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ABSTRACT

In this work we investigate the impact of barrel-type distortions and

distortion correction on an automated classification of endoscopic

imagery. For this purpose we use a set of methods from earlier

work along with the nearest neighbor classifier on endoscopic im-

ages which are distorted in a barrel-type fashion. In addition we

classify images after applying distortion correction to them.

Depending on the distance of a patch to the center of distortion

a patch is more or less distorted. Hence, we analyze the impact of

this distance on the classification accuracy and show that it has an

influence on the classification accuracy.

We further investigate whether there is a relationship between

the levels of distortion of a patch and the respective nearest neigh-

bor patch. We show that a patch and the respective nearest neighbor

patch rather often exhibit the same amount of distortion. We further

show that higher distortion differences also have an impact on the

probability of misclassification for a patch. The results indicate that

for higher distortion differences a patch is more likely to be misclas-

sified.

Index Terms— Celiac disease, barrel-type distortion, distortion

correction, medical image classification

1. INTRODUCTION

Today, medical endoscopy is a widely used procedure to inspect the

inner cavities of the human body. As a consequence different medi-

cal fields exist for which automated decision-support systems based

on endoscopic imagery have been proposed [1]. Since images taken

with traditional endoscopes often suffer from various kinds of degra-

dations, a pre-processing of the imagery is often necessary [2] (to

cope with e.g. sensor noise, focus and motion blur, and specular

reflections [1]).

A different type of degradation, present in all endoscopic im-

ages, is a barrel-type distortion. This type of degradation is caused

by the wide-angle (fish eye) nature of the optics used in endoscopes

(although the strength of the distortion varies depending on the en-

doscope used). Such a distortion is also claimed to affect diagnosis

since it introduces non-linear changes in the image, due to which the

outer areas of the image look significant smaller than they actually

are [3]. Due to an inhomogeneous magnification such distortions

are also suspected to lead to corrupted features [4]. Since the semi-

nal work on distortion correction for endoscopic images [4] several

distortion correction procedures have been developed for this appli-

cation domain [5, 6, 7].
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In a recent study the impact of distortion correction on the clas-

sification accuracy regarding celiac disease images has been inves-

tigated [8]. Gschwandtner et al. showed that most feature extrac-

tion methods evaluated failed to take advantage of applying distor-

tion correction as a pre-processing step to the endoscopic images,

resulting in a decreased classification accuracy. To the best of our

knowledge, besides the study presented in [8], the potential impact

of distortion correction on the analysis of mucosal texture, specifi-

cally on the accuracy of corresponding classification techniques, has

not been addressed so far.

The focus of the work presented in [8] was an experimental as-

sessment of the impact of distortion correction on the automated

classification of celiac disease. This work, in contrast, investigates a

potential impact of barrel-type distortions and distortion correction

on the automated classification of endoscopic images in the course

of a statistical analysis. For this purpose we analyze the impact of

the distance of an image patch to the center of distortion (CoD) on

the classification accuracy using the nearest neighbor (NN) classi-

fier. We further investigate whether there is a relationship between

the distortion of a patch and the distortion of its closest patch (in

the sense of the NN classifier). Finally, we study the effect of the

distortion difference between a patch and its closest patch on the

probability of misclassification of the respective patch.

The remaining part of this work is structured as follows: In Sec-

tion 2 we describe the background of celiac disease and the staging

system commonly used to diagnose this disorder. After a discussion

of barrel-type distortions and the problems inherent to this type of

degradations in Section 3, we describe the feature extraction meth-

ods the results in this work are based on in Section 4. A thorough

analysis of experiments carried out and the respective analysis re-

sults are given in Section 5. In Section 6 we conclude this work.

2. CELIAC DISEASE

Celiac disease, commonly known as gluten intolerance, is a com-

plex autoimmune disorder that affects the small bowel in genetically

predisposed individuals of all age groups after introduction of food

containing gluten. Characteristic for the disease is an inflammatory

reaction in the mucosa of the small intestine. During the course of

the disease the mucosa looses its absorptive villi and hyperplasia of

the enteric crypts occurs, leading to a diminished ability to absorb

nutrients.

