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Computer-aided Decision Support Systems for Endoscopy in

the Gastrointestinal Tract: A Review
Michael Liedlgruber and Andreas Uhl

Abstract—Today, medical endoscopy is a widely used procedure to
inspect the inner cavities of the human body. The advent of endoscopic
imaging techniques – allowing the acquisition of images or videos –
created the possibility for the development of the whole new branch of
computer-aided decision support systems. Such systems aim at helping
physicians to identify possibly malignant abnormalities more accurately.
At the beginning of this work we give a brief introduction to the history
of endoscopy, followed by introducing the main types of endoscopes
which emerged so far (flexible endoscope, wireless capsule endoscope,
and confocal laser endomicroscope). We then give a brief introduction
to computer-aided decision support systems specifically targeted at
endoscopy in the gastrointestinal tract. Then we present general facts
and figures concerning computer-aided decision support systems and
summarize work specifically targeted at computer-aided decision support
in the gastrointestinal tract. This summary is followed by a discussion of
some common issues concerning the approaches reviewed and suggestions
of possible ways to resolve them.

Index Terms—Endoscopy, Wireless Capsule Endoscopy, Confocal Laser
Endomicroscopy, Gastrointestinal Tract, Computer-aided Decision Sup-
port

I. INTRODUCTION

S
INCE medical endoscopy is a minimally invasive and relatively

painless procedure, allowing to inspect the inner cavities of the

human body, endoscopes play an important role in modern medicine.

In medical practice different cavities within the body exist which are

are regularly inspected with an endoscope 1, e.g. the lower respiratory

tract (bronchoscopy), the urinary tract (cystoscopy), or the female

reproductive system (gynoscopy). But there also exist procedures

which are performed through small incisions to reach cavities which

are normally closed, such as for the example the abdominal or pelvic

cavity (laparoscopy) or organs of the chest (thorascopy). Another

important field in medical endoscopy, which this survey focuses at,

is the inspection of the gastrointestinal tract (GI tract).

Based on endoscopy of the GI tract, physicians are able to detect

severe diseases already in early development stages and therefore the

mortality rate for many diseases, especially different types of cancers,

has been lowered drastically throughout the last years [1], [2]. Some

examples of conditions which are known to be pre-malignant or to

increase the risk of cancer in the GI tract are adenomas, Barrett’s

esophagus, Crohn’s disease, celiac disease, and a Helicobacter pylori

infection. But also the detection of GI bleeding, being a sign of

malignancy, is important in gastrointestinal endoscopy.

The advent of endoscopes with the ability to take digital pictures

created the whole new field of computer-aided decision support

systems (CADSSs) in medical endoscopy. Such systems are designed

to detect and/or classify abnormalities and thus assist a medical expert

in improving the accuracy of medical diagnosis. In addition, different
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Figure 1. Number of publications between 1988 and 2010 found on PubMed
and ScienceDirect when searching for publications aiming at supporting
medical endoscopy in the GI tract (search was conducted on the 6th of June,
2011).

methods have emerged which do not directly provide decision-

support. Instead they aim for example at enhancing image quality,

detecting degraded images, or provide endoscope navigation support.

Throughout this work we use the term “supportive systems” for such

methods.

To highlight the relevance of CADSSs and supportive systems

we conducted an exhaustive search for publications dealing with

these topics (on PubMed 2 and on ScienceDirect 3), which yielded

the search results presented in Fig. 1. In order to find relevant

publications our search was based on key terms corresponding to

different endoscopic techniques and pathologies (the respective search

queries can be found in [3]). The results show that there is a rising

interest in this research topic, starting about one decade ago.

The remaining part of this work is structured as follows: Section

II reviews the technological advances in endoscopy. We then discuss

CADSSs in more detail in Section III. This discussion includes a

brief overview of CADSS, general facts and figures, and a detailed

review of proposed CADSSs found in literature. Problems inherent

to CADSSs and possible ways to cope with them are discussed in

Section IV. Section V concludes this work.

II. TECHNOLOGICAL ADVANCES IN ENDOSCOPY

Endoscopy, as we know it today, is performed using a flexible

endoscope, sometimes also referred to as videoscope. This type of

endoscope has been introduced in the mid 1960s. While the first

endoscopes used fiber optics and an eyepiece lens to visualize the in-

ner cavities of the human body, modern endoscopes are very compact

devices, including a light source, and a CCD or CMOS chip for taking

pictures. But the basic concept did not change very much since those

days. In addition to the digital imaging chip, modern endoscopes

contain a light source at the distal tip and are equipped with an

accessory channel, which allows the entry of medical instruments

to take tissue samples, perform cleansing of poorly prepared areas,

perform polypectomies, and perform endoscopic resections without

any invasive surgery involved. Depending on the region within the GI

2PubMed located at http://www.ncbi.nlm.nih.gov/pubmed
3ScienceDirect located at http://www.sciencedirect.com
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(a) (b) (c) (d)

Figure 2. Sample images showing a colonic polyp, acquired by using
different endoscopic techniques (a) endoscopy [4], (b) zoom-endoscopy, (c)
confocal laser endomicroscopy [5], and (d) WCE (Copyright c©2005-2011,
Given Imaging. All Rights Reserved).

tract to be inspected there exist different terms for endoscopic proce-

dures, such as colonoscopy (colon), sigmoidoscopy (inspection of the

last part of the colon), gastroscopy or esophagogastroduodenoscopy

(upper part of the GI tract down to the duodenum), or endoscopic

retrograde cholangiopancreatography (inspection of the bile duct or

pancreatic duct).

More recent advances in endoscopy are zoom-endoscopy and

chromoendoscopy. Zoom-endoscopy allows to zoom in at regions of

interest, using a magnification factor of up to 150. Such devices offer

a significant advance since smaller and finer details in the region to

be examined get uncovered [6]. Another possibility to obtain images

with a higher level of detail are high definition (HD) endoscopes,

which also provide images of higher resolutions and therefore allow

to detect subtle changes in the mucosa. Chromoendoscopy aims at en-

hancing superficial patterns on a mucosal layer by topically applying

color dyes. An alternative to this rather time-consuming procedure

is to use Narrow Band Imaging (NBI), which allows to enhance the

contrast of vascular patterns on the mucosal surface [7]. Since NBI

is based on a rotating filter in front of the light source (narrowing the

spectrum of the visible light to bands of blue and green) this technique

is not dependent on applying color dyes. Other systems similar to

NBI, like FICE (Fujinon Intelligent Chromoendoscopy) or I-scan, use

computer algorithms to post-process endoscopic images. Systems like

NBI, FICE, or I-scan are referred to as “virtual chromoendoscopy”.

