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Abstract

Computer assisted analysis of medical imaging data is a very important field of research.
One topic of interest in this research area is colon cancer detection. A new classification
method, namely the pit pattern classification scheme, developed some years ago delivers
very promising results already. Although this method is not yet used in practical medicine,
it is a hot topic of research since it is based on a fairly simple classification scheme.

In this work we present algorithms and methods with which we try to classify medical
images taken during colonoscopy. The classification is based on the pit pattern classifica-
tion method and all methods are highly focused on different wavelet methods. The methods
proposed should help a physician to make a pre-diagnosis already during colonoscopy, al-
though a final histological finding will be needed to decide whether a lesion is malignant or
not.
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1 Introduction
Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the globe.

- Albert Einstein

The incidence of colorectal cancer is highest in developed countries and lowest in countries
like Africa and Asia. According to the American cancer society colon cancer is the third
most common type of cancer in males and fourth in females in western countries. This is
perhaps mainly due to lifestyle factors such as obesity, eating fat-high, smoking and drinking
alcohol for example, which drastically increase the risk of colon cancer. But there are also
other factors such as the medical history of the family and genetic inheritance, which also
increase the risk of colon cancer.
Therefore a regular colon examination is recommended especially for people at an age of
50 years and older. Such a diagnosis can be done for example by colonoscopy, which is the
best test available to detect abnormalities within the colon.

1.1 Colonoscopy

Colonoscopy is a medical procedure which makes it possible for a physician to evaluate the
appearance of the inside of the colon. This is done by using a colonoscope - hence the name
colonoscopy.
A colonoscope is a flexible, lighted instrument which enables physicians to view the colon
from inside without any surgery involved. If the physician detects suspicious tissue he might
also obtain a biopsy, which is a sample of suspicious tissue used for further examination
under a microscope.
Some colonoscopes are also able to take pictures and video sequences from inside the colon
during the colonoscopy. This allows a physician to review the results from a colonoscopy
to document the growth and spreading of an eventual tumorous lesion.

Another possibility arising from the ability of taking pictures from inside the colon is
analysis of the images or video sequences with the assistance of computers. This allows
computer assisted detection of tumorous lesions by analyzing video sequences or images
where the latter one is the main focus of this thesis.

To get images which are as detailed as possible a special endoscope - a magnifying en-
doscope - was used to create the set of images used throughout this thesis. A magnifying
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1 Introduction

endoscope represents a significant advance in colonoscopic diagnosis as it provides images
which are up to 150-fold magnified. This magnification is possible through an individually
adjustable lens. Images taken with this type of endoscope are very detailed as they uncover
the fine surface structure of the mucosa as well as small lesions.
To visually enhance the structure of the mucosa and therefore the structure of an eventual
tumorous lesion, a common procedure is to spray indigo carmine or methylen blue onto
the mucosa. While dyeing with indigo carmine causes a plastic appearance of the mucosa,
dyeing with methylen blue helps to highlight the boundary of a lesion. Cresyl violet, which
actually stains the margins of the pit structures, is also often sprayed over a lesion. This
method is also referred to as staining.

1.2 Pit patterns

Diagnosis of tumorous lesions by endoscopy is always based on some sort of staging, which
is a method used to evaluate the progress of cancer in a patient and to see to what extent a
tumorous lesion has spread to other parts of the body. Staging is also very important for a
physician to choose the right treatment of the colorectal cancer according to the respective
stage.
Several classification methods have been developed in the past such as Duke’s classification
system, the modified Duke staging system and, more recently, the TNM staging system (Tu-
mor, node, metastasis).
Another classification system, based on so-called pit patterns of the colonic mucosa, was
originally reported by Kudo et al. [16, 30]. As illustrated in figure 1.1 this classification
differentiates between five main types according to the mucosal surface of the colon. The
higher the type number the higher is the risk of a lesion to be malignant.

While lesions of type I and II are benign, representing the normal mucosa or hyperplastic
tissue, and in fact are nontumorous, lesions of type III to V in contrast represent lesions
which are malignant.
Lesions of type I and II can be grouped into non-neoplastic lesions, while lesions of type
III to V can be grouped into neoplastic lesions. Thus a coarser grouping of lesions into two
instead of six classes is also possible.

There exist several studies which found a good correlation between the mucosal pit pattern
and the histological findings, where especially techniques using magnifying colonoscopes
led to excellent results [23, 27, 28, 29, 42, 17].

As depicted in figure 1.1 pit pattern types I to IV can be characterized fairly well, while
type V is a composition of unstructured pits. Table 1.1 contains a short overview of the main
characteristics of the different pit pattern types.

Figure 1.2 again shows the different pit pattern types, but this time in the third dimension.
This makes it easier to understand how the different pit pattern types develop over time.
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1.2 Pit patterns

(a) Pit pattern I (b) Pit pattern II (c) Pit pattern IIIS

(d) Pit pattern IIIL (e) Pit pattern IV (f) Pit pattern V

Figure 1.1: Pit pattern classification according to Kudo et al.

(a) Pit pattern I (b) Pit pattern II (c) Pit pattern IIIS

(d) Pit pattern IIIL (e) Pit pattern IV (f) Pit pattern V

Figure 1.2: Images showing 3D views of the different types of pit pattern according to Kudo.

Although at a first glance this classification scheme seems to be straightforward and easy
to be applied, it needs some experience and exercising to achieve fairly good results [22, 45].
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1 Introduction

Pit pattern type Characteristics
I roundish pits which designate a normal mucosa
II stellar or papillary pits

III S small roundish or tubular pits, which are smaller
than the pits of type I

III L roundish or tubular pits, which are larger than
the pits of type I

IV branch-like or gyrus-like pits
V non-structured pits

Table 1.1: The characteristics of the different pit pattern types.

To show this, figure 1.3 contains images out of the training image set used throughout this
thesis.

(a) Pit pattern I (b) Pit pattern II (c) Pit pattern IIIS

(d) Pit pattern IIIL (e) Pit pattern IV (f) Pit pattern V

Figure 1.3: Images showing the different types of pit pattern.

From these images it is not as easy anymore to tell which type of pit pattern each of these
images represents.
Apart from that it is important to mention that a classification solely based on pit pattern
classification is not possible. There is always a final histological finding needed for the
physician to decide whether a lesion in a colon is tumorous or non-tumorous.
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1.3 Computer based pit pattern classification

1.3 Computer based pit pattern classification

The motivation behind computer based pit pattern classification is to assist the physician
in analyzing the colon images taken with a colonoscope just in time. Thus a classification
can already be done during the colonoscopy and therefore this makes a fast classification
possible. But as already mentioned above, a final histological finding is needed here too to
confirm the classification made by the computer.

The process of the computer based pit pattern classification can be divided into the fol-
lowing steps:

1. First of all as many images as possible have to be acquired. These images serve for
training as well as for testing a trained classification algorithm.

2. The images are analyzed for some specific features such as textural features, color
features, frequency domain features or any other type of features.

3. A classification algorithm of choice is trained with the features gathered in the last
step.

4. The classification algorithm is presented some unknown image to classify. The un-
known image in this context is an image which has not been used during the training
step.

From these steps the very important question which features to extract from the images
arises. Since there are many possibilities for image features, chapter 3 will give a short
overview of some possible features for texture classification.

However, as the title of this thesis already suggests, the features we intend to use are solely
based on the wavelet transform. Hence, before we start thinking about possible features
to extract from endoscopic images, the next chapter tries to give a short introduction to
wavelets and the wavelet transform.
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2 Wavelets
Every great advance in science has issued
from a new audacity of imagination.

- John Dewey, The Quest for Certainty

2.1 Introduction

In the history of mathematics wavelet analysis shows many origins. It was Joseph Fourier
who did the first step towards wavelet analysis by doing research in the field of frequency
analysis. He asserted that any 2π-periodic function can be expressed as a sum of sines and
cosines with different amplitudes and frequencies.
The first wavelet function developed was the Haar wavelet developed by A. Haar in 1909.
This wavelet has compact support but unfortunately is not continuously differentiable, a
fact, which limits its applications.

The wavelet theory adopts the idea to express a function as a sum of other so-called basis
functions. But the key difference between a fourier series and a wavelet is the choice of
the basis functions. A fourier series expresses a function, as already mentioned, in terms of
sines and cosines which are periodic functions whereas the discrete wavelet transform for
example only uses basis functions with compact support. This means that wavelet functions
vanish outside of a finite interval.
This choice of the basis functions eliminates a disadvantage of the fourier analysis. Wavelet
functions are localized in space, the sine and cosine functions of the fourier series are not.

The name “wavelet” originates from the important requirement of wavelets that they
should integrate to zero, “waving” above and below the x-axis. This requirement can be
expressed more mathematically as∫ ∞

−∞
ψ(t)dt = 0 (2.1)

where ψ is the wavelet function used. Figure 2.1 shows some different choices for ψ.

An important fact is that wavelet transforms do not have a single set of basis functions
like the Fourier transform. Instead, the number of possible basis functions for the wavelet
transforms is infinite.

The range of applications where wavelets are used nowadays is wide. It includes signal
compression, pattern recognition, speech recognition, computer graphics, signal processing,
just to mention a few.

7



2 Wavelets

(a) Haar (b) Mexican hat

(c) Sinc

Figure 2.1: Different wavelet functions ψ

This chapter tries to give an introduction to the wavelet transform. A more de-
tailed description covering also the mathematical details behind wavelets can be found in
[2, 32, 46, 19, 4, 34, 24, 6].

2.2 Continuous wavelet transform

The basic idea behind the wavelet theory, as already mentioned above, is to express a func-
tion as a combination of basis functions ψa,b. These basis functions are just dilated and
scaled versions of a so-called mother wavelet ψ.