Endoscopy with biopsy is currently considered the gold stan-

dard for the diagnosis of celiac disease. During standard upper

endoscopy at least four duodenal biopsies are taken. Microscopic

changes within these specimen are then classified in a histological

analysis according to the Marsh classification proposed in 1992

[9]. Subsequently, Oberhuber et al. proposed the modified Marsh



(a) (b)

Fig. 1. Distortion correction. (a) Calibration pattern taken with an

Olympus GIF-Q165 endoscope and (b) the respective distortion cor-

rected image.

classification [10] which distinguishes between classes Marsh-0 to

Marsh-3, with subclasses Marsh-3a, Marsh-3b, and Marsh-3c, re-

sulting in a total number of six classes. According to the modified

Marsh classification Marsh-0 denotes a healthy mucosa (without

visible changes of the villous structure) and Marsh-3c designates a

complete absence of villi (villous atrophy).

In accordance to the work in [8], we consider the four classes

Marsh-0 and Marsh-3a to Marsh-3c only throughout this work, since

visible changes in the villi structure can be observed only for classes

Marsh-3a to Marsh-3c.

3. BARREL-TYPE DISTORTIONS AND CORRECTION

As already mentioned in Section 1, the strength of barrel-type dis-

tortions varies depending on the field-of-view (FOV). While a small

FOV results in almost no distortions, a high FOV results in a notice-

able amount of distortion. In endoscopes FOV values typically range

from 100◦ to 170◦. But the level of distortion is also dependent on

the focal length of the optics used. Since endoscopes typically have

rather small focal lengths (a few millimeters only), barrel-type dis-

tortions get even more amplified. Hence, depending on the FOV

and the focal length, barrel-type distortions may vary significantly

in strength between the CoD (which corresponds to the optical axis)

and the outer regions of an image (image magnification decreases

with the distance to the CoD).

To obtain distortion corrected images we employ the OpenCV

software developed by J.-Y. Bouguet (a MATLAB version includ-

ing extensive documentation and examples is also available1). This

software is mainly based on the work of Zhang [11].

For the distortion calibration we use a planar checkerboard pat-

tern (with points on a known grid). The calibration points have been

extracted manually since we did not want to loose correction preci-

sion due to incorrectly determined corner points. We extracted 140

calibration points out of 4 images for each of the GIF-Q165 endo-

scopes, which were then fed into the software and applied to our

images. Fig. 1 shows an example image of a distorted calibration

pattern and the respective image after applying distortion correction.

Figure 2 shows the result of applying distortion correction to an en-

doscopic image (with a grid overlaid to it).

Nevertheless, the distortion correction has the negative side-

effect of interpolation artifacts which are especially apparent in the

corners of the image. These artifacts are the result of upsampling

and are especially noticeable in the corner regions since, in distorted

images, those appear smaller than they actually are. An example for

such artifacts is shown in Figure 3.

1Available at http://www.vision.caltech.edu/bouguetj/calib doc/

(a) (b)

Fig. 2. Correction of a barrel-type distortion. (a) Barrel-type dis-

torted endoscopic image (taken with an Olympus GIF-Q165 endo-

scope with a grid overlaid to the image and (b) the same image after

applying distortion correction.

(a) (b)

Fig. 3. Interpolation artifacts due to distortion correction. (a) An

example region from a distorted endoscopic image and (b) the same

region after applying distortion correction.

4. TEXTURE CLASSIFICATION

In order to assess the impact of barrel-type distortion on the classi-

fication performance of endoscopic images we use different feature

extraction methods to obtain features, which are subsequently clas-

sified.

4.1. Feature extraction

To obtain features we employ a set of different feature extraction

methods based on the frequency domain, which we already used suc-

cessfully in earlier work for the classification of endoscopic imagery.

WT-DWT

This method transforms an image to the wavelet domain using

the discrete wavelet transform (maximum number of allowed

decomposition levels is set to 3). From the most informative

subset of subbands (according to a cost function) statistical

features are extracted from the respective coefficients [12].

WT-BBC

The Best Basis Centroids method employs the Best-basis al-

gorithm to find an optimal basis for each image in a training

set and computes a centroid over all resulting wavelet packets

decomposition structures (maximum number of allowed de-

composition levels is set to 4). After transforming all images

into this basis, the most informative subset of the resulting

subbands (with respect to a cost function) is used to compute

the energy over all coefficients within a subband [12].

WT-LDB

The Local Discriminant Basis algorithm is employed to find

an optimal wavelet packet decomposition (maximum number



of allowed decomposition levels is set to 4) with respect to the

discriminant power between the image classes. After trans-

forming all images into the basis found we use either the co-

efficient energy or the coefficient variance within a subband

as a feature. But instead of using all subbands we limit the

number of possible subbands for feature extraction, which al-

lows to control the length of the resulting feature vectors [12].