Another recent advance in endoscopy is confocal laser endomi-

croscopy (CLE) [8]. This procedure allows to inspect the mucosal

surface in a highly detailed manner. This is achieved by a laser-

based endomicroscope which scans the surface of the mucosa and

even allows to inspect sub-surface features up to a depth of 250

microns by adjusting the focal point of the laser. The resulting images

have a resolution corresponding to a magnification factor of 1000,

making “smart” biopsies possible, thus avoiding random and possibly

unnecessary biopsies. Throughout the last years two distinct types of

CLE technologies have emerged, namely eCLE and pCLE. While in

case of eCLE the endomicroscope is integrated at the distal tip of

the endoscope, a CLE probe is inserted into the accessory channel

of an endoscope in case of pCLE. Hence, while eCLE and pCLE are

similar in terms of the resulting imagery, an endoscope can be easily

upgraded with pCLE.

It has already been shown that the diagnostic accuracy of CLE

is comparable to histology [9]. It must be noted that CLE actually

belongs to the category of flexible endoscopy. Nevertheless, due to

the completely different imaging modality in CLE endoscopes, we

make a distinction between CLE and flexible endoscopy throughout

the remaining part of this work.

Since the small intestine is very long and convoluted a traditional

flexible endoscope is only of limited use. A recently developed tech-

nique to overcome this limitation and to make endoscopic procedures

more safe, less invasive, and more comfortable for the patient, is

wireless capsule endoscopy (WCE) [10]. To perform WCE the patient

swallows a small capsule, containing a light source, lens, camera,

radio transmitter, and batteries. Propelled by peristalsis, the capsule

then travels through the digestive system for about eight hours and

automatically takes more than 50 000 images. These are transmitted

wirelessly to a recorder worn outside the body. Throughout the

last years WCE has already proven to be a valuable tool to detect

the cause of gastrointestinal bleeding within the small bowel [11].

Recently also other areas of interest for WCE within the GI tract have

emerged, such as the colon [12] or the esophagus [13]. But it must

be noted that the inspection of these two parts within the GI tract is

not well-established yet. Although WCE currently lacks the ability to

treat lesions, obtain biopsy samples, and clean poorly prepared areas,

this new technique has already proven to be an effective diagnostic

modality for detecting small bowel tumors and small bowel lesions

[14] since the first approval of a WCE capsule by the FDA (U.S.

Food and Drug Administration) in 2001, and may also become an

important tool to detect other abnormalities in the GI tract [15].

Another recent advance in endoscopy is virtual endoscopy [16]–

[18] (VE), also referred to as computed endoscopy. Since in VE

the data to be analyzed is acquired using helical or spiral computer

tomography (CT) or Magnetic Resonance imaging (MRI) virtual

endoscopy differs significantly from all other techniques described

above in terms of the underlying imaging technique. Hence, the

remaining part of this work is focused on flexible endoscopy, CLE,

and WCE only.

There have been many technological advances throughout the past

decades. But while traditional white-light endoscopy is standard-

of-care, some techniques mentioned above are still rarely used.

While WCE had a deep impact on clinical routine (in particular the

investigation of the small bowel), other techniques are still under

investigation and thus barely used (i.e. CLE and virtual endoscopy).

Other enhancements like NBI or HD endoscopy are not used yet on

a regular basis in clinical practice since it is still not clear whether

an investment in such systems is worth it.

Sample images for each endoscopic imaging modality mentioned

are given in Fig. 2. These images clearly indicate that, while all

images show a polyp within the colon, there exist vast differences

between the resulting imagery.

III. COMPUTER-AIDED DECISION SUPPORT SYSTEMS

A rough overview of common steps involved in a decision support

system for medical endoscopy is shown in Fig. 3. In many cases

the first step is a preparation of the tissue region to be investigated

(e.g. staining, treatment with fluorescent dyes). After an image has

been acquired, pre-processing may be required in order to enhance

the quality of possibly degraded images. Then, depending on the aim

of the application, suitable features have to be found and extracted.

Sometimes a post-processing of the features is also necessary (e.g.

removing invalid feature combinations in the case of high-level

features). If the decision support system is targeted at classification

(e.g. polyp detection, cancer detection) the features are used for a

classification of the image, using a previously trained classifier. But

there also exist other systems which base their decisions directly on

the features without using an intermediate classifier (e.g. by using

feature thresholds) [19].

Similar to classification, some systems are targeted at content based

image retrieval (CBIR) or content based video retrieval (CBVR).

The main difference between automated decision support systems

and CBIR/CBVR systems is the fact that, in case of an automated

decision support, the output of such a system is a suggestion on the

final diagnosis or additional information for a diagnosis. This output

is usually generated without any intervention by a medical expert

needed, potentially allowing, for example, a real-time polyp detection
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Figure 3. This figure illustrates common steps involved in a decision support system (colored boxes denote optional steps). Layers depict the possibility that
multiple frames from an endoscopic video may be processed simultaneously to exploit inter-frame relationships.
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Figure 4. Schematic illustration of the different endoscopic techniques.

while the endoscope is advanced through the colon. CBIR/CBVR

systems on the other hand present an expert a number of similar

images or videos (on demand), from which the expert is able to decide

by himself on the final diagnosis. It is also quite common that the

expert is able to interact with the system, allowing a refinement of the

search query for similar images. Hence, CBIR/CBVR systems usually

have an interactive nature which limits them in terms of real-time

capabilities and restricts them to be used for an offline processing.

As already pointed out in Section II, each endoscopic procedure

generates images which exhibit specific characteristics depending on

the technique used. Therefore, computer systems targeted at decision

support must be designed accordingly. As can be seen from Fig. 2(a)

an image taken with a traditional flexible endoscope does not allow

to see details of the tissue under examination. A zoom-endoscope,

on the other hand, allows to examine the fine structures and details

of tissue too (see Fig. 2(b)). This, however, comes along with a

rather limited field-of-view (FOV), which makes navigation more

difficult. This problem is even more apparent in the case of CLE

due to the high magnification nature of this technique (see Fig. 2(c)).

But this technique produces images which contain clear and detailed

structures.

Fig. 4 shows a schematic illustration of standard endoscopy, zoom-

endoscopy, and CLE. As can be noticed from this figure the distance

of the distal endoscope tip to the mucosa under inspection differs

between these techniques. This is due to the different focal depths

inherent to the different techniques. As a result, the FOV differs

also between the devices. While standard endoscopes usually have

FOVs between 120
◦ and 170

◦, zoom-endoscopes have rather limited

FOVs between 50
◦ and 70

◦. This naturally affects the size of the

visible mucosa regions. In case of CLE the FOV is even more limited,

resulting in a visible region of about 500 × 500µm. Nevertheless,

the limited FOV comes along with the advantage of higher image

resolutions.