The dilations and translations of the mother wavelet or analyzing wavelet ψ define an or-
thogonal basis. To allow dilation and translation the dilation parameter a and the translation
parameter b are introduced. Thus the resulting wavelet function can be formulated as

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(2.2)

Based on these basis functions the wavelet transform for a continuous signal x(t) with
respect to the defined wavelet function can be written as

T (a, b) =
1√
a

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt (2.3)
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2.3 Discrete wavelet transform

Using equation (2.2), T (a, b) can be rewritten in a more compact way as

T (a, b) =

∫ ∞

−∞
x(t)ψa,b(t)dt (2.4)

This can than be expressed as an inner product of the signal x(t) and the wavelet function
ψa,b(t)

T (a, b) = 〈x, ψa,b〉 (2.5)

Since a, b ∈ R this is called the continuous wavelet transform. Simply spoken equation
(2.5) returns the correlation between a signal x(t) and a wavelet ψa,b.

2.3 Discrete wavelet transform

The discrete wavelet transform is very similar to the continuous wavelet transform, but while
in equation (2.2) the parameters a and b were continuous, in the discrete wavelet transform
these parameters are restricted to discrete values. To achieve this, equation (2.2) is slightly
modified

ψm,n(t) =
1√
am

0

ψ

(
t− nb0a

m
0

am
0

)
(2.6)

=
1√
am

0

ψ
(
a−m

0 t− nb0
)

(2.7)

where m controls the dilation and n the translation with m,n ∈ Z. a0 is a fixed dilation
step parameter greater than 1 and b0 is the location parameter which must be greater than
0.

The wavelet transform of a continuous signal x(t) using discrete wavelets of the form of
equation (2.7) is then

Tm,n =
1√
am

0

∫ ∞

−∞
x(t)ψ

(
a−m

0 t− nb0
)
dt (2.8)

which again can be written in a more compact way

Tm,n =

∫ ∞

−∞
x(t)ψm,n(t)dt (2.9)

and therefore leads to

Tm,n = 〈x, ψm,n〉 (2.10)
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2 Wavelets

For the discrete wavelet transform, the values Tm,n are known as wavelet coefficients or
detail coefficients.

Common choices for the parameters a0 and b0 in equation (2.7) are 2 and 1, respectively.
This is known as the dyadic grid arrangement. The dyadic grid wavelet can be written as

ψm,n(t) = 2−
m
2 ψ

(
2−mt− n

)
(2.11)

The original signal x(t) can be reconstructed in terms of the wavelet coefficients Tm,n as
follows:

x(t) =
∞∑

m=−∞

∞∑
n=−∞

Tm,nψm,n(t) (2.12)

The scaling function of a dyadic discrete wavelet is associated with the smoothing of the
signal x(t) and has the same form as the wavelet, given by

φm,n(t) = 2−
m
2 φ

(
2−mt− n

)
(2.13)

In contrast to equation (2.1) scaling functions have the property∫ ∞

−∞
φ0,0(t)dt =

∫ ∞

−∞
φ(t)dt = 1 (2.14)

where φ(t) is sometimes referred to as the father scaling function. The scaling function
can be convolved with the signal to produce approximation coefficients as follows:

Sm,n =

∫ ∞

−∞
x(t)φm,n(t)dt (2.15)

A continuous approximation of the signal at scale m can be generated by summing a
sequence of scaling functions at this scale factored by the approximation coefficients as
follows:

xm(t) =
∞∑

n=−∞

Sm,nφm,n(t) (2.16)

where xm(t) is a smoothed, scaling-function-dependent, version of x(t) at scale m.

Now the original signal x(t) can be represented using both the approximation coefficients
and the wavelet (detail) coefficients as follows:

x(t) =
∞∑

n=−∞

Sm0,nφm0,n(t) +

m0∑
m=−∞

∞∑
n=−∞

Tm,nψm,n(t) (2.17)

10



2.3 Discrete wavelet transform

From this equation it can be seen that the original signal is expressed as a combination of
an approximation of itself (at an arbitrary scale index m0), added to a succession of signal
details from scales m0 down to −∞. The signal detail at scale m is therefore defined as

dm(t) =
∞∑

n=−∞

Tm,nψm,n(t) (2.18)

hence equation (2.17) can be rewritten as

x(t) = xm0(t) +

m0∑
m=−∞

dm(t) (2.19)

which shows that if the signal detail at an arbitrary scale m is added to the approximation
at that scale it results in an signal approximation at an increased resolution (m− 1).

The following scaling equation describes the scaling function φ(t) in terms of contracted
and shifted versions of itself:

φ(t) =
∑

k

ckφ(2t− k) (2.20)

where φ(2t− k) is a contracted version of φ(t) shifted along the time axis by step k ∈ Z
and factored by an associated scaling coefficient, ck, with

ck = 〈φ(2t− k), φ(t)〉 (2.21)

Equation (2.20) basically shows that a scaling function at one scale can be constructed
from a number of scaling functions at the previous scale.

From equation (2.13) and (2.20) and examining the wavelet at scale index m+ 1, one can
see that for arbitrary integer values of m the following is true:

2−
m+1

2 φ

(
t

2m+1
− n

)
= 2−

m
2 2−

1
2

∑
k

ckφ

(
2t

2 · 2m
− 2n− k

)
(2.22)

which can be written more compactly as

φm+1,n =
1√
2

∑
k

ckφm,2n+k(t) (2.23)

That is, the scaling function at an arbitrary scale is composed of a sequence of shifted scaling
functions at the next smaller scale each factored by their respective scaling coefficients.
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2 Wavelets

Now, that we have defined the scaling function φ, we can construct a suited wavelet function

ψm+1,n =
1√
2

∑
k

bkφm,2n+k(t) (2.24)

where

bk = (−1)kcNk−1−k (2.25)

and Nk is the number of scaling coefficients.

Analogous to equation (2.21) we can express bk as

bk = 〈φ(2t− k), ψ(t)〉 (2.26)

From equation (2.24) we can see, that the wavelet function ψ can be expressed in terms
of the scaling function φ. This is an important relationship which is used in the next section
to obtain the filter coefficients.

2.4 Filter based wavelet transform

In signal processing usually a signal is a discrete sequence. To analyze such a signal with
the wavelet transform based on filters so-called filter banks are needed, which guarantee a
perfect reconstruction of the signal. A filter bank consist of a low pass filter and a high
pass filter. While the low pass filter (commonly denoted by h) constructs an approximation
subband for the original signal, the high pass filter (commonly denoted by g) constructs a
detail subband consisting of those details, which would get lost if only the approximation
subband would be used for signal reconstruction.

To construct a filter bank we need to compute the coefficients for the low pass filter h first.
However, since the scaling equation is used to get the approximation for a signal, h can be
composed by using the coefficients ck from equation (2.20):

h[k] = ck (2.27)

Now, using equations (2.24) and (2.25), we are able compute g from h:

g[k] = (−1)kh[Nk − 1− k] (2.28)

For a discrete signal sequence x(t) the decomposition can be expressed in terms of a
convolution as

ya(k) = (h ∗ x)[k] (2.29)

12



2.4 Filter based wavelet transform

and

yd(k) = (g ∗ x)[k] (2.30)

where ya and yd denote the approximation and the detail subband.
The discrete convolution between a discrete signal x(t) and a filter f(t) is defined as

(f ∗ x)(k) =
l∑

i=0

f(i)x(k − i) (2.31)

where l is the length of the respective filter f .

To avoid redundant data in the decomposed subbands, the signal of length N is down-
sampled to length N/2. Therefore the result of equation (2.29) and (2.30) are sequences of
length N/2 and the decomposed signal has a length of N .

To reconstruct the original signal x from ya and yd a reconstruction filter bank consisting
of the filters ĥ and ĝ, which are the low pass and high pass reconstruction filters, is used.
Since during the decomposition the signal was downsampled, the detail and the approxima-
tion subband have to be upsampled from size N/2 to size N . Then the following formula is
used to reconstruct the original signal x.

x(t) = (ĥ ∗ ya)(t) + (ĝ ∗ yd)(t) (2.32)

The reconstruction filters ĥ and ĝ can be computed from the previously computed decom-
position filters h and g using the following equations

ĥ[k] = (−1)k+1g[k] (2.33)

and

ĝ[k] = (−1)kh[k] (2.34)

A special wavelet decomposition method without any downsampling and upsampling in-
volved is the algorithme à trous. This algorithm provides approximate shift-invariance with
an acceptable level of redundancy. Since in the discrete wavelet transform at each decom-
position level every second coefficient is discarded, this can result in considerably large
shift-variances.

When using the algorithme à trous however the subbands are not downsampled during
decomposition and the same amount of coefficients is stored for each subband - no mat-
ter at which level of decomposition a subband is located in the decomposition tree. As a
consequence no upsampling is needed at all when reconstructing a signal.
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2.5 Pyramidal wavelet transform

While the transformation process described in section 2.4 transforms a 1D-signal, in image
processing the main focus lies on 2D-data. To apply the wavelet transform on images first
the column vectors are transformed, then the row vectors are transformed - or vice versa.
This results in four subbands - an approximation subband and three detail subbands.
In the pyramidal wavelet transform only the approximation subband is decomposed further.
Thus, if repeating the decomposition step of the approximation subband again and again,
the result is a pyramidal structure, no matter what image is used as input. Figure 2.2(a)
shows such a pyramidal decomposition quadtree.
The motivation behind the pyramidal wavelet transform is the fact that in most natural im-
ages the energy is concentrated in the approximation subband. Thus by decomposing the
approximation subband again and again the highest energies are contained within very few
coefficients since the approximation subband gets smaller and smaller with each decompo-
sition step. This is an important property for image compression for example.
But there are also images for which this decomposition structure is not optimal. If an image
for example has periodic elements the pyramidal transform is not able anymore to concen-
trate the energy into one subband. A solution to this problem are wavelet packets.