FFT-Evolved

By using the FFT an image is transformed into the respective

power spectrum. Multiple ring-shaped filters are then applied

to the spectra to concentrate on discriminative frequency sub-

bands only. Since the number of possible rings is quite large,

an evolutionary algorithm is used to find an optimal set of fil-

ters for each color channel. For each of the resulting subbands

the mean of the coefficient magnitudes is used as a feature

[13].

WT-GMRF

In this method an image is first transformed to the wavelet do-

main using the discrete wavelet transform (maximum number

of allowed decomposition levels is set to 3). For each of the

resulting detail subbands Gaussian Markov Random field pa-

rameters are estimated (using Geman type neighborhoods).

In addition to the Markov parameters this method also uses

the approximation error for each subband as a feature. [14]

4.2. Classification

To classify the features we use the nearest neighbor (1-NN) classifier

in conjunction with the Euclidean distance. We use this rather simple

classifier since in this work we are not interested in achieving the best

possible classification rates. Instead we are only interested in the

impact of distortion (correction) on the classification rates. While for

other classifiers the results most likely will differ, the general impact

of distortion (correction) on the classification rates is expected to be

similar since the distortion (correction) affects the features extracted.

The parameters for the different methods have been chosen

based on experiences gained from earlier work.

5. EXPERIMENTS AND ANALYSIS

5.1. Experimental Setup

The images used throughout this work have been taken during duo-

denoscopies at the St. Anna Children’s Hospital using gastroscopes

without magnification (two Olympus GIF-Q165 endoscopes with an

image resolution of 768×576 pixels, a FOV of 140◦, and slightly

different CoDs). The slightly different CoDs are due to marginal

differences between the optics used in the endoscopes. However, the

distance between the two CoDs is minimal with about 4 pixels only.

The main indications for endoscopy were the diagnostic evalu-

ation of dyspeptic symptoms, positive celiac serology, anemia, mal-

absorption syndromes, inflammatory bowel disease, and gastroin-

testinal bleeding. Images have been recorded using the modified

immersion technique, which is based on the instillation of water into

the duodenal lumen for better visibility of the villi. The tip of the

gastroscope is inserted into the water and images of interesting areas

are taken. A study [15] shows that the visualization of villi with the

immersion technique has a higher positive predictive value. Previ-

ous work [16] also found that the modified immersion technique is

more suitable for automated classification purposes as compared to

the classical image capturing technique.

Marsh-0 Marsh-3

Bulbus 125 111

Pars 97 159

Marsh-0 Marsh-3a Marsh-3b Marsh-3c

Bulbus 125 45 48 18

Pars 97 42 53 64

Table 1. Distribution of the patches used throughout this work in the

two-classes case and the four-classes case.

We created two sets of textured image patches with optimal qual-

ity to analyze the effect of of barrel-type distortions under “idealis-

tic” conditions. Thus, the captured data was inspected and filtered

by several qualitative factors (sharpness, distortions, and visibility

of features). In the next step, texture patches with a fixed size of

128× 128 pixels were extracted (a size which turned out to be opti-

mally suited in earlier experiments on automated celiac disease diag-

nosis [16]). The images have been captured in two duodenal regions,

i.e. the Duodenal Bulb (Bulbus duodeni) and the Pars Descendens

(abbreviated in the rest of the paper as Bulbus and Pars). The sets of

patches have been extracted from 63 and 76 patients in case of the

Bulbus set and the Pars set, respectively.

In order to generate ground truth for the texture patches used in

experimentation, the condition of the mucosal areas covered by the

images was determined by histological examination of biopsies from

the corresponding regions. Severity of villous atrophy was classified

according to the modified Marsh classification.

The number of extracted images is 236 and 256 in case of the

Bulbus and Pars region, respectively. The detailed ground truth is

shown in Table 1. While in the two-classes case the patches are

balanced rather well, in the four-classes case the Marsh-3 classes

contain less images as compared to Marsh-0. As a consequence we

are not able to split the image sets into separate training and valida-

tion sets. To be able to produce reliable result estimates we therefore

use Leave-One-Out cross validation (LOO-CV). In this scenario one

image out of an image set is considered to be an unknown sample

which is classified using a classifier trained with the remaining im-

ages. This process is repeated for each single image in the image

database.