Table I
AN OVERVIEW OF DIFFERENT ENDOSCOPIC IMAGING MODALITIES WITH

RESPECT TO THE APPROXIMATE RESOLUTION OF THE PRODUCED IMAGES

(GIVEN IN KILOPIXEL) AND THE ABILITY TO PRODUCE COLOR IMAGES.

Endoscope type Image resolution Color images

Flexible endoscopes 100 - 500 Yes
Flexible endoscopes (HD) 900 - 2000 Yes
Capsule endoscopes 65 - 330 Yes
CLE 200 - 1000 No

In case of WCE the image resolution is often considerably lower

compared to the aforementioned techniques (see Fig. 2(d)). In ad-

dition, WCE suffers from the inability to control the motion and

position of the capsule, which raises new difficulties for CADSSs.

From the example images shown in Fig. 2, it is clear that –

even in case of the same pathology – images taken with differ-

ent endoscopic techniques will in general differ significantly. One

particular difference between the different endoscopic modalities is

the available image resolution. As shown in Table I, these range

from approximately 65 Kilopixel to approximately 2000 Kilopixel.

In addition, while some endoscopes allow to capture color images,

there also exist endoscopes which capture grayscale images only.

In the next section we present general facts and figures for

CADSSs. We discuss the spread of the different endoscopic imaging

modalities across CADSS-related literature. This is followed by

discussing literature found from the medical perspective of CADSSs.

For this purpose we first give an overview of the different parts of the

GI tract which CADSSs have been developed for in the past. Then

the different pathologies under investigation are outlined, showing

the importance of respective detection and classification systems.

Finally, we discuss approaches found in literature from the image

processing and classification perspective, providing details such as

the transformations, features, and classifiers used.

A. Facts and figures

In Section II we already covered the main endoscopic techniques

which currently exist to examine the GI tract. From these technolo-

gies flexible endoscopy, which includes zoom-endoscopy as well

as chromo-endoscopy, is the most commonly used one. Since this

technique has been developed about half a century ago, it is no

surprise that the first CADSSs, which appeared in the 80’s and 90’s,

were solely focused on this imaging modality.

This however changed with the development of WCE. As can be

noticed from Fig. 5 in the year 2004 the first methods focusing on

WCE appeared. Since then, a fair amount of WCE-related work has

been published. This can be explained by the fact that, as already
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Figure 5. Number of publications on CADSSs throughout the last two
decades.
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Figure 6. Number of CADSS-related publications found for the different
endoscopic image modalities (between 1988 and 2010).

mentioned above, during a WCE session a huge number of images is

generated. Since the analysis of all these images by a medical expert

is a time consuming task, it is a logical consequence that there is a

rising interest in developing CADSSs for WCE.

Because of the fact that CLE is the most recent technique, the

number of respective CADSSs targeting this technique is still low.

The methods which can be found at the time of this writing are based

on pCLE. Up to our knowledge, there exists no CADSSs related work

based on eCLE so far.

Fig. 6 shows the number of publications found in literature dealing

with CADSSs using the different endoscopic imaging modalities.

This figure shows that flexible endoscopy is clearly the most fre-

quently targeted endoscopic technique (about 58%), followed by

WCE (about 38%), and pCLE (about 4%).

1) Areas for CADSSs in the GI tract: The most important parts

of the GI tract, most commonly inspected using an endoscope,

can be broken down into the esophagus, the stomach, the small

intestine, and the colon. Fig. 7 shows the distribution of the methods

found in literature with respect to the different GI tract parts and

the endoscopic techniques used. About 71% of the CADSS-related

literature focuses on one particular part of the GI tract only. But

there also exists a lot of work which aims at examining the complete

GI tract and looking out for abnormal pathologies (denoted as

“Complete” in Fig. 7). As one can easily see, the majority of these

approaches is based on WCE. This is quite natural as the capsule

travels through the whole GI tract and therefore a WCE based CADSS

is able to search for abnormal pathologies in almost the complete

GI tract (basically only restricted by the endurance of the on-board

battery).

It is also quite interesting to see that, besides examining the

complete GI tract, the colon is obviously the most frequently targeted

part of the GI tract (about 50% of the CADSS-related publications).

Esophagus

Colon

Small bowel

Stomach

Complete

0 10 20 30 40 50 60

Flexible endoscopy WCE pCLE

Figure 7. Number of CADSS-related publications per GI tract part (between
1988 and 2010).
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This is most probably due to the fact that colon cancer is the

third most common malignant disease in western countries. As a

consequence, finding abnormalities within the colon is considered a

very important field of research. Some of these abnormalities are

known to either develop into cancer or to be precursors of colon

cancer, hence, an early detection of such pathologies can lower the

mortality rate drastically. But also the complete inspection of the GI

tract amounts to a rather high share of CADSS-related publications

(about 29%). As we have already seen in Fig. 7, the endoscopic

imaging modality most frequently used in this case is WCE.

2) Pathologies under investigation - the medical perspective:

These days endoscopy is used to detect various types of pathologies,

as already indicated in Section I. As a consequence there exists

a variety of pathologies which are targeted by different CADSSs.

Roughly spoken, such systems either try to detect or detect and

classify certain pathologies. The respective work from literature is

discussed in more detail in Section III-B.

As we notice from Fig. 8, the detection and classification of polyps

is the most dominant field of research (≈ 47% of all approaches found

in literature), with the colon being the GI tract part of particular

interest. This stems from the fact that colonic polyps have a high

prevalence, although other parts of the GI tract may also develop

polyps. In addition, adenomas are a special type of polyps which,

while being benign, carry a high risk of developing into cancer.

Another rather high share of CADSSs-related research focuses on

the distinction between normal and abnormal regions (≈ 19%), while

not being specific about the underlying pathology.

While gastrointestinal bleeding may be caused by angiodysplasia as

well, GI bleeding is quite often an indication for many diseases such

as, for example, colon cancer, Crohn’s disease, esophageal cancer,

small intestine cancer, or the typhoid fever. Hence it is not surprising

that the detection of GI bleeding is also the aim of a rather high share

of approaches found in literature (about 12%).

The remaining work targets at the detection or classification of

other pathologies such as ulcers (≈ 7%), celiac disease, tumors (≈

5% each), Crohn’s disease (≈ 2%), cancer, intestinal dysfunctions,

Barrett’s esophagus, or Helicobacter pylori (≈ 1% each).
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From Fig. 9 we notice that the most frequently technique to detect

polyps is flexible endoscopy. But also in case of other pathologies

this technique is commonly used (e.g. detection of celiac disease or

Helicobacter pylori). Nevertheless, we also notice that there exist

pathologies where WCE is already the dominant technique. This

especially accounts to GI bleeding, ulcers, and Crohn’s disease, which

may potentially affect various parts of the GI tract.