2.6 Wavelet packets

Wavelet packets have been introduced by Coifman, Meyer and Wickerhauser as an extension
to multiresolution analysis and wavelets. In contrast to the pyramidal wavelet transform,
where only the approximation subband is decomposed further the wavelet packet transform
also allows further decomposition of detail subbands. This allows an isolation of other fre-
quency subbands containing high energy which is not possible in the pyramidal transform.
Due to the fact that any subband can now be decomposed further this results in a huge
number of possible bases. But depending on the image data and the field of application an
optimal basis has to be found. In the next sections some methods for basis selection are
presented.

2.6.1 Basis selection

When performing a full wavelet packet decomposition all subbands are decomposed recur-
sively until a maximum decomposition level is reached, no matter how much information is
contained within each subband.
The task of basis selection is used to optimize this process by selecting a subset of all pos-
sible bases which fits as well as possible for a specific task.
Depending on whether the goal is compression of digital data or data classification for exam-
ple different basis selection algorithms are used. The reason for this is that there is currently
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(a) (b)

Figure 2.2: Pyramidal decomposition (a) and one possible best-basis wavelet packet decom-
position (b)

no known basis selection algorithm with has to be proven to perform well in classification
tasks as well as in compression tasks. This is mainly due to the fact that the underlying
principles of compression and classification are quite different. While in compression the
main goal is to reduce the size of some data with as few loss as possible, the main goal in
classification is to find a set of features which is similar among inputs of the same class and
which differ among inputs from different classes.

2.6.1.1 Best-basis algorithm

The best-basis algorithm, which was developed by Coifman and Wickerhauser [11] mainly
for signal compression, tries to minimize the decomposition tree by focusing on subbands
only which contain enough information to be regarded as being interesting. To achieve this,
an additive cost function is used to decide whether a subband should be further decomposed
or not. The algorithm can be outlined by the following steps:

1. A full wavelet packet decomposition is calculated for the input data which results in
a decomposition tree.

2. The resulting decomposition tree is traversed from the leafs upwards to the tree root
comparing the additive cost of the children nodes and the according parent node for
each node in the tree having children nodes.

3. If the summed cost of the children nodes exceeds the cost of the according parent
node the tree gets pruned at that parent node, which means that the children nodes are
removed.

The resulting decomposition is optimal in respect to the cost function used. The most com-
mon additive cost functions used are
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Logarithm of energy (LogEnergy)

cost(I) =
N∑

i=1

log∗(s) with s = I(i)2

Entropy

cost(I) = −
N∑

i=1

s log∗(s) with s = I(i)2

Lp-Norm

cost(I) =
N∑

i=1

|I(i)|p

Threshold

cost(I) =
N∑

i=1

a with a =

{
1 if I(i) > t
0 else

where I is the input sequence (the subband), N is the length of the input, log∗ is the log-
function with the convention log(0) = 0 and t is some threshold value.

(a) Source image

(b) LogEnergy (c) Entropy (d) L-Norm (e) Threshold

Figure 2.3: Different decomposition trees resulting from different cost functions using the
Haar wavelet.
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(a) Source image

(b) LogEnergy (c) Entropy (d) L-Norm (e) Threshold

Figure 2.4: Different decomposition trees resulting from different cost functions using the
biorthogonal Daubechies 7/9 wavelet.

In figure 2.3 the resulting decomposition trees for an example image using different cost
functions are shown. The image in 2.3(a) was decomposed using the Haar wavelet with a
maximum decomposition level of 5. In this example the threshold value t for the threshold
cost function was set to 0.

In figure 2.4 again the resulting decomposition trees for different cost functions are shown.
But this time the biorthogonal Daubechies 7/9 wavelet was used. The parameters used for
the decomposition and the source image are the same as used to produce the decomposition
trees in figure 2.3.

Note the difference between the decomposition trees in figure 2.3 and 2.4. While using the
threshold cost function in these examples results in quite similar decomposition trees (figure
2.3(e) and 2.4(e)), the other cost functions exhibit fairly different decomposition trees.

The best-basis algorithm has proven to be well suited for signal compression but is not
necessarily as good for classification problems. A further example of a basis found with the
best-basis algorithm is shown in figure 2.2(b).

2.6.1.2 Tree-structured wavelet transform

The tree-structured wavelet transform introduced by Chang and Kuo [10] is another adap-
tive decomposition method for wavelets which is very similar to the best-basis algorithm.
But instead of pruning the decomposition tree in a bottom-up manner, as it is done in the
best-basis algorithm, the decisions which subbands to decompose further are already made
during the top-down decomposition process.
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While the best-basis algorithm is based on a full wavelet packet decomposition, the al-
gorithm presented in [10] stops the decomposition process for a node of the decomposition
tree if the subbands (i.e. the child nodes) do not contain enough information to be regarded
as interesting for further decomposition. In other words this algorithm tries to detect signif-
icant frequency channels which are then decomposed further. The stopping criterion for a
subband s at scale j is met if

e < Cemax

where e is the energy contained in the subband s, emax is the maximum energy among all
subbands at scale j and C is a constant less than 1. For a small C a subband is more likely
to be decomposed further than it is the case for a value near 1.

2.6.1.3 Local discriminant bases

The local discriminant bases algorithm is an extension to the best-basis algorithm developed
by Saito and Coifman [39] primarily focused on classification problems. The local discrim-
inant bases algorithm searches for a complete orthonormal basis among all possible bases in
a time-frequency decomposition, such that the resulting basis can be used to distinguish be-
tween signals belonging to different signal classes and therefore to classify different signals.
As the time-frequency decomposition model we use the wavelet packet decomposition, but
others such as the local cosine transform or the local sine transform for example can be
chosen as the time-frequency decomposition method too.

First of all the images are normalized to have zero mean and unit variance as suggested in
[41]. This is done by applying the following formula to the input sequence:

I(i) =
I(i)− µI

σI

where I is the input signal sequence, µI is the mean of the input sequence

µI =
1

N

N∑
i=1

I(i),

σI is the standard deviation of the input sequence

σI =
√
σ2
I =

√√√√ N∑
i=1

(
I(i)− µI

)2

and 1 ≤ i ≤ N for an input length of N .

After this preprocessing the wavelet packet decomposition is used to create a so-called
time-frequency dictionary which is just a collection of all nodes in a full n-level decompo-
sition. Then, signal energies at each node in the decomposition tree are accumulated at each
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coefficient for each signal class l separately to get a so-called time-frequency energy map Γl

for each signal class l, which is then normalized by the total energy of the signals belonging
to class l. This can be formulated as

Γl(j, k) =

Nl∑
i=1

(s
(l)
i,k)

2/

Nl∑
i=1

‖x(l)
i ‖2 (2.35)

where j denotes the j-th node of the decomposition tree, Nl is the number of samples
(images) in class l, s(l)

i,j,k is the k-th wavelet coefficient of the j-th subband (node) of the i-th
image of class l and x(l)

i is the i-th signal of class l.

This time-frequency energy map is then used by the algorithm to determine the discrim-
ination between signals belonging to different classes l = 1, . . . , L where L is the number
of total different signal classes. The discriminant power of a node is calculated using a
discriminant measure D, which measures statistical distances among classes.

There are many choices for the discriminant measure such as the relative entropy which is
also known as the cross-entropy, Kullback-Leibler distance or I-divergence. Other possible
measures include the J-divergence, which is a symmetric version of the I-divergence, the
Hellinger distance, the Jenson-Shannon divergence and the euclidean distance.

I-divergence

D(pa, pb) =
n∑

i=1

pai
log

pai

pbi

J-divergence

D(pa, pb) =
n∑

i=1

pai
log

pai

pbi

+
n∑

i=1

pbi
log

pbi

pai

Hellinger-distance

D(pa, pb) =
n∑

i=1

(√
pai

−√
pbi

)2

Jenson-Shannon divergence

D(pa, pb) =

( n∑
i=1

pai
log

pai

qi
+

n∑
i=1

pbi
log

pbi

qi

)
/2

with

qi =
pai

+ pbi

2
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Euclidean distance

D(pa, pb) = ‖pa − pb‖2

where pa and pb are two nonnegative sequences representing probability distributions of
signals belonging to classes a and b respectively and n is number of elements in pa and pb.
Thus, the discriminant measures listed above are distance measures for probability distribu-
tions and are used to calculate the discriminant power between pa and pb.

To use these measures to calculate the discriminant power over L classes we use the
following equation:

D({pl}L
l=1) =

L−1∑
i=1

L∑
j=i+1

D(pi, pj) (2.36)

In terms of the time frequency energy map equation (2.36) can be written as

D({Γl(n)}L
l=1) =

L−1∑
i=1

L∑
j=i+1

D(Γi(n),Γj(n)) (2.37)

where n denotes the n-th subband (node) in the decomposition tree.

The algorithm to find the optimal basis can be outlined as follows:

1. A full wavelet packet decomposition is calculated for the input data which results in
a decomposition tree.

2. The resulting decomposition tree is traversed from the leafs upwards to the tree root
comparing the additive discriminant power of the children nodes and the according
parent node for each node in the tree having children nodes. To calculate the discrimi-
nant power the discriminant measureD is used to evaluate the power of discrimination
of the nodes in the decomposition tree between different signal classes.

3. If the discriminant power of the parent node exceeds the summed discriminant power
of the children nodes the tree gets pruned at that parent node, which means that the
children nodes are removed.

To obtain a fast computational algorithm to find the optimal basis, D has to be additive just
as the cost function used in the best-basis algorithm.