Prior to the actual classification we pre-process each image by

applying CLAHE [17] followed by a Laplace Sharpening with a ker-

nel size of 9× 9 [18] since this combination of pre-processing steps

turned out to be optimal in earlier work.

Since after distortion correction these data do no longer corre-

spond to squares – as can be noticed from Figure 2 – these cannot be

used immediately for subsequent classification (the techniques used

implicitly assume at least a rectangularly shaped texture patch). To

overcome this problem, in case of distortion correction, we compute

the new position of a patch according to the underlying distortion

and extract a new 128×128 pixels patch at the newly computed lo-

cation.

5.2. Classification results

Prior to the actual CoD analysis results we briefly present the clas-

sification accuracies which have been obtained using the image

databases according to the ground truth shown in Table 1.

We immediately notice that, similar to the results published in

[8], the results for the distortion corrected images are constantly

lower compared to the results obtained for the distorted images (for

all methods, in the two-classes case as well as in the four-classes



Cls Dist (R1) DC (R2) R2 −R1

Bulbus set

WT-DWT
2 86.4 % 80.1 % -6.3 %

4 70.3 % 62.3 % -8.0 %

WT-BBCB
2 89.8 % 80.5 % -9.3 %

4 70.8 % 69.9 % -0.9 %

WT-LDB
2 91.9 % 77.5 % -14.4 %

4 72.9 % 66.1 % -6.8 %

WT-GMRF
2 91.5 % 86.9 % -4.6 %

4 75.4 % 63.1 % -12.3 %

FFT-Evolved
2 97.0 % 94.1 % -2.9 %

4 83.5 % 82.6 % -0.9 %

Pars set

WT-DWT
2 72.7 % 65.2 % -7.5 %

4 43.4 % 39.5 % -3.9 %

WT-BBCB
2 69.9 % 65.2 % -4.7 %

4 48.4 % 46.9 % -1.5 %

WT-LDB
2 74.2 % 66.0 % -8.2 %

4 52.0 % 41.4 % -10.6 %

WT-GMRF
2 74.2 % 71.9 % -2.3 %

4 49.6 % 45.7 % -3.9 %

FFT-Evolved
2 86.7 % 84.0 % -2.7 %

4 64.1 % 63.3 % -0.8 %

Table 2. Comparison of the overall classification accuracies between

the distorted and the distortion corrected (DC) image sets.

(a) Bulbus set (b) Pars set

Fig. 4. Distribution of the centers of the distorted patches extracted

(along with one example patch). The light gray blocks in the up-

per and lower left corner denote the approximate areas covered by

patient information.

case). The method suffering the least from the distortion correction

is FFT-Evolved, which is due to the feature selection (evolutionary

algorithm) used by this method.

5.3. Analysis Results

In case only patches equidistant to the CoD would be employed in

classification, an analysis regarding the CoD distances and the ac-

cording levels of distortion of the patches would be meaningless.

This is due the roughly equal level of distortion the patches would

exhibit in such a case. In order to clarify this we display the center

position of all image patches used in Figure 4 (the distorted patches)

and Figure 5 (undistorted patches).

We notice that the patches are well distributed (except for the

areas where patient related information is overlaid in the upper and

lower left corner). Moreover, the distribution is sufficient to perform

a CoD-related analysis since this figure also shows that it is not the

case that the sets contain patches close to the CoD only.

(a) Bulbus set (b) Pars set

Fig. 5. Distribution of the patch centers after applying distortion

correction (along with the distorted example patch).
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Fig. 6. CoD analysis (distorted patches, additive mode).
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Fig. 7. CoD analysis (distorted patches, mixed mode).
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Fig. 8. CoD analysis (undistorted patches, additive mode).
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Fig. 9. CoD analysis (undistorted patches, mixed mode)

5.3.1. Analysis modes

Since the endoscopes used to acquire the image sets exhibit slightly

different CoDs (we refer to these endoscopes as G1 and G2), we

chose to implement two distinct analysis modes to generate our

plots.

In the first mode a patch and his closest patch (in the sense of

NN classification) must have been taken with the same endoscope

(either G1 or G2). This results in one histogram for each endoscope,

which, after adjusting the histogram ranges to be equal, are accumu-

lated to obtain one final histogram. This analysis mode is referred

to as “additive mode”. In the second mode the restriction on a sin-

gle endoscope is lifted (we call this mode “mixed mode”). Hence, a

single histogram, based on more patches, is the result.