B. Image processing techniques and classification in CADSSs

In this Section we summarize work on CADSSs found in literature.

For this purpose we review the different approaches separated by

pathology, grouped by the part of the GI tract the respective methods

are targeted at. This is done from the image processing and classifica-

tion perspective. If a working group has published more approaches

which are only slightly different, we discuss the most recent one only.

A more comprehensive overview, including all methods found in

literature along with a summary on supportive systems, can be found

in a technical report we recently published [3].

1) Features used: Throughout the approaches found in literature

different types of features are used. These can be roughly categorized

into features which are extracted in the spatial domain, those which

are extracted in the frequency domain, and those which describe

images at a higher level. An overview of these feature categories

is given in Table II. In order to cope with various different types

of features falling into each category, we also provide a rough sub-

categorization.

2) Comparison of approaches: In order to allow a comparison of

approaches, which aim at a computer-aided decision support targeted

at endoscopy in the GI tract, we provide a summary of some basic

properties of the methods listed in tables III and IV. The following

properties have been included in these tables:

• Reference (denoted by “Ref.”)

In this column we provide the reference to the respective work.

• Technique

Denotes the endoscopic technique used (i.e. flexible endoscopy,

capsule endoscopy denoted by WCE, and probe-based con-

focal endomicroscopy denoted by pCLE). In case of flexible

endoscopy, indicators in columns show whether a certain en-

hancement has been used (“C” for chromo-endoscopy, “Z” for

zoom-endoscopy, “N” for NBI, and “H” for HD endoscopy).

• Pathology

Information about the pathology the respective method aims to

detect or classify. If there is no explicit statement made about the

underlying pathology, this is denoted by “Abnormalities”. In case

of Barrett’s esophagus, Helicobacter pylori, Crohn’s disease, and

Motility assessment the abbreviations BE, H. pylori, CrD, CD,

and MA are used, respectively.

• Number of images (denoted by “# imgs”)

Indicates the number of images available in the image database

used. A “N/A” in this column indicates that there is no clear

information available on the imagery used.

• Number of videos (denoted by “# vids”)

Indicates the number of videos available.

• Ground truth information

The column, denoted by “GT” indicates the methodology used

to obtain the ground truth information used throughout the

experiments conducted in the respective work (“H” indicates a

histologically verified ground truth, while “V” indicates a visu-

ally obtained ground truth). “N/A” indicates that the respective

publication does not contain any information on the way the

ground truth has been obtained.

• Validation

This column indicates the validation protocol which has been

used to verify the respective method. LOO-CV, LOPO-CV,

LOPIO-CV, and DS are the abbreviations for Leave-one-out

cross-validation, Leave-one-patient-out cross-validation, Leave-

one-parent-image-out cross-validation, and distinct sets for train-

ing and validation, respectively. A “N/A” in this column indi-

cates that there is no clear information on how the verification

has been carried out in the experiments.

• Features

Denotes the type of features used in the respective approach. The

features, which belong to the different feature types, are listed in

Table II (except for feature type “Various”, which indicates that

the respective method is either based on multiple feature types or

that a comparison of different features is carried out). A “N/A”

in this column indicates that there is no explicit information

available on the features used.

• Classification

This column provides information on how the classification or

detection in the respective work has been carried out. SVM,

k-NN, ANN, GMM, and DC are the abbreviations for the

Support Vector Machines classifier, the k-Nearest Neighbors

classifier, different flavors of artificial neural networks or related

classifiers, Gaussian Mixture Models, and classifiers based on

discriminant analysis, respectively. In case of “Ensemble” the

classification is carried out by the combination of different weak

classifiers into an ensemble classifier.

From these tables we see that the most commonly used feature

types are spatial domain features (used in about 50%) and frequency

domain features (used in about 39%), followed by high-level features,

which are used in a rather low share of approaches only (about 19%).

We also notice that the most commonly used classifiers are the

SVM classifier (used in about 26%), the k-NN classifier (used

in about 24%), and some sort of ANN or related network-based

classifiers (used in about 21%). The popularity of the SVM classifier

can be explained by the fact that it adapts very well to classification

problems, even when using high-dimensional features. In addition,

usually only a small set of feature vectors is needed for the training of

the classifier. The k-NN classifier, on the other hand, is a very simple

classifier which nevertheless often achieves competitive classification

rates (as compared to other classifiers). ANNs are popular since this

type of classifiers, in contrast to SVM and k-NN, is able to adapt to

problems by employing different learning schemes.

Another interesting thing we notice from these tables is that the

approaches targeted at the detection of GI bleeding are dominated

by spatial domain features. This can be attributed to the fact that the

most common way to find bleeding is the detection of certain color

patterns, which can be achieved fairly well in the spatial domain (e.g.

by histograms or thresholding).
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Table II
OVERVIEW OF COMMONLY USED FEATURES IN CADSSS TARGETED AT ENDOSCOPY IN THE GI TRACT.

Spatial domain features

Texture properties Besides the Local Binary Patterns (LBP) operator, originally proposed in [20], different extensions of
LBP have been developed (e.g. uniform (LBPU) and uniform rotation invariant LBP (LBPRIU) [21]).
Another extension addresses color-dependencies across color channels (opponent color LBP, OCLBP
[22]), The Texture Spectrum transform (TS) is similar to LBP but uses three pixel states for each pixel
instead of two [23]. Once a color channel is transformed, usually histograms are computed and used for
classification.

Pixel-based In case of these features either pixel intensities are used as features or thresholds are used on pixel data
for a final decision on an image. This category also includes different segmentation approaches which
are commonly used to detect abnormalities within the GI tract.

Histograms Color histograms or co-occurrence histograms from which usually statistical measures are computed (e.g.
Haralick features [24]).

Miscellaneous This category includes MPEG-7 descriptors as proposed in [25], blob analysis, the Bag of visual words
method [26] which is based on multiple SIFT descriptors [27] to obtain a scale invariant texture descriptor,
and run-length features.

Frequency domain features

Fourier transform In different approaches the Fast Fourier transform (FFT) is used to obtain the power spectrum of an image.
From this spectrum different statistical features are computed, which are then used for a classification.