After the pruning process we have a complete orthonormal basis and all wavelet expansion
coefficients of signals in this basis could be used as features already. But due to the fact that
the dimension of such a feature vector would be rather high it is necessary to reduce the
dimensionality of the problem such that k � n where n is the number of all basis vectors
of the orthonormal basis and k is the dimension of the feature vector after dimensionality
reduction.
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2.6 Wavelet packets

To reduce the dimension of the feature vector the first step is to sort the basis functions
by their power of discrimination. There are several choices as a measure of discriminant
power of one of the basis functions such as using the discriminant measure D on the time-
frequency distribution among different classes of a single decomposition tree node, which
is just the power of discrimination of one node and therefore a measure of usefulness of this
node for the classification process.
Another measure would be the Fisher’s class separability of wavelet coefficients of a single
node in the decomposition tree, which expresses the ratio of the between-class variance to
the in-class variance of a specific subband s(c)

i,j and can be formulated as∑L
l=1 πl

(
meani(s

(l)
i,j)−meanl(meani(s

(l)
i,j))

)2∑L
l=1 πlvariancei(s

(l)
i,j)

(2.38)

where L is the number of classes, πl is the empirical proportion of class l, s(l)
i,j is the j-th

subband for the i-th image of class l containing the wavelet coefficients and meanl(·) is the
mean over class l, meani(·) and variancei(·) are operations to take mean and variance for
the wavelet coefficients of s(l)

i,j , respectively.
The following equation is similar to equation (2.38), but it uses the median instead of the
mean, and the median absolute deviation instead of the variance:∑L

l=1 πl|
(
medi(s

(l)
i,j)−medl(medi(s

(l)
i,j))

)
|∑L

l=1 πlmadi(s
(l)
i,j)

(2.39)

An advantage of using this more robust method instead of the version in equation (2.38) is
that it is more resistant to outliers.

Having the list of basis functions (nodes of the decomposition tree) which is sorted now,
the k most discriminant basis function can be chosen for constructing a classifier by feeding
the features of the remaining k subbands into a classifier such as linear discriminant analysis
(LDA) [39, 3], classification and regression trees (CART) [35], k-nearest neighbours (k-
NN) [18] or artificial neural networks (ANN) [38]. This process can then be regarded as a
training process for a given classifier, which labels each given feature vector with a class
name.
The classification of a given signal is then done by expanding the signal into the LDB and
feeding the classifier already trained with the respective feature vector of the signal sequence
to classify. The classifier then tries to classify the signal and returns the according class.

After this introduction to wavelets and showing some important preliminaries regarding
wavelets, we are now prepared to start thinking about possible features which might be used
for the classification of pit pattern images. Hence the next chapter will present some already
existing techniques regarding texture feature extraction with a focus on wavelet based meth-
ods. Chapter 4 then gives a more thorough overview regarding possible features, when the
different technique are presented, which are used to test the pit pattern classification.
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3 Texture classification
It is not enough to do your best; you must
know what to do, and then do your best.

- W. Edwards Deming

3.1 Introduction

If a computer program has to discriminate between different classes of images some sort of
classification algorithm has to be applied to the training data during the training phase. Dur-
ing the classification of some unknown image the formerly trained classification algorithm
is presented the new, unknown image and tries to classify it correctly.
Thus the classification process mainly consist of two parts: the extraction of relevant fea-
tures from images and the classification based on these features.

This chapter will give a literature review, presenting approaches which mainly employ
features based on wavelets presented in chapter 2. But we will also see some examples of
endoscopic classification which do not use any wavelet based features.
Apart from the feature extraction this chapter gives an introduction to some well-known
classification algorithms.

3.2 Feature extraction

3.2.1 Wavelet based features

To use wavelet based features, the image to be analyzed has to be decomposed using a
wavelet decomposition method such as the pyramidal wavelet transform or wavelet packets
(see chapter 2). Then, having the resulting subbands, different types of features can be
extracted from the coefficients contained within the according subbands. These include
the mean and standard deviation of coefficients in a subband, features based on wavelet
coefficient histograms, features based on wavelet coefficient co-occurrence matrices (see
section 4.2.1.1) and modeling parameters for wavelet coefficient histograms, just to mention
a few.

The method presented in [5], for example, uses features based on the mean and standard
deviation of coefficients inside of wavelet subbands. Bhagavathy presents a wavelet-based
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image retrieval system based on a wavelet-based texture descriptor which is based upon a
weighted standard deviation (WSD) descriptor. To extract the WSD texture feature vector
from a gray scale image the first step is a L-level wavelet decomposition using the Haar
wavelet.
Then the standard deviation is calculated for the three resulting detail images of each level
(HL, LH and HH) and the approximation image at level L. Additionally the mean of the
approximation image is calculated.
The WSD texture feature vector is then built up from these values as follows:

f = {σLH
1 , σHL

1 , σHH
1 , ν2σ

LH
2 , ν2σ

HL
2 , ν2σ

HH
2 , . . . , νLσ

LH
L , νLσ

HL
L , νLσ

HH
L , νLσ

A, µA}
(3.1)

with

νk = 2−k+1 (3.2)

where σLH
i , σHL

i and σHH
i are the standard deviations of the according detail subbands of

level i and µA is the mean of the approximation image. The weighting factor at each level
is motivated by the expectation that higher frequency subbands contain more texture infor-
mation and should therefore contribute more to the WSD feature vector. The mean of the
approximation image gives information about the intensity in the image.
The resulting feature vector for a L-level wavelet decomposition then has a magnitude of
3L+ 2.
For the image retrieval process the images are first mapped from RGB space to YCrCb space
to separate textural information and color information of the image. Then the WSD feature
vector is calculated for each image component (Y, Cr and Cb) which results in a final fea-
ture vector containing 33 elements. This content descriptor now compactly describes both
texture and color in images. One major advantage of this descriptor is the possibility to be
able to give weights to the texture and color components.

The approach presented in [37] is also based on the discrete wavelet transform, but it
utilizes the local discriminant bases (see 2.6.1.3) to extract the optimal features for classifi-
cation.
Rajpoot presents a basis selection algorithm which extends the concept of “Local Discrimi-
nant Basis” to two dimensions. The feature selection is addressed by the features according
to their relevance, which has a significant advantage over other feature selection methods
since the basis selection and reduction of dimensionality can be done simultaneously.
Since in contrast to the wavelet decomposition in a wavelet packet decomposition high
frequency subbands can be further decomposed as well, this results in a huge number of
possible bases. From these bases the most suitable basis for texture classification, a basis
with a maximum discriminating power among all possible bases, needs to be chosen.
For this purpose Rajpoot employed the concept of Local Discriminant Bases and used four
different cost functions in his experiments. Namely, Kullback-Leibler divergence, Jensen-
Shannon divergence, Euclidean distance and Hellinger distance.
Feature selection is done by selecting a subset out of all subbands of the wavelet packet
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decomposition. This subset is composed of subbands which show a high discrimination
between different classes of textures such that it highlights the frequency characteristics of
one class but not the other. Once it has been ensured that the optimal basis for texture clas-
sification is chosen, the selection of most discriminant subbands can proceed by using the
cost function as a measure of relevance to classification.
The feature used for classification in this approach is the discriminant power of a subband
(see section 2.6.1.3).

Another approach based on the wavelet transform is presented by Wouver et al. in [14].
The authors describe a method which uses first order statistics as well as second order statis-
tics to describe the characteristics of texture.
The first step of the feature extraction process is a four-level wavelet frame decomposition,
which is an overcomplete representation since the detail images are not subsampled at all.
The resulting wavelet detail coefficients are then used for the calculation of the wavelet
coefficient histograms, which capture all first order statistics and the wavelet coefficient
co-occurrence matrices (see section 4.2.1.1), which reflect the second order statistics. The
authors propose that a combination of these two feature sets outperforms the use of the
traditionally used energy signature in terms of classification accuracy.

In another paper, Wouver et al. [15] investigate the characterization of textures by taking
a possible asymmetry of wavelet detail coefficient histograms into account.
In this approach the image is transformed to a normalized gray level image which is then
decomposed using a four-level wavelet decomposition. For the resulting detail subbands the
multiscale asymmetry signatures (MAS) are calculated as follows:

Ani
=

∫ ∞

0

|hni
(u)− hni

(−u)|u du (3.3)

where hni
is the wavelet coefficient histogram for the i-th detail subband of the n-th decom-

position level. For perfectly symmetric textures this value equals 0, whereas for asymmetric
textures this value represents the degree of asymmetry.
These MAS are calculated for each detail subband which results in a feature vector E con-
taining the energy signatures. Additionally a second feature vector A+E containing the
energy signatures and the asymmetry signatures is computed. These two feature vectors are
then compared in terms of the classification error rate during the tests performed.
This approach shows that texture classification can indeed be improved by also using asym-
metry signatures, which however are very data-dependent since they are only of value for
textures which exhibit asymmetry on a particular decomposition scale.

A method using the extraction of histogram model parameters is presented in [12]. Cossu
describes a method to discriminate different texture classes by searching for subbands with
multimodal histograms. These histograms are then modeled using a model which is param-
eterized by the following data: a dyadic partition of one quadrant of the Fourier domain,
T , which, given a mother wavelet, defines a wavelet packet basis; a map from T to the set
of the three different models used; a map from T to the space of model parameters of each
subband.
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By approximating the used model to a subband histogram, the respective parameters of the
model are evaluated and can be used as features for a classification process.

Another approach by Karkanis et al. [25], which is already focused on the classification
of colonoscopic images, is based on a feature extraction scheme which uses second order
statistics of the wavelet transformation of each frame of the endoscopic video. These fea-
tures are then used as input to a Multilayer Feed Forward Neural Network (MFNN).
As already proposed in other publications a major characteristic to differentiate between nor-
mal tissue and possible malignant lesions is the texture of the region to examine. Therefore
the classification of regions in endoscopic images can be treated as a texture classification
problem.
For this texture classification process this approach uses the discrete wavelet transform
(DWT) with Daubechies wavelet bases to extract textural feature vectors. Using the DWT a
one-level wavelet decomposition is performed resulting in four wavelet subbands which are
then used to obtain statistical descriptors for the texture in the region being examined.
The statistical descriptors are estimated over the co-occurrence matrix (see section 4.2.1.1)
for each region. These co-occurrence matrices are calculated for various angles (0◦, 45◦,
90◦ and 135◦) with a predefined distance of one pixel in the formation of the co-occurrence
matrices.
Based on these matrices four statistical measures are calculated which provide high discrim-
ination accuracy. Namely angular second moment, correlation, inverse difference moment
and the entropy. Calculating these four measures for each subband of the one-level wavelet
decomposition, results in a feature vector containing 16 features for each region which is
then used as input for the MFNN. An implementation of this approach along with classifi-
cation results is documented in [33].

