similarity between auto-

mated segmentations is in general highest when comparing

BrainParser and AHEAD. As soon as FreeSurfer is compared

to one of the other two software packages, the similarity gets

lower (which is not surprising given the volume results in the

previous section).

The rather high standard deviations in case of comparisons

with BrainParser are the result of the incorrect segmentation

of BrainParser for subject 38 (in fact, although a voxel volume

has been returned by BrainParser, the intersection between

this volume and the segmentations of the other two software

packages is empty).

Table I
SUMMARY OF THE RESULTS FROM THE PROGRAM COMPARISONS.

All subjects (55) Reduced set (9)

SI SHD SI SHD

AHEAD/FreeSurfer 0.67±0.05 9.27±1.87 0.65±0.04 9.90±1.14
AHEAD/BrainParser 0.71±0.13 7.18±8.36 0.75±0.03 6.03±2.11
BrainParser/FreeSurfer 0.67±0.13 10.25±8.22 0.68±0.05 10.87±3.93

C. Ground Truth Variability

Figure 2 shows the results for the symmetric Hausdorff

distance, when comparing the manual segmentations of the

human raters. The results in this figure of course show inter-

rater variability.

Rater 3 causes rather huge distances in case of 3 subjects

(no. 5,8,9). This suggests that there is a higher disagreement

between rater 3 and the other raters then it is the case for the

third rater pair. However, for subjects no. 2 and 4, respectively,

the involvement of rater 2 causes high differences and for

subject no. 7 only the difference between rater 1 and 2 stands

out.

A summary of the results is given in Table II (mean and

standard deviations over all subjects). From the results in

this table we also notice that the rater pairs involving rater

3 have indeed a lower level of agreement. When comparing

these scores with the ones for the program packages for the

same subjects (reduced set results as given in Table I), we

notice that the inter-rater agreements are at about the same

level as they are in case of the comparisons between the

automated segmentations. Results involving rater 3 are all in



S
y
m

m
e
tr

ic
 H

a
u
s
d
o
rf

f 
d
is

ta
n
c
e

Subject

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

Rater 1 vs. Rater 2

Rater 1 vs. Rater 3

Rater 2 vs. Rater 3

Figure 2. Comparison between the human raters (pairwise symmetric
Hausdorff distance).

Table II
SUMMARY OF THE RESULTS FROM THE INTER-RATER COMPARISONS (9

SUBJECTS).

SI SHD

Rater 1 vs. Rater 2 0.79±0.04 5.97±1.01
Rater 1 vs. Rater 3 0.74±0.10 6.21±2.03
Rater 2 vs. Rater 3 0.74±0.10 7.33±2.12

Overall 0.76±0.07 6.50±1.30

all slightly worse than the best inter-software agreement, rater

1 and 2 agreement is slightly better as the best inter-program

agreement. If we just compare the inter-rater agreements with

the inter-program agreements of BrainParser and AHEAD, the

levels of agreement between the raters and the programs are

rather similar.

This result questions the usefulness of ground truth to

rate software segmentation results for our purpose in general.

Seeing that result variability is on comparable level for human

raters (ground truth) and software (to be assessed) one might

just think to pick an arbitrary software package.

D. Segmentation Techniques and Subject Variability

Results of the previous section obviously suggest not to

rely on ground truth of single raters. A possibility how to

cope with this problem is exhibited by the Radiology Research

Database6 [29], which provides ground truth created by one

rater (and verified by two other raters). However, of course

this approach involves tedious synchronisation among three

raters and of course, the verifying raters are already biased by

the ground truth of the first rater. In this section we follow a

different strategy by using voxel-based majority voting among

the segmentations of the three raters (a voxel is active in

the fused volume if at least two raters marked that voxel as

belonging to a hippocampus).

Figures 3 – 5 show example scores from the comparisons

between the raters and the three automated segmentation

programs used. Each plot shows the agreement between the

single raters and each program as well as the agreement with

the fused ground truth.

We see that in most cases, the fused rater segmentations

lead to higher agreements with the program packages as

6Available at http://www.nitrc.org/projects/hippseg 2011
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Figure 3. Comparison between the human raters and AHEAD segmentation.
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Figure 5. Comparison between the human raters and BrainParser segmen-
tation.

compared to the single raters. In any case, extreme agreements

and disagreements vanish making the assessment significantly

more reliable.