Wavelets This type of features is obtained by first applying the Discrete wavelet transform (DWT), the Dual-
tree Complex Wavelet transform (DTCWT) [28], the Curvelet transform, or Gabor wavelets. Then,
based on the resulting subbands, different features are extracted throughout CADSSs-related literature.
These include statistical features computed from the coefficients (e.g. mean, energy, or entropy), Haralick
features computed from a co-occurrence matrix computed from the coefficients within a subband, random
field parameter estimates on subband coefficients, histograms computed from a LBP-transformed subband,
and shape parameters of probability distributions fitted to the wavelet coefficients.

High-level features

Edge-based Approaches falling into this category apply some sort of algorithm to detect edges within images (e.g.
Canny edge detector or SUSAN edge detector). While some approaches use the edges found directly
in order to detect abnormalities (e.g. by using shape matching), usually features based on the edges are
extracted (e.g. curvature of edges or other shape descriptors).

Region-based This category of features is based on some sort of segmentation or region growing. Based on the regions
found usually features describing these regions or statistical features based on the image content within
the regions are computed. Other approaches use the regions found to deduce relationships between the
regions (e.g. based on the distance between regions).

IV. DISCUSSION

As we have seen in the previous section, there exist various

different approaches aiming at assisting a medical expert during

the process of decision-making. Apart from that, in Section III we

already pointed out that the interest in the field of CADSSs has

increased throughout the past two decades. Nevertheless, despite

the vast amount of approaches found in literature some common

weaknesses exist among a big share of these approaches. In this

section we will discuss these issues and propose possible ways to

cope with them.

A. Different image databases

When it comes to the assessment of techniques for CADSSs a

common problem are the images or videos used. Although there

exist publicly available image databases containing medical images

or videos from the GI tract, almost each working group bases their

experiments on their own image database, which in most cases has

been created in a collaboration with only a few medical experts. As

a consequence, work found throughout literature cannot be compared

directly. Moreover, it gets nearly impossible for other working groups

to verify results presented in this field or to assess the quality of the

images used throughout a work (i.e. the medical expertise of the

involved experts is usually not known). In Table V we give a short

overview of available image databases (abbreviated as DB-1 4, DB-2
5, DB-3 6, DB-4 7, and DB-5 8).

4DaveProject, http://daveproject.org
5The Gastrointestinal Video Atlas, http://www.gastrointestinalatlas.com
6Endoskopie-Atlas, http://www.endoskopiebilder.de
7The Atlas of Gastrointestinal Endoscopy, http://www.endoatlas.com
8Given Imaging Image Atlas, http://www.capsuleendoscopy.org

Despite the fact that these image databases contain a variety of

images and videos, none of these databases can be easily downloaded

entirely (the image material has to be downloaded either image

by image, video by video, or case by case). Database DB-5 even

needs an account to be created in order to be able to download

any image material. Another problem, which limits the usability of

these databases for an evaluation of automated algorithms, is the fact

that none of these databases provides a detailed ground truth for the

respective images and videos.

Another issue, which can be frequently observed throughout lit-

erature, is the use of a quite limited number of images in some

approaches. This is a severe problem, since results based on a few

images only must be doubted due to a limited significance. Through-

out the work found the number of images used varies significantly

as shown in Table VI. This table shows the number of methods

which base their experiments on a number of images within a certain

range (in absolute values as well as the respective proportions). Since

WCE-based work is usually using complete videos, leading to a

higher number of images available for experiments, we present these

numbers separated by the underlying endoscopic technique (either

WCE or flexible endoscopy, including pCLE-based systems). As we

notice from this table, most approaches are based on image databases

consisting of between 100 and 500 images (41% and 40% in case of

WCE and flexible endoscopy, respectively). But there is also work

which lacks any information on the quantity of the imagery used

or, at least, make no clear statements about the number of images

used for training and testing (denoted by “N/A” in Table VI). Such

problematic examples can be found in [32], [52], [59], [80], [82],

[92], [98]. A special case is constituted by approaches which provide

information about the number of videos used but do not give any

information about the total number of frames used from these videos
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Table III
OVERVIEW OF CADSS-RELATED APPROACHES TARGETING AT THE GI TRACT FOUND IN LITERATURE.

Ref. Technique Pathology # imgs # vids GT Validation Features Classification

Esophagus

[29] Flexible BE 390 - H LOO-CV Spatial k-NN

Stomach

[30] Flexible H. pylori 236 - H k-fold CV Frequency SVM
[31] Flexible Polyps 1000 - N/A k-fold CV Various SVM
[32] Flexible Ulcers N/A - N/A N/A High-level -
[33] Flexible Cancer 176 - V k-fold CV Spatial k-NN, SVM, Bayes
[34] Flexible Abnormalities 2949 - V DS Spatial Ensemble
[35] Flexible Abnormalities 534 - V k-fold CV Spatial Ensemble

Small bowel

[36] WCE Tumors 396 - V DS Frequency ANN
[37] WCE Tumors 600 - V DS Frequency ANN
[38] WCE Tumors 600 - V DS Frequency ANN, GMM
[39] WCE Tumors 300 - V k-fold CV Frequency SVM
[40] WCE Polyps 128 - V DS High-level Thresholding
[41] WCE Ulcers 80 - V k-fold CV Spatial SVM, DC
[42] Flexible Celiac disease 192 - H LOO-CV Frequency k-NN, SVM, Bayes
[43] Flexible Celiac disease 84 - H LOO-CV Frequency k-NN, SVM, Bayes, Ensemble
[44] Flexible Celiac disease 273 - H LOO-CV Various k-NN
[45] WCE Celiac disease 21000 105 V N/A Spatial DC
[46] WCE CD 13689 - V DS Spatial SVM
[47] WCE CD 746 - V DS Spatial SVM
[48] WCE Abnormalities 75 - V LOO-CV Frequency Thresholding