The methods in [31] and [43] are very similar to this method but slightly differ in the way
features are extracted. While the approach by Karkanis et al. is based on co-occurrence
matrix features of all subbands resulting from the wavelet decomposition, in [43] only the
subband whose histogram presents the maximum variance is chosen for further feature ex-
traction.

The last method presented here using wavelet based features can be found in [26]. Karka-
nis et al. describe a method which first decomposes the image into the three color bands
according to the RGB color model. Each of the resulting color bands is then scanned using
a fixed size sliding squared window. The windows of this process are then transformed us-
ing a discrete three-level wavelet transform. Since the texture features are best represented
in the middle wavelet detail channels only the detail subbands of the second level of the
decomposition are considered for further examination.
Since this sliding window wavelet decomposition is done for each color channel this step
results in a set of nine subimages for each sliding window position. For all nine subimages
the co-occurrence matrices in four directions (0◦, 45◦, 90◦ and 135◦) are calculated to obtain
statistical measures which results in a set of 36 matrices. The four statistical measures used
are the same as in [25], namely, angular second moment, correlation, inverse difference mo-
ment and entropy. This results in a feature vector containing 144 components.
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Finally the covariances between pairs of values out of these 144 elements are calculated
which results in a 72-component vector which is called the color wavelet covariance (CWC)
feature vector. This CWC feature vector is then used for the classification of the image re-
gions.

3.2.2 Other possible features for endoscopic classification

The method presented by Huang et al. in [13], describes a computerized diagnosis method
to analyze and classify endoscopic images of the stomach. In this paper the first step is
the selection of regions of interest (ROIs) by a physician. This is done for three images,
one each from the antrum, body and cardia of the stomach. These ROIs are then used for
further examination for which the authors developed image parameters based on two major
characteristics, color and texture.
The image parameters compromising the color criterion were further defined for gray-scale
intensity and the components of red, green and blue color channels of an image. For each
sub-image three statistical parameters were derived: the maximum, the average and exten-
sion, indicating the maximum value, mean value and distribution extent of the histogram in
the sub-image. Thus the result was a total of 12 (4× 3) color features.
To obtain the texture parameters, the same features as used in the color feature computation
were introduced for the texture. Additionally three texture descriptors were generated based
on sum and difference histograms in the horizontal and vertical direction. These descriptors
are contrast, entropy and energy. This further refinement of texture features results in a total
number of 72 (4× 3× 3× 2) texture features and therefore in a total number of 84 features
(color and texture).

Another method also focused on the computer based examination of the colon is presented
in [44]. Instead of examining an image in total texture units (TU’s) are introduced. A TU
characterizes the local texture information for a given pixel. Statistics of all TUs over the
whole image can then be used to gather information about the global texture aspects.
Each entry of a TU can hold one of the following three values:

0 if the value of the center pixel is less than the neighbouring pixel value

1 if the value of the center pixel is equal to the neighbouring pixel value

2 if the value of the center pixel is greater than the neighbouring pixel value

Having three possible values for each entry of a TU, the neighbourhood of a pixel covering
eight pixels can represent one out of 38 (6561) possible TU’s. The texture unit number is
then calculated from the elements of a texture unit by using the formula

NTU =

(δ×δ)−1∑
i=1

Ei × δi−1 (3.4)
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where Ei is the i-th element of the TU and δ is the length and width of the neighbourhood
measured in pixels (3 in this approach).
Using this texture unit numbers a texture spectrum histogram for an image can be calculated
revealing the frequency distribution of the various texture units. Such a texture spectrum is
calculated for the image components Intensity, Red, Green, Blue, Hue and Saturation. These
spectra are then used to obtain statistical measures such as energy, mean, standard-deviation,
skew, kurtosis and entropy.
Apart from the textural descriptors color-based features are extracted too. This is motivated
by the fact that malignant tumors tend to be reddish and more severe in color than the
surrounding tissue. Benign tumors on the other hand exhibit less intense hues. Based on
these properties color features for various image components (Intensity, Red, Green, Blue,
Hue and Saturation) are extracted. This is done by specifying threshold values L1 and
L2. Then all histogram values for the intensities from 0 to L1 are summed up to form S1.
Similarly all histogram values for the intensities between L1 and L2 are summed up to form
S2. The color feature for the according image component is then S2 divided by S1.

3.3 Classification

In the previous section some methods used to extract features from images were presented.
Without any classification process however these features would be meaningless. In the
following we present the methods used for classification in the approaches presented in the
previous section which are the k-NN classifier (k-NN), artificial neural networks (ANNs)
and support vector machines (SVMs).

3.3.1 k-NN

The k-NN classifier is one of the simplest classifiers but already delivers promising results.
This classifier has been used for example in [14] for evaluation of the features’ discrimina-
tive power.

To apply the k-NN classifier first of all feature vectors for each sample to classify must
be calculated. Then the k-NN algorithm searches for the k training samples for which the
respective feature vectors have the smallest distances to the feature vector to be classified
according to some distance function such as the euclidean distance. The euclidean distance
D between two feature vectors f and g is defined as follows:

D(f, g) =
smax∑
i=1

(fi − gi)
2 (3.5)

The class label which is represented most among these k images is then assigned to unclas-
sified data sample.
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In figure 3.1 an example 2-dimensional feature space is shown. The filled circles represent
feature vectors of a class A, while the outlined circles represent feature vectors of a second
class, B. The filled quad is the feature vector for an image sample which has to be classified.
If we choose now a k-value of 2 for example the unknown sample will be assigned to class
A. However, if the value of k is set to a higher value, we can clearly see, that the unknown
sample has more nearest neighbours in class B, and will thus be assigned to the second
class.
This little example illustrates very well, that different values of k may result in different
classification results - especially if more classes are used.

Figure 3.1: The k-NN classifier for a 2-dimensional feature space.

The method presented in [5] uses a simple similarity measure. This measure is obtained
by computing the L1-distance between the 33-dimensional feature vectors of two images.
As already pointed out in section 3.2.1, in this approach such a feature vector contains a
weighted standard deviation descriptor, which is built up from the weighted standard de-
viations in the detail subbands and the mean of the approximation image resulting from a
pyramidal wavelet decomposition.

The distance between two feature vectors f and g of two images is then defined as follows:

D(f, g) =
1

σ1

|f1 − g1|+
1

σ2

|f2 − g2|+ . . .+
1

σ33

|f33 − g33| (3.6)

where σi is the standard deviation of the i-th element of the feature vector.

3.3.2 ANN

In [25], [43], [33] and [31] the artificial neural network classifier was used for classification.
Since the latter three approaches are based on the same paper, they all use a Multilayer Feed
Forward Neural network (MFNN). The MFNN used is trained using the momentum back-
propagation algorithm which is an extension of the standard backpropagation algorithm.

29
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After the MFNN has been trained successfully it is able to discriminate between normal and
abnormal texture regions by forming hyperplane decision boundaries in the pattern space.
In [43], [33] and [31] the ANN is fed with feature vectors, which contain wavelet coefficient
co-occurrence matrix based features based on the subbands resulting from a 1-level DWT.
Karkanis et al. use in [25] a very similar approach, but consider only the subband exhibiting
the maximum variance for feature vector creation.

According to the results in the publications the classification results are promising since
the system used has been proven capable to classify and locate regions of lesions with a
success rate of 94 up to 99%.

The approach in [44] uses an artificial neural network for classification too. The color
features extracted in this approach are used as input for a Backpropagation Neural Network
(BPNN) which is trained using various training algorithms such as resilient propagation,
scaled conjugate gradient algorithm and the Marquardt algorithm.
Depending on the training algorithm used for the BPNN and the combination of features
which is used as input for the BPNN this approach reaches an average classification accuracy
between 89 and 98%.

The last of the presented methods also using artificial neural networks is presented in [13].
The 84 features extracted with this method are used as input for a multilayer backpropaga-
tion neural network. This results in a classification accuracy between 85 and 90%.

3.3.3 SVM

The SVM classifier, further described in [7, 20], is another, more recent technique for data
classification, which has already been used for example by Rajpoot in [36] to classify texture
using wavelet features.

The basic idea behind support vector machines is to construct classifying hyperplanes
which are optimal for separation of given data. Apart from that the hyperplanes constructed
from some training data should have the ability to classify any unknown data presented to
the classifier as well as possible.

In figure 3.2(a) an example 2-dimensional feature space with linear separable features
of two classes A (filled circles) and B (outlined circles) is shown. The black line running
through the feature space is the hyperplane separating the feature space into to half spaces.
Additionally on the left side of the hyperplane as well as on the right side of the hyperplane
two other lines can be seen - drawn in gray in figure 3.2. These lines are boundaries, which
have the same distance h to the separating hyperplane at any point.

These boundaries are important, as feature vectors are allowed to be on the boundaries,
but not inside them. Therefore all feature vectors must always satisfy the constraint, that
the distances to the hyperplane are always equal or greater than h. Since there are many
classifying hyperplanes possible the SVM algorithm now tries to maximize the value of h,
such that only one possible hyperplane remains.
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(a) linear separable (b) not linear separable

Figure 3.2: The SVM classifier for two different 2-dimensional feature spaces.

The feature vectors lying on the boundary are called support vectors, hence the name
support vector machines. If all feature vectors were removed except the support vectors, the
resulting classifying hyperplane will remain the same. This is why those feature vectors are
called support vectors.