No matter which mode we use, the patches from the Bulbus set

and the Pars set are combined, which is eligible since the same en-

doscopes have been used.

5.3.2. Effect of CoD distance on classification

Figures 6(a), 7(a), 8(a), and 9(a) show the distribution of the dis-

tances of the patches used to the CoDs. As we notice from these

figures, the distributions are roughly equal no matter whether we use

distorted or undistorted patches. The difference between the differ-

ent analysis modes is also only marginal.

Figures 6(b), 7(b), 8(b), and 9(b) show the fraction of misclas-

sified patches depending on the respective CoD distances. To obtain

these figures we looked up the closest patch NN(Pi) for each patch

Pi (in the sense of the nearest neighbor classifier). If the image class

of patch Pi does not coincide with the class of patch NN(Pi) we

increment the bin in the histogram which corresponds to the CoD

distance of patch Pi.

While for lower CoD distances the fraction of misclassified

patches is not dependent on the CoD distance, this changes for

higher distances. From these figures it seems that there is indeed a

trend to misclassification for higher CoD distance values. In case of

the distorted images this can be explained by the barrel-type distor-

tion which is especially noticeable in the outer areas of an image.

When applying distortion correction, again areas further away from

the CoD get more distorted due to the interpolation involved into the

distortion correction.

5.3.3. Distortion difference between neighboring patches

Figures 6(c), 7(c), 8(c), and 9(c) show the distribution of the distor-

tion difference between a patch Pi and his closest patch NN(Pi). In

the distorted case as well as in the undistorted case the distance of a

patch to the CoD D(Pi, COD) also reflects the degree of distortion

of the patch – in the distorted case due to the barrel-type distortion

and in the undistorted case due to the interpolation artifacts gener-

ated. Hence, the difference |D(Pi, COD) − D(NN(Pi), COD)|
can be regarded as the difference of distortion between the two

patches.

As we notice from figures 6(c), 7(c), 8(c), and 9(c) the distortion

difference between a patch Pi and NN(Pi) is in most cases rather

low. In other words, NN(Pi) is in most cases chosen such that

the level of distortion is roughly equal between Pi and NN(Pi).
This is not surprising since the closest patch is chosen based on the

features extracted from the patches. The methods we used for the

analysis are based on the underlying textural content which however

is affected by distortions. As already pointed out above, corrupted

texture appears in case of barrel-type distortions (distorted case) as

well as in the case of distortion correction (due to the interpolation

artifacts). Hence, this trend can be observed in case of distorted

images as well as in the undistorted case (for both analysis modes).

Figures 6(d), 7(d), 8(d), and 9(d) show that the fraction of mis-

classified patches depends on the distortion difference between Pi

and NN(Pi). As a consequence, a patch farther away (in the radial

sense) from its closest patch (in terms of the NN classifier) is more

likely to be misclassified. Similar to the figures 6(b), 7(b), 8(b),

and 9(b) we notice that for small distortion differences no clear ten-

dency can be observed. However, for large distortion differences the

probability of misclassification is indeed higher. This trend is notice-

able for the distorted patches as well as for the undistorted patches.

Again, this phenomenon is linked to either barrel-type distortions or

interpolation artifacts in case of distortion correction.



6. CONCLUSION

In this work we investigated the impact of barrel-type distortions

and distortion corrections on the classification accuracy of certain

methods used in earlier work. We have shown that in case of distor-

tion as well as after distortion correction the fraction of misclassified

patches gets higher for patches with greater distances to the CoD. We

have also shown that the higher the distortion difference between a

patch and his closest patch the more likely a patch gets misclassified.

Considering the fact that the features used are rather sensitive

to distortions this outcome is not surprising at all, since, no matter

whether we use distorted images or apply distortion correction, in

both cases certain types of distortions are apparent in the outer re-

gions of the images (barrel-type distortions in case of the distorted

images and interpolation artifacts in case of distortion correction).

This is also confirmed by the fact that in [8] edge-based features

have been shown to be more resistant against distortions.

In future work we will therefore explore the impact of barrel-

type distortions and distortion correction on edge-based features. In

addition we will also investigate the parameter-free distortion cor-

rection, more recently proposed by Barreto et al [19].
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