Colon

[49] Flexible Polyps 15000 60 H DS Various SVM
[50] pCLE Polyps 1036 - H k-fold CV Spatial k-NN
[51] pCLE Polyps 4449 499 H LOPO-CV Spatial k-NN
[52] Flexible Polyps N/A - N/A N/A Spatial Fuzzy rules
[53] Flexible (Z) Polyps 7 - V N/A Spatial -
[54] Flexible Polyps 35 - V k-fold CV Spatial SVM
[55] Flexible (H) Polyps 1736 - V k-fold CV Spatial SVM
[56] Flexible Polyps 74 - V DS Spatial SVM
[57] Flexible Polyps 8 - N/A DS Frequency ANN
[58] Flexible Polyps 2 - H DS Various ANN
[59] Flexible Polyps 8 - N/A DS Frequency ANN
[60] Flexible Polyps 1380 - H DS Frequency DC
[61] Flexible Polyps - 60 V DS Frequency SVM
[62] Flexible Polyps 4 - N/A DS Spatial ANN
[63] Flexible (C/Z) Polyps 257 - H LOO-CV Spatial k-NN
[64] Flexible (C/Z) Polyps 484 - H LOO-CV Frequency k-NN
[65] Flexible (C/Z) Polyps 484 - H LOO-CV Frequency k-NN
[66] Flexible (C/Z) Polyps 484 - H LOO-CV Frequency k-NN
[67] Flexible (C/Z) Polyps 484 - H LOO-CV Various Ensemble
[68] Flexible (C/Z) Polyps 484 - H LOO-CV Frequency k-NN, Bayes
[69] Flexible (C/Z) Polyps 627 - H LOO-CV Spatial k-NN
[70] Flexible (C/Z) Polyps 484 - H LOO-CV Frequency Ensemble
[71] Flexible (C/Z) Polyps 627 - H LOO-CV Frequency k-NN
[72] Flexible (C/Z) Polyps 484 - H LOO-CV Frequency Bayes, SVM, DC
[73] Flexible (C/Z) Polyps 627 - H LOO-CV High-level k-NN
[74] Flexible (C/Z) Polyps 627 - H LOO-CV High-level k-NN
[75] Flexible (C/Z) Polyps 627 - H LOPIO Frequency k-NN
[76] Flexible (N) Polyps 102 - H N/A High-level k-NN
[77] Flexible (N) Polyps 56 - H N/A High-level k-NN
[78] Flexible (N/Z) Polyps 209 - H LOO-CV High-level SVM
[79] Flexible Abnormalities 9 - N/A N/A High-level Fuzzy rules
[80] Flexible Abnormalities N/A - N/A N/A High-level Thresholding
[81] Flexible Abnormalities 22 - N/A DS High-level ANN
[82] Flexible Abnormalities N/A - N/A N/A Spatial -
[83] Flexible Abnormalities 66 - N/A DS Spatial ANN
[84] Flexible Abnormalities 2 - N/A DS Spatial ANN
[85] Flexible Abnormalities 58 - V LOO-CV Frequency Ensemble

[61] (denoted by “Videos” in Table VI).

Image databases consisting of less than 100 images are not suitable

to estimate the accuracy of a CADSS. Using between 100 and 500

images may already be sufficient to support presented results. While

using more than 500 images seems to be more appropriate in order to

achieve reliable and significant results (used in about 33% and 24%

of all work in case of WCE and flexible endoscopy, respectively), we

have to point out that the sufficiency also depends on the number of

image classes used in a work.

While in other fields of research (e.g. biometrics) the use of

well-established databases is already common practice, this is still

not the case in the field of CADSSs. Nevertheless, it is absolutely

necessary to establish commonly used image databases (depending on

the underlying endoscopic technique), containing a sufficient amount

of images and made available to researchers in this field. Especially

in cases where a visual inspection is common practice to obtain the
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Table IV
OVERVIEW OF CADSS-RELATED APPROACHES TARGETING AT THE GI TRACT FOUND IN LITERATURE.

Ref. Technique Pathology # imgs # vids GT Validation Features Classification

Complete GI tract

[86] WCE Bleeding 100 - V N/A Spatial Thresholding
[87] WCE Bleeding 14630 - V N/A Spatial ANN
[88] WCE Bleeding - 5 V DS Spatial Ensemble
[89] WCE Bleeding 2000 - V N/A Spatial Thresholding
[90] WCE Bleeding 1111 11 V N/A Spatial -
[91] WCE Bleeding 1705 5 V N/A Spatial Thresholding
[92] WCE Bleeding N/A - V N/A Spatial -
[93] WCE Bleeding 200 10 V DS Various ANN
[94] WCE Bleeding 6416 - V DS Spatial SVM
[95] WCE Bleeding N/A - V N/A Spatial ANN
[96] WCE Tumors 1200 - V k-fold CV Frequency SVM
[97] WCE MA - 172 V LOO-CV High-level SVM
[98] Flexible Polyps N/A - V N/A High-level Thresholding
[99] WCE Polyps 50 - V N/A High-level Thresholding
[100] WCE Ulcers 60 - V DS High-level SVM
[101] WCE Ulcers 200 10 V DS Frequency SVM, ANN
[102] WCE Ulcers 250 - V DS N/A ANN
[103] WCE Abnormalities 140 - V DS Spatial Fuzzy logic
[104] WCE Abnormalities 140 - V DS Spatial Fuzzy logic
[105] WCE Abnormalities 60 - V LOO-CV Spatial Centroid
[106] WCE Abnormalities 87258 - V DS Frequency ANN

Table V
OVERVIEW OF PUBLICLY AVAILABLE IMAGE DATABASES DEALING WITH ENDOSCOPY IN THE GI TRACT. THE COLUMNS V AND I INDICATE THE NUMBER

OF VIDEOS AND IMAGES AVAILABLE, RESPECTIVELY. IN THE COLUMN “REGIONS” E, ST, SB, AND C ARE ABBREVIATIONS FOR ESOPHAGUS, STOMACH,
SMALL BOWEL, AND COLON, RESPECTIVELY (INFORMATION COLLECTED ON THE 25TH OF NOVEMBER, 2010).

Name Modality V I Regions Case details Registration required

DB-1 Various 804 N/A E, ST, SB, C Yes No
DB-2 Various 3521 N/A E, ST, SB, C Yes No
DB-3 Various <75 >1000 E, ST, SB, C No No
DB-4 Various N/A 1076 E, ST, SB, C Yes No
DB-5 WCE 85 85 E, SB, C No Yes

Table VI
NUMBER OF APPROACHES WHICH ARE BASED ON THE GIVEN NUMBER OF

IMAGES ALONG WITH THE RESPECTIVE PROPORTIONS.

# of images WCE Flexible endoscopy

< 100 7 18 % 17 27 %
100 – 500 16 41 % 25 40 %
> 500 13 33 % 15 24 %
Videos 1 3 % 1 1 %
N/A 2 5 % 5 8 %

39 100 % 63 100 %

ground truth information, involving several different medical experts

in the process of creating such a database would be necessary to

lower the inter-observer disagreement.

As a consequence of the usually limited image databases many

methods are not evaluated on two distinct image sets (one for the

training and one for the validation of the underlying classifier).