Table III provides a summary of all corresponding results

(mean over all subjects and raters – first three lines – and

mean over all majority voting results over all subjects for

the remaining lines). From this table we again notice two

things: First, in case of FreeSurfer the similarities are lower as

compared to the other programs, while AHEAD provides the

best results wrt. both, best mean quality and lowest standard

deviation. And, second, using the fused rater segmentations

enhances the scores in terms of mean quality but consistently

leads to higher standard deviations, exhibiting the differences

of the techniques even clearer.

Table III
SUMMARY OF THE RESULTS FROM THE COMPARISONS BETWEEN THE

RATERS AND THE PROGRAMS (9 SUBJECTS).

SI SHD

FreeSurfer vs. Raters 0.69±0.03 9.80±1.38
AHEAD vs. Raters 0.72±0.02 6.40±0.86
BrainParser vs. Raters 0.72±0.03 7.49±1.96

FreeSurfer vs. Majority 0.72±0.03 9.68±1.57
AHEAD vs. Majority 0.76±0.02 5.45±0.95
BrainParser vs. Majority 0.76±0.04 7.06±2.67

Since we had forty manual segmentation in case of rater 2,

we also did a comparison of those manual segmentations and

the software packages.

In case of 4 subjects (no. 10, 22, 31, and 34) the results are

rather poor in case of the rater comparison against BrainParser.

While for subject 34 there is no BrainParser segmentation

available (BrainParser was not able to register the scan against

the atlas used, hence, no segmentation result is available),

BrainParser yielded erroneous segmentations in case of the

other subjects (e.g. due to a failed skull stripping). The results

for subject 34 are therefore excluded from the summary given

in the table below.

The general picture as shown in Table IV is that the

agreements between rater 2 and the automated segmentation

programs are rather high. Again, when compared against

FreeSurfer, the similarities between the segmentations get

lower due to the oversegmentation. This table also shows that

the agreement between rater 2 and BrainParser is a bit lower

as compared to AHEAD. This is caused by the problematic

subjects listed above.

Table IV
SUMMARY OF THE RESULTS FROM THE COMPARISONS BETWEEN RATER 2

AND THE PROGRAMS (39 SUBJECTS).

SI SHD

FreeSurfer vs rater 2 0.71±0.06 10.04±2.37
AHEAD vs rater 2 0.73±0.05 6.48±2.04
BrainParser vs rater 2 0.69±0.16 9.21±9.94

Thus, overall, AHEAD again provides the best results in

terms of mean quality and lowest standard deviation, con-

firming the results gathered from the reduced dataset with 9

subjects.

One important point to consider when looking at the sum-

marised results is that the segmentation accuracy of a rater

may vary considerably from subject to subject. This of course

also applies to the different program packages. To illustrate

this, we selected two subsets of 9 subjects from the 39

subjects available and compared the mean agreement between

rater 2 and the programs. One subset consists of subjects

for which there is only a rather low agreement between the

rater and the programs, whereas the second set consists of

subjects with a high agreement (the sets have been created for

each program/metric combination separately, see Table V for

results).

Table V
SUMMARY OF THE RESULTS FROM THE COMPARISONS BETWEEN RATER 2

AND THE PROGRAMS (ALWAYS FOR 9 SUBJECTS).

Low agreement High agreement

SI SHD SI SHD

FreeSurfer/rater 0.62±0.07 13.17±2.42 0.75±0.00 8.61±0.00
AHEAD/rater 0.67±0.05 9.13±2.90 0.77±0.00 5.38±0.00
BrainParser/rater 0.49±0.24 18.44±18.46 0.77±0.00 6.00±0.00

From this table we immediately see that there is indeed a

huge impact on the scores, if the set of segmentations at hand

contains either inaccurate segmentations by the manual rater or

inaccurate segmentations by the programs. In case of the low

agreement set, BrainParser is now clearly the worst technique,

while in the case of the high agreement set, it is no longer

possible to clearly identify the best performing technique.



IV. CONCLUSION

We have found ground truth variability and automatic

segmentation results variability on a comparable level, which

makes the segmentation accuracy assessment based on a

single-rater ground truth hardly reliable. This is especially

surprising since most of the subjects involved suffer from

TLE and MCI, and automated segmentation techniques rely

on atlases of healthy subjects. Thus, a clear superiority of

manual segmentations would have been expected.

Using a majority voting based label fusion ground truth, we

were able to identify AHEAD as the most reliable automated

segmentation tool considered. Having observed the importance

of subject variability, results still need to be strengthened with

a larger set of manual segmentations in future work.
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