SVM training For a classification problem using two classes the training data consists of
feature vectors ~xi ∈ Rn and the associated class labels yi ∈ {−1, 1} where n is the number
of elements in the feature vectors. All feature vectors which lie on the separating hyperplane
satisfy the equation

~xi ~w + b = 0 (3.7)

where ~w is the normal to the hyperplane and b/‖~w‖ is the perpendicular distance from the
hyperplane to the origin. The training data must satisfy the equations

~xi ~w + b ≥ 1 for yi = 1 (3.8)

and

~xi ~w + b ≤ 1 for yi = −1 (3.9)

which can be combined into

yi(~xi ~w + b)− 1 ≥ 0 ∀i (3.10)

We now consider the feature vectors which lie on the boundaries and satisfy the following
equations

~xi ~w + b = 1 for yi = 1 (3.11)
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and

~xi ~w + b = −1 for yi = −1 (3.12)

Using the euclidean distance between a vector ~x and the hyperplane (~w, b)

d(~w, b; ~x) =
|~x~w + b|
‖~w‖

(3.13)

and the constraints imposed by equations (3.11) and (3.12), the distance between the feature
vectors which are closest to the separating hyperplane is defined by

h =
1

‖~w‖
(3.14)

Thus, the optimal hyperplane can be found by maximizing h, which is equal to minimizing
‖~w‖2 and satisfying the constraint defined by equation (3.10).

Nonlinear problems The method described above works well for problems which are
linear separable. But as depicted in figure 3.2(b), many problems are not linear separable.
The boundaries are no longer lines, like in figure 3.2(a), but curves. In the nonlinear case
the main problem is that the separating hyperplane is no longer linear which imposes com-
putational complexity to the problem. To overcome this problem the SVM classifier uses
the Kernel trick.
The basic idea is to map the input data to some higher dimensional (maybe infinite) eu-
clidean space H using a mapping function Φ.

Φ : Rn → H (3.15)

Then the SVM finds a linear separating hyperplane in this higher dimensional space. Since
the mapping can be very costly a kernel function K is used.

K(~xi, ~xi) = Φ(~xi) · Φ(~xj) (3.16)

Using K we need never to know explicitly what Φ looks like, but only use K. Some
commonly used choices for the kernel function K are

Linear

K(xj, xj) = xT
i xj (3.17)

Polynomial

K(xj, xj) = (γxT
i xj + r)d with γ > 0 (3.18)
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Radial basis function (RBF)

K(xj, xj) = e−γ‖xi−xj‖2 with γ > 0 (3.19)

Sigmoid

K(xj, xj) = tanh(γxT
i xj + r) with γ > 0 (3.20)

where γ, r and d are kernel parameters.

Multi-class case So far we only focused on the two-class case. To handle the multi-
class case as well the classification has to be extended in some way. An overview of possible
methods to handle more classes with the SVM can be found in [21]. Here we present the
one-against-one approach only, since this is the method used in libSVM [8].
This method creates k(k− 1)/2 classifiers, where k is the number of different classes. Each
of these classifiers can then be used to make a binary classification between some classes ca
and cb where a, b ∈ {1, . . . , k} and a 6= b.

Now, each binary classification is regarded as voting. An input vector ~xi, which has to
be classified, is classified using each of the binary classifiers. This results in a class label,
whose according voting is incremented by one. After ~xi has been classified with all of the
k(k − 1)/2 binary classifiers, the class with the maximum number of votes is assigned to
~xi.
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4 Automated pit pattern
classification

In order to succeed, your desire for success
should be greater than your fear of failure.

- Bill Cosby

4.1 Introduction

Based on the preliminaries introduced in the last two chapters this chapter now presents
methods we developed for an automated classification of pit pattern images. We describe
a few techniques and algorithms to extract features from image data and how to perform a
classification based on these features. Additionally this chapter introduces two classification
schemes without any wavelet subband feature extraction involved.

4.2 Classification based on features

The methods presented in this section first extract feature vectors from the images used,
which are then used to train classifiers. The used classifiers and the process of classifier
training and classification is then further described in section 4.4.

4.2.1 Feature extraction

4.2.1.1 Best-basis method (BB)

In section 2.6.1 two different methods for basis selection have been presented. The clas-
sification scheme presented in this section is based on the best-basis algorithm, which, as
already stated before, is primarily used for compression of image data. This approach how-
ever uses the best basis algorithm to try to classify image data.

During the training process all images in IT are decomposed to obtain the wavelet packet
coefficients for each image. Additionally during the decomposition some cost information
is stored along with each node of the respective quadtree. This cost information is based
on the chosen cost function and is used to determine the importance of a subband for the
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feature extraction. This is important since during the feature extraction process the question
arises, which subbands to choose to build the feature vector from.

If the number of subbands for an image I is denoted by sI the maximum number of sub-
bands which can be used to extract features smax from each of the images is

smax = min
1<i≤n

sIi
(4.1)

where n is the total number of images and sIi
is the number of subbands of image Ii resulting

from the wavelet packet decomposition. The calculation of smax is important since it can not
be guaranteed that all images result in a decomposition tree with the same number of leafs
(subbands respectively) - in fact the higher the number of images is the more improbable
this would be. But since the feature vectors must all be of the same length it is important to
extract the same number of features from each image.

Now that it is clear how many subbands can be used to extract features there must be made
some choice on which subbands to use. This is the moment where the cost information
stored along with the tree nodes is used.

If Si denotes the list of all subbands of an image indexed by i and Si denotes an arbitrary
subband of the same image, Si can be written as

Si = {S1, S2, . . . , SsIi
} (4.2)

Since the cost information of the nodes and therefore of the subbands expresses the impor-
tance of a subband for the feature extraction process, the subbands are first sorted by their
cost information with the subbands with the highest cost at the beginning of the list. After
sorting Si by the cost information the result is a new list Oi which is ordered now.

Oi = {Sα1 , Sα2 , . . . , SαsIi
} (4.3)

with

cα1 ≥ cα2 ≥ . . . ≥ cαsIi
(4.4)

where cαj
is the cost information stored along with the αj-th subband. Then the first smax

subbands of the sorted list are marked as feature nodes. A feature node in this context
is nothing more than a subband which is to be used for the feature extraction process. A
subband Sαi

is marked as a feature node if i ≤ smax.

The subset of Oi consisting of feature nodes only now is taken for the creation of the
feature vector:

Fi = {Sα1 , Sα2 , . . . , Sαsmax
} (4.5)

The construction of the feature vector Fi is then

Fi = F(Fi) F : Fi 7→ Rsmax (4.6)
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with

Fi = {f1, f2, . . . , fsmax} (4.7)

where F is the feature extractor chosen and fi is the feature for a subband Si.

But the feature vectors just created can not yet be fed into any classifier, since we still
have a major problem. Due to the fact that the best-basis algorithm most times will produce
different decomposition structures and therefore different lists of subbands for different im-
ages, it can not be assured that later, during the classification process, the features of the
same subbands among the images are compared. It is even possible, that a feature for a
subband, which is present in the subband list for one image is not present in the subband list
for another image.
Therefore, when the feature vectors for all images have been created we have to perform the
following steps to post-process the feature vectors:

1. We create a dominance tree TD, which is a full wavelet packet tree with a decompo-
sition depth lmax (the maximum decomposition depth among all decomposition trees
for all images).

2. This dominance tree is now updated using the decomposition tree Ti for a training
image indexed by i.
This updating process is done by comparing the tree Ti and Td node by node. For each
node Td,j present in Td we try to find the according node Ti,j at the same position j in
the tree Ti.
Such a node in the dominance tree holds the following two values:

• A counter cd,j , which is incremented by one if the tree Ti has a node at the tree
position j too, which additionally is marked as being a feature node.
Thus, after the dominance tree has been updated with all trees for all training
images, this counter stores the number of times that specific node at tree position
j was present and selected as a feature node among all trees of the training
images.

This counter is used later as a measure of relevance for a specific subband and
to decide whether that specific subband should be included in the process of
feature vector creation. In other words, the higher the counter for a specific
node (subband) is, the higher is the chance that the according subband will be
chosen to construct a part of the feature vector from its coefficients.

• A flag fd,j , indicating whether at least one of the trees of the training images has
a node located at tree position j. This flag is set the first time a tree Ti has a node
located at position j. This flag is used during the pruning process following in
the next step.

3. When TD has been updated for all Ti, TD gets pruned. This is done by traversing
the tree from the leafs upwards to the root and deleting any child nodes not present
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in any of the Ti. This is the moment the flag fd,j stored along with the nodes of the
dominance tree is used.
After the pruning process the dominance tree contains only nodes which are present
at least once among all Ti.

4. Now a list D of all nodes in TD is created, which is then sorted by the counter cd,j

stored along with the nodes of the dominance tree. The first entries of this sorted list
are regarded as more relevant for feature extraction than those at the end of the list.
This, as mentioned above, is due to the fact that a higher counter value means, that
the according node was marked as a feature node more often than nodes at the end of
the sorted node list having lower counter values.

5. Finally all feature vectors are recreated based on this list of dominance tree nodes.
But instead of using the cost information stored along with the nodes in Ti to choose
from which subbands to create the feature vectors, the subbands and the order of the
subbands to extract the feature vectors from are now derived from the information
stored in the dominance tree nodes.
If we remember that smax subbands are to be used to create the feature vector, we use
the first smax entries of the ordered list of the dominance tree nodes D to construct
the new feature vector from. This means, that the new feature vector Fi for an image
indexed by i is created using a slightly modified version of equation (4.7)

Fi = {fβ1 , fβ2 , . . . , fβsmax
} (4.8)

where βk denotes the tree position for the k-th dominance tree node in D.

With this extension it can be assured that all feature vectors are created from the same
subbands with the same subband ordering. But there is still the problem that the dominance
tree may contain leaf nodes (subbands) which are simply not present in the decomposition
tree of an image indexed by i. This may happen if the decomposition tree of that image got
pruned at the parent node of such a node during the best-basis pruning. Although it is not
totally correct, for the sake of simplicity we insert a feature value of 0 for such a subband.
Now the feature vectors Fi are ready to be fed into a classifier of choice.