Different sets are only used in about 31% of all methods found in

literature. The remaining work is either based on some variant of

cross-validation [107] (in about 50%) or the authors provide no clear

information about the training- and validation-strategy used (in about

20%). While cross-validation is a common way to deal with small

image databases there also exist pitfalls. One problem is a possible

overfitting if two or more images in the database originate from the

same patient and have been taken in the very same region within

the GI tract. Depending on the features used, the feature vectors for

such images are likely to exhibit a high similarity. To cope with this

problem the Leave-One-Patient-Out (LOPO) cross-validation is an

option, ensuring that the training set does not contain images from

patients in the validation set. However, this type of cross-validation

is rarely used throughout literature (in only about 4% of the methods

using cross-validation). Another pitfall arises when some sort of

feature selection is used along with cross-validation. In this case it is

important to perform the cross-validation on each feature candidate

set in order to avoid overfitting (inner cross-validation) [108].

In order to facilitate a meaningful evaluation of methods aiming at

computer-aided decision support, researchers working on this topic

should at least adhere to the following key advices:

• The image database behind published results should be made

available to the public whenever possible.

• Published results should be accompanied by as many details

about the images used as possible (e.g. image dimensions, color

or grayscale, number of images used or the number of patients

in the database).

• Image databases used for the evaluation of approaches should

contain a sufficient number of images (500 images or more).

• If the image database used is sufficiently large it is advisable to

split the image set into separate sets for training and validation.

• For small image databases Leave-One-Patient-Out cross-

validation must be preferred over Leave-One-Out cross-

validation (if splitting into separate sets for training and vali-

dation is not possible).

B. Ground truth establishment

Basically there exist two different ways of obtaining ground truth

information for experiments. The respective class labels may be

gathered either by a visual inspection of endoscopic imagery or based

on histological findings.

If the ground truth is obtained by visual means there is no profound

knowledge about the real pathology for a given image. In addition,
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the judgment on the pathology in case of a visual inspection may

differ significantly between different experts (i.e. the inter-observer

agreement may be rather low, depending on the level of expertise of

the experts).

For WCE-based CADSS there is usually no other option than to

rely on visual inspections by one or more medical experts, since

taking biopsies is not possible with current capsule endoscopes.

In case of flexible endoscopy the ground truth can be gath-

ered histologically since taking biopsies is possible. But even if

histological findings are available, an endoscopic image does not

necessarily correspond to the biopsy site due to slight movements

of the endoscope tip, which for example may be the result of the

preparation for taking a biopsy (especially in case of magnified

endoscopy).

A special case is constituted by CLE since this technique allows

in-vivo histologies due to the high level of magnification. As already

stated earlier, it has already been shown that the diagnostic accuracy

of CLE is comparable to histology [9], [109], [110]. Hence, the inter-

observer agreement is also expected to be similar to the agreement

in case of histology.

Considering the existing methods which are based on flexible

endoscopy (including pCLE), 10 out of 63 methods base their exper-

iments on a visually obtained ground truth (about 17%), while the

vast majority of the methods (40 out of 63) is based on histological

findings (about 65%). However, there are also quite a few approaches

which do not unveil the way the ground truth has been obtained (12

out of 63 approaches, which corresponds to about 19%) [31], [32],

[52], [57], [59], [62], [79]–[84].

Making a recommendation concerning this issue is not easy, since

the best way of obtaining the ground truth information very much

depends on the endoscopic technique used. While in case of WCE

a visual inspection is usually the only way a ground truth can be

obtained, in case of pCLE a visual ground truth gathering is likely to

be sufficient due to its closeness to histology. In case of the remaining

work based on flexible endoscopy a histological ground truth is highly

desired due to its accuracy over visual inspection.

If one has to rely on a visually obtained ground truth, because a

histological ground truth is not available, it is imperative to make

the respective ground truth as reliable as possible. Usually this

is achieved by consulting different medical experts for a visual

inspection of the imagery. This allows to take care of a probably low

inter-observer agreement due to different levels of expertise among

different experts, by using images only which have been classified

by various experts into the same image class with high confidence. A

similar way of making a visually obtained ground truth more reliable

has been chosen for example in [33]. In a second classification stage

Sousa et al. resolve inter-observer discrepancies by analyzing and re-

classifying images which have been classified differently with high

confidence by the medical experts in the first classification round.

However, no matter how the ground truth has been obtained, each

method published in this field of research should be accompanied by

this information to make it possible for a reader to make his own

judgments on the value of the results presented.

C. Accuracy and computational complexity

Since existing approaches do not only focus on different parts

within the GI tract but also target different pathologies, a direct com-

parison in terms of the respective classification performance is not

possible. Despite the fact that there exist different ways to measure

the accuracy of a system, we also identified work in the literature

which does not provide any results at all (8 out of 102 approaches,

which corresponds to about 8%) [32], [52], [53], [79], [80], [82], [92],

[98]. This makes a comparison against other methods impossible.

However, even if some sort of accuracy information is given this does

not automatically imply that the proposed systems are comparable.

This stems from the fact that a number of different measures to rate a

system have been established throughout literature. These measures

include the overall classification accuracy (i.e. the total number of

correctly classified images divided by the total number of images),

the sensitivity (also known as recall), the specificity, and area under

ROC curves.

While the overall accuracy allows us to get an idea of how well a

method performs there is no evidence about the false positives or false

negatives produced by the system, which however is of particular

interest for medical experts. ROC plots also give an idea of the overall

system performance by the investigation of the area under the curve.

To make comparison among different systems feasible it is there-

fore necessary to establish a set of measures which are then used to

assess the classification performance throughout diagnosis systems

(e.g. overall classification rate, specificity, and sensitivity). But even

if the same measures are used a direct comparison of different

approaches is not meaningful if the experiments are based on different

image databases. But at least a rough comparison would be possible.

Using limited or unbalanced datasets is also problematic as in such

cases the results are usually of low significance or biased.

In Table VII we give an overview of the overall accuracies, speci-

ficity values, and sensitivity values, respectively, which have been

reported in work targeted at diagnosis (no distinction is made between

detection and classification). This table contains the respective ranges

of the reported values. In addition, the references of the approaches

which achieved the highest values are given. As we notice from

this table there are some pathologies which are already detected (or

classified) with a rather high accuracy (above 95%). These include GI

bleeding, celiac disease, polyps, and the distinction between normal

and abnormal cases. Also in case of the sensitivities and specificities

reported we already see rather high values (always above 90%).

But since the results are based on different image databases, which

limits the comparability between approaches, the main purpose of this

table is to give a rough overview of the results reported throughout

literature.

Another issue concerning the comparison of methods within a

publication is the statistical significance. Even if two methods deliver

different classification accuracies this does not automatically imply

that the difference is statistically significant. To assess the statistical

significance tools to compute a p-value have been established (for

example the McNemar test [113]). Especially in medical litera-

ture giving evidence for statistical significance is common practice.

Throughout the literature investigated within this work, however,

such information is only given in a very few cases. Due to the

reasons mentioned above measuring the statistical significance across

different methods is hardly possible.

Another issue, which however is of minor importance, is the

computational complexity of systems proposed in literature. For WCE

based systems complexity issues are of minor interest since these

systems are usually designed to process images or videos offline

(i.e. not in real-time). However, for other systems, which possibly

allow real-time processing of images and videos, information about

the computational demand may be of interest since other researches

may base their decision on using a proposed method or not on this

information. But it must be noted, that while complexity information

is given in a very few cases only, one is usually able to at least

roughly estimate the computational demand of a system if the

work is based on well-known algorithms (e.g. frequency transforms,

edge detection methods, statistical texture features). But including at

least rough estimates of the computational demand of a proposed
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Table VII
THE RANGES OF OVERALL ACCURACIES, SENSITIVITIES, AND SPECIFICITIES REPORTED AMONG THE WORK FOUND IN LITERATURE (GIVEN IN

PERCENT). A REFERENCE TO THE WORK REPORTING THE RESPECTIVE MAXIMUM VALUE IS GIVEN TOO.

Target of work Accuracy Reference Specificity Reference Sensitivity Reference

Barrett’s esophagus 81 [29] - -
Bleeding 87 - 99 [95] 86 - 93 [93] 83 - 93 [87], [89]
Cancer 91 [33] - -
Celiac disease 72 - 98 [42], [111] 84 - 100 [42] 53 - 100 [111]
Crohn’s disease 87 - 96 [46] 93 [47] 70 - 80 [47]
H. pylori 87 [30] - -
Motility assessment - 100 [97] 95 [97]
Normal/Abnormal 85 - 100 [81] 76 - 98 [103] 65 - 97 [48], [103]
Polyps 74 - 99 [64], [69] 67 - 99 [63], [66] 56 - 100 [67], [99]

[57], [71] [60], [112] [40]
Tumors 88 - 97 [39] 96 - 97 [37] 97 - 99 [36], [38]
Ulcers 74 - 95 [41] 73 - 95 [41] 75 - 95 [41]

method (separately for e.g. pre-processing, training, classification or

detection) may be helpful.

Nevertheless, the approaches available so far deliver results which

are not good enough to be used in clinical practice. As a consequence

the computational complexity of algorithms is, at least currently, of

minor importance.

V. CONCLUSION AND FUTURE RESEARCH

In this work we gave an overview of research mainly focused at

the detection or classification of different pathologies of interest in

endoscopy of the GI tract. We noticed that there is a rising interest

in this research topic, especially throughout the last two decades.

We also gave an overview of different parts within the GI tract and

respective pathologies of current research interest.

Considering the importance of CADSSs and the benefits of such

systems (like saving time and therefore lowering the cost for endo-

scopic procedures or improving the quality of diagnosis) the interest

in CADSSs targeted at the GI tract is expected to increase even

more in the future. Especially when considering the fact that for

many diseases an early detection may decrease the mortality rate

significantly, the need for reliable CADSSs gets even more apparent.

Since capsule endoscopy already had a great impact on clinical

routine as it has already proven to be an effective diagnostic modality,

an increasing interest has already been seen for this endoscopic image

modality. This especially accounts to GI bleeding detection where

finding the cause is hardly feasible when using other endoscopic

imaging modalities. While not discussed in this review, also the

pre-selection of important frames out of a complete WCE video

is of special interest when considering the high number of images

generated during a WCE exam. This allows a medical expert to

interpret the outcome of an exam more quickly.

But one can also expect a rising interest within the next years

when it comes to other, more recent technological advances like CLE.

However, with the advent of new technologies the key challenges in

developing CADSSs for endoscopy are also likely to change slightly.

Currently the major challenges include the detection and handling of

image degradations (e.g. reflections and sensor noise), finding robust

features to detect and classify different pathologies properly, and

finding regions of interest in an automated fashion. In CLE-based

systems, for example, this slightly changes. While degradations are a

minor problem with this technique, other limitations like for example

the limited FOV and the rather high zoom factor pose new problems.

As a consequence, currently one major research area in case of CLE

is so-called mosaicking, which enlarges the mucosal area visible to a

medical expert by employing stitching algorithms. Besides that, the

endoscopist is facing new challenges (examination at a microscopic

level which requires a histopathological training). This indicates that

systems for an automated classification of lesions are an important

field for future research when working with CLE endoscopes.

While new imaging modalities have the potential to greatly in-

crease the efficiency of endoscopy, medical experts need to get trained

on these new techniques. In order to steepen the learning curve for

medical experts on certain new endoscopic techniques CADSSs may

also be used as an expert training tool to predict pathology, verify the

detection or prediction performance of a medical expert, and serve

as an educational resource.

From the approaches reviewed in this work we notice that the ma-

jority of approaches is based on still images. However, an endoscopy

session usually generates videos. Hence, we consider the analysis of

videos to be a prospective field for future research. This would allow

to incorporate temporal information into classification and detection

systems as well. In addition, this might help to limit the effect of

image degradations since those can be separated more easily from

the important content by an analysis based on more than one image.

Despite the fact that there is a lot of research going on in the area

of CADSSs for endoscopy in the GI tract, there are also some strong

weaknesses existing among the literature reviewed which hamper

such systems from being used in clinical practice.

Besides the still rather low classification accuracies of such sys-

tems, one of the biggest issues is the fact that there is a high

diversity of image databases used throughout literature. Some of

these image databases are even way too small, resulting in a rather

low expressive power concerning the results presented within the

respective publications. Part of this problem is also that at the moment

there exists no publicly available database which could be used

among researchers to compare their results in a meaningful manner.

Hence, in order to allow the development and evaluation of systems

to be used in clinical practice this major problem must be tackled by

creating reasonable image databases (i.e. sufficiently large, publicly

available, and provided with a meaningful and reliable ground truth

information).

Considering the system accuracies already achieved for the differ-

ent pathologies of interest and the number of publications found, we

currently consider bleeding detection, polyp and tumor detection and

classification to be the most mature fields. We therefore believe that

the first clinically used systems will be available within these areas

of research – although this may take some more years.

Reaching a higher level of reliability in upcoming CADSSs will

also strongly depend on advances in the hardware used to acquire the

underlying image material. There are still some limitations imposed

by the hardware available, which leave room for improvement as

well (e.g. poor image quality). But as we have shown in this work,

endoscopic devices are improved more and more (in terms of patient

comfort, image quality, or just to overcome current limitations).
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and rotation invariant texture classification with local binary patterns,”
IEEE Trans Pattern Anal Mach Intell, vol. 24, no. 7, pp. 971–987,
2002.
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