There are a variety of functions to choose for the feature extractor such as energy, loga-
rithm of energy, variance, entropy and l-norm - just to name a few.
If S is a subband of size w × w, the formulas for this feature functions, which extract only
one feature value fi from a subband Si, are as follows:

Energy

fi =
w2−1∑
j=0

Si(j)
2 (4.9)
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Logarithm of energy

fi =
w2−1∑
j=0

log∗(Si(j)
2) (4.10)

Variance

fi =
w2−1∑
j=0

(µSi(j))
2 with µ =

∑w2−1
z=0 Si(j)

w2
(4.11)

Entropy

fi = −
w2−1∑
j=0

Si(j)
2 log∗(Si(j)

2) (4.12)

l-Norm

fi =
w2−1∑
j=0

|Si(j)| (4.13)

These feature extractors are based on the coefficients of the subbands directly. But there
are also other possibilities for features such as co-occurrence matrix based features for ex-
ample.

In image processing a co-occurrence matrix C is a matrix of size n × n representing an
estimate of probability that two pixels P1 and P2 of an image have the gray levels g1 and g2

respectively, where n is the number of different gray levels in the image and C(i, j) = 0 for
all i, j ∈ [1, n] .
Based on a spatial relation R for each pixel P1 in the image the pixel P2 satisfying relation
R is determined. Then, taking the gray levels g1 and g2 at P1 and P2 respectively, the
co-occurrence matrix is incremented by one at column g1 and row g2.

An example for a spatial relation R would be that a pixel P2 is d pixel right of a pixel
P1. d can be any arbitrary number and R is not limited to a specific direction - any possible
direction can be used to construct a co-occurrence matrix. But it is important to mention that
R is not a symmetric relation. This means that, using the notation from above, P1 can be
regarded as starting point and R expresses the direction and distance to some end point P2.
Therefore P2 denotes the only possible resulting pixel position for some given P1 andR and
the resulting co-occurrence matrix represents only one specific relation R, that is direction
and distance.
It is clear that in general as a logical consequence the resulting co-occurrence matrix is not
symmetric either.
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(a) Source image (b) According co-occurrence matrix (d =
5, direction is 0 degrees)

Figure 4.1: An example image with its according co-occurrence matrix

In figure 4.1 a gray scale image with its according co-occurrence matrix is shown. The
relation R used to construct the co-occurrence matrix shown in figure 4.1(b) uses a distance
value d of 5 pixel and a direction of 0 degrees, which is horizontal directed to the right.

Since gray levels are discrete values, but wavelet coefficients contained within a subband
are not, the wavelet coefficients have to be quantized before an according co-occurrence
matrix can be constructed. The quantization is done by first shifting the wavelet coefficients
such that all wavelet coefficients become positive. Then each coefficient is converted to its
according discrete value cd using the following formula

cd = 1 +
⌊c(L− 1)

m

⌋
(4.14)

where c is the already shifted coefficient value to be converted, L is the desired number of
different levels and m is the highest value among all shifted coefficients.

Now that the wavelet coefficients are converted to discrete values ∈ [1, L], we can con-
struct a co-occurrence matrix with size L× L and update its contents based on the discrete
wavelet coefficients.

Possible features based on the co-occurrence matrix of a subband Si are for example con-
trast, energy, entropy, the inverse difference moment, cluster shade and cluster prominence.
For a co-occurrence matrix Ci of size w×w for a subband Si the respective formulas are as
follows:

Contrast

fi =
w−1∑
y=0

w−1∑
x=0

(x− y)2Ci(x, y) (4.15)
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Energy

fi =
w−1∑
y=0

w−1∑
x=0

Ci(x, y)
2 (4.16)

Entropy

fi =
w−1∑
y=0

w−1∑
x=0

Ci(x, y) log∗(Ci(x, y)) (4.17)

Inverse difference moment

fi =
w−1∑
y=0

w−1∑
x=0

Ci(x, y)

1 + (x− y)2
(4.18)

Cluster shade

fi =
w−1∑
y=0

w−1∑
x=0

(x−mx + y −my)
3Ci(x, y) (4.19)

with

Px(i) =
w−1∑
j=0

C(i, j) Py(j) =
w−1∑
i=0

C(i, j) (4.20)

and

mx =
w−1∑
i=0

iPx(i) my =
w−1∑
j=0

jPy(j) (4.21)

Cluster prominence

fi =
w−1∑
y=0

w−1∑
x=0

(x−mx + y −my)
4Ci(x, y) (4.22)

When all feature vectors Fi for all images in IT have been calculated, an arbitrary image Iα

can be classified by using a classifier such as k-NN, LDA, CART or support vector machines
(SVM). Throughout this thesis however the only classifiers used are k-NN and SVM. The
classification process based on the features just calculated and the according classifiers are
described in section 4.4.
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4.2.1.2 Best-basis centroids (BBCB)

Just like the best-basis method described in section 4.2.1.1 this method is based on the
best-basis algorithm too. But there is a key difference between the method from section
4.2.1.1 and the method from this section. While the best-basis method resulted in different
decomposition structures due to the underlying best-basis algorithm this method always
exhibits the same decomposition structure.

Just like in section 4.2.1.1 first of all the training images are decomposed using the best-
basis algorithm. But instead of using the resulting decomposition structures and subbands
for feature extraction, a centroid (see section 4.3.4) based on the decomposition structures
of all classes is calculated. This results in one centroid for all images. Then all images are
decomposed again, but this time into the structure of the centroid.

Although all images are transformed into the same subband structure, it is not guaranteed
that the subbands are extracted in the same order for different images. This is due to the
fact that, as explained in section 4.2.1.1, we use the first smax subbands from the ordered
list of subbands in equation (4.3) which is ordered by cost information. But since the cost
information for some specific subband sometimes will not be the same for all images, the
ordered lists of subbands among all images may differ.

Therefore this method uses the dominance tree extension too, to guarantee that all created
feature vectors contain the same subbands in the same order.

4.2.1.3 Pyramidal wavelet transform (WT)

This method is very similar to the method described in section 4.2.1.2. The are only small
differences such as the usage of the pyramidal wavelet transform instead of the wavelet
packets transform in conjunction with a centroid base. This again yields the same decom-
position tree for all images in IT and for all testing images Iα to be classified. Hence the
number of subbands is equal among all images and the calculation of smax can be written as

smax = 3l + 1 (4.23)

since a wavelet transform of an image to l levels always results in 3l + 1 subbands.
Another important difference is the lack of cost information in the pyramidal wavelet trans-
form, since no pruning takes place. Therefore it is necessary to slightly extend the wavelet
transform to store some cost information along with the decomposition tree nodes. This can
be done by simply evaluating the cost of a node just as in the best-basis method.

The remaining parts of the feature vector calculations and the classification process are
just the same as in the previous method. Although the pyramidal decomposition always pro-
duces the same list of subbands for each image, the same problem as described in section
4.2.1.2 arises and it is not assured that for a smax the same subbands are used for the feature
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vector creation process for all images. Therefore the dominance tree extension is used in
this method too.
Since the dominance tree extension is based on cost information stored along with the sub-
bands but the pyramidal decomposition does not rely on any cost information, throughout
this thesis the pyramidal decomposition additionaly stores the cost for each subband. To
calculate the cost information the L2-norm is used.

4.2.1.4 Local discriminant bases (LDB)

In contrast to the previous methods this method is already based on a feature extraction
scheme which is highly focused on discrimination between classes. Since in the past the
LDB algorithm has already been successfully applied to classification problems [37, 40, 41]
it is an excellent candidate to be used for this thesis.

While in all previous methods the training images are analyzed regardless of the classes
the images belong to, this method, as already described in section 2.6.1, constructs a wavelet
packet basis which is optimal for differentiating between images of different classes.
Once this basis has been calculated all training images are decomposed into this basis, which
yields the same number of subbands Smax for all images in IT . And since this method is
based already on discriminant power, the discriminant power for each subband is stored
along with the respective node of the decomposition tree. This information is then used
like in section 2.6.1.1 to construct the feature vector extracted from the most discriminant
subbands. Again, if Si denotes the list of all subbands of an image i and Si denotes an
arbitrary subband of the same image, Si can be written as

Si = {S1, S2, . . . , SsIi
} (4.24)

After sorting this list by the discriminant power, a new list Oi is created which is ordered
now.

Oi = {Sα1 , Sα2 , . . . , SαsIi
} (4.25)

with

pα1 ≥ pα2 ≥ . . . ≥ pαsIi
(4.26)

where pαj
is the discriminant power for the αj-th subband.

Now the feature vector is created like in the best-basis method, using the same set of possible
feature functions F and using the first k most discriminant subbands.

The remaining part of the classification process is the same as in the previous two methods.
Since the nature of the LDB already defines the list of subbands to extract the features from
and the ordering of the subbands, the dominance tree is not needed here.
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4.3 Structure-based classification

While the classification methods presented in the previous sections were based on features
based on wavelet coefficients and therefore needed some classifier to be trained, the next
sections introduce a classification method, which does not involve any feature extraction
in terms of image features. Instead the “centroid classification” tries to assign pit pattern
classes to unknown images by decomposing the image and compare the resulting decompo-
sition structure to the centroids of the respective classes.
But first of all a quick introduction into quadtrees and a description of the used quadtree
distance metrics are given.

4.3.1 A quick quadtree introduction

A quadtree is a tree with the important property, that every node in a quadtree having child
nodes has exactly four child nodes. As all trees in mathematics a quadtree can be defined
like a graph by a vertex set V an edge set E. For a tree with n ∈ N+ nodes this can be
written formally as

V = {v1, . . . , vn} with |V | = n (4.27)

E = {(vi, vj)|i 6= j, vi, vj ∈ V } (4.28)

where the elements vi ∈ V are called vertices and the elements ej ∈ E are called edges.
Vertices which do not have any child nodes are called leaf nodes.

4.3.2 Distance by unique nodes

This distance metric tries to measure a distance between two quadtrees by first assigning
each node of the quadtrees an unique node value, which is unique among all possible
quadtrees. Then for each quadtree a list of quadtree node values is generated which are
then compared against each other to identify nodes which appear in one of the two trees
only.

4.3.2.1 Unique node values

To be able to compare different quadtrees, we must be able to uniquely identify a node
according to its position in the quadtree. To accomplish this we assign a unique number to
each node according to its position in the tree.
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4.3.2.2 Renumbering the nodes

As already mentioned above renumbering is necessary since we want a unique number for
each node in the tree depending only on the path to the node. Normally the nodes in a tree
would be numbered arbitrarily. By renumbering the vertices of the quadtree we get a list of
vertices which is defined very similar to equation (4.27):

V = {vu1 , . . . , vun} with |V | = n (4.29)

where the numbers u1, . . . , un are the unique numbers of the respective nodes.

These numbers can be mapped through a function U

U : V −→ N (4.30)

where U must have the properties

U(vi) = U(vj) ⇔ i = j (4.31)

and

U(vi) 6= U(vj) ⇔ i 6= j (4.32)

4.3.2.3 Unique number generation

A node in a quadtree can also be described by the path in the tree leading to the specific
node. As we saw in section 4.3.1, if a node in a quadtree has child nodes there are always
exactly four children. This means that for each node in the tree having child nodes we have
the choice between four possible child nodes to traverse down the tree.

By defining the simple function s

s(vl) =


1, if vl is the lower left child node of the parent node
2, if vl is the lower right child node of the parent node
3, if vl is the upper left child node of the parent node
4, if vl is the upper right child node of the parent node

, (4.33)

we can express the path to a node vi as sequence Pvi
which is defined as

Pvi
= (p1, . . . , pM) (4.34)

where M is the length of the path and for 1 ≤ j ≤M the values pj are given by

pj = s(vm) (4.35)

where m is the index of the j-th node of the path into the vertex set V .
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4.3.2.4 The mapping function

To construct the mapping function U from section 4.3.2.2, which maps a vertex vi to a
unique number ui, we use the formula

ui =
M∑

j=1

5jpj where pj ∈ Pvi
(4.36)

where M is the number of nodes along the path to the node vi. j is nothing more than the
depth level in the tree of the j-th node in the path to node vi. Hence equation (4.36) is just
a p-adic number with p = 5 which is a unique representation of a number with base 5.
Base 5 is required since at each node there are four possible ways to traverse down the tree.
If we used base 4 we would only have the digits 0 to 3, which is not useful since this would
result in a tree with multiple nodes having a unique id of 0.

To ensure that every ui is unique for all vi ∈ V the requirement that a path sequence
Pvi

for a node vi must be unique among the quadtree must be met. And since a quadtree
contains no cycles and every node in a tree has only one parent node, this requirement is
met.

4.3.2.5 The metric

We are now able to express the similarity between to quadtrees by measuring the distance
between them. Distance, in this context, is a function d(T1, T2) which returns the real valued
distance between two quadtrees T1 and T2, which are elements of the so-called metric set T.
More formally this can be written as

d : T× T −→ R (4.37)

Now the following properties for metrics hold for all T1, T2 ∈ T:

d(T1, T2) > 0 ⇔ T1 6= T2 (4.38)

d(T1, T2) = 0 ⇔ T1 = T2 (4.39)

d(T1, T2) = d(T2, T1) (4.40)

Therefore this distance between two quadtrees can be used to express the similarity be-
tween two quadtrees.
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4.3.2.6 The distance function

We can now represent each node vi in the quadtree by its unique value ui which is a unique
number for the path to the node too as shown in section 4.3.2.4.

Thus we now create the unordered sets of unique values for the trees T1 and T2 which are
denoted by LT1 and LT2 defined as

LT1 = {u1
j |1 ≤ j ≤ n1} (4.41)

where n1 is the number of nodes in T1 and u1
j is the unique number for the j-th node of T1

subtracted from 5ml+1. The definition of LT2 is similar

LT2 = {u2
j |1 ≤ j ≤ n2} (4.42)

where n2 is the number of nodes in T2 and u2
j is the unique number for the j-th node of T2

subtracted from 5ml+1. ml is the maximum quadtree depth level among the two quadtrees
to compare.

Having this set we now can compare them for similarity and calculate a distance.

To compare the quadtrees T1 and T2 we compare the lists LT1 and LT2 for equal nodes. To
do this for each element u1

j we look into LT2 for a u2
k such that

u1
j = u2

k with 1 ≤ j ≤ n1 and 1 ≤ k ≤ n2 (4.43)

Apart from that we introduce the value t1 and t2 which are just the sum over all unique
values of the nodes of T1 and T2 respectively. Additionally the value tmax is introduced as
the maximum of t1 and t2. This can be written as:

t1 =

n1∑
j=1

u1
j (4.44)

t2 =

n2∑
j=1

u2
j (4.45)

tmax = max(t1, t2) (4.46)

If we do not find a u1
j and a u2

k satisfying equation (4.43) we calculate a similarity value sv
using the following formula

sv1 =
S∑

z=1

u1
z (4.47)
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where S is the number of different nodes in the two trees and u1
z is the z-th node value which

is only contained in the first quadtree subtracted from 5ml+1. The same procedure is done
for all nodes in the second tree. We sum up all unique node values of the second tree which
are not contained within the first quadtree.

sv2 =
S∑

z=1

u2
z (4.48)

The final similarity value is then

sv = sv1 + sv2 (4.49)

Finally this similarity value is normalized to always be between 0 and 1. This is done by
dividing sv by the maximum difference which can occur in terms of the unique node values.
This results in the final formula for sv:

sv =
sv1 + sv2

t1 + t2
(4.50)

It is obvious that sv is 0 for equal trees since then the expression sv1 + sv2 equals zero.
And it is also obvious that sv can never exceed 1, since if all nodes are different sv1 + sv2

becomes t1 + t2 which results in a similarity value of 1.
This function already satisfies the requirement of the distance function from equation (4.40)
for equal trees to be 0, thus the final distance can be formulated as

d(T1, T2) = sv (4.51)

This distance in now in the range between 0 (for equal trees) and 1 for completely different
trees. Apart from that the distance has the property that differences in the first levels of the
quadtree contribute more to the distance than differences in the deeper levels. This is due
to the fact that the unique numbers contained within LT1 and LT2 get smaller down the tree.
The biggest value is therefore assigned to the root node of the trees.

Figures 4.2(b)-(e) show some example quadtrees for which the distances to the tree in
figure 4.2(a) have been measured. The resulting distances listed in table 4.1 clearly show,
that, as intended, differences in the upper levels of a quadtree contribute more to the distance
than differences in the lower levels.

4.3.3 Distance by decomposition strings

This approach measures the distance between two quadtrees by creating a decomposition
string for each tree and comparing these strings for equal string sequences.

48



4.3 Structure-based classification

(a) tree A

(b) tree B1 (c) tree B2 (d) tree B3 (e) tree B4

Figure 4.2: Different example quadtrees for distance measurement

tree distance
B1 0,1408
B2 0,0711
B3 0,0598
B4 0,5886

Table 4.1: Distances to tree A according to figure 4.2 using “distance by unique nodes”

4.3.3.1 Creating the decomposition string

A decomposition string - in this context - is a string representation of a quadtree which is
obtained by an preorder traversal of the quadtree. Let DS be the decomposition string of a
quadtree T , which is initialized as an empty string.
Then, during the traversal, for each node a ’1’, ’2’, ’3’ or ’4’ is appended to the string, if
the first, the second, the third or the fourth child node is further subdivided, which means
it contains more child nodes. Additionally an ’U’ is appended to the string if there are no
more subdivisions in the child nodes and the traversal goes back one level towards the root.

Figure 4.3 shows an example quadtree which results in the decomposition string

112UU32UUU2U312UU33UU43UUU434UU44UUU

where the numbering from equation (4.33) is used. Using this procedure the decomposition
strings DS1 and DS2 for two given quadtrees T1 and T2 are created.
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Figure 4.3: An example quadtree

4.3.3.2 The distance function

Using DS1 and DS2 from above, we can now determine the similarity of the quadtrees T1

and T2 by comparing the according decomposition strings.
This is done by comparing the strings character by character. As long as the strings are
identical we know that the underlying quadtree structure is identical too. A difference at
some position in the strings means that one of the strings has further child nodes where the
other quadtree has no child nodes.
When such a situation arises the decomposition string which contains more child nodes is
scanned further until the string traversal reaches again the quadtree position of the other
quadtree node which has no more child nodes. During this process for each character of the
first string the difference value dv is updated according to the depth level of the different
child nodes as follows:

dv = dv +
1

d
(4.52)

where d is the depth of the child nodes not contained within the other quadtree. This process
is repeated until DS1 and DS2 are scanned until their ends. dv then represents the number
of different nodes with the according depth levels taken into account. Therefore a difference
in upper levels of the quadtrees contributes more to the difference value than a difference
deeper in the quadtree.

Finally, to clamp the distance value between 0 and 1 the resulting difference value is
divided by the sum of the lengths of DS1 and DS2. The final distance can then be written
as

d(T1, T2) =

∑n
i=1

1
di

|DS1|+ |DS2|
(4.53)
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tree distance
B1 0,1
B2 0,0833
B3 0,0583
B4 0,8552

Table 4.2: Distances to tree A according to figure 4.2 using “distance by decomposition
strings”

where n is the number of different nodes among the two quadtrees T1 and T2 and di is the
depth level of the i-th different node.
It is obvious that the distance for equal trees is 0 since in that case the sum is zero. It can
also easily be seen that the distance for two completely different quadtrees never exceeds 1
since for two completely different quadtrees n becomes |DS1| + |DS2| which can also be
written as

d(T1, T2) =

∑n
i=1

1
di

n
(4.54)

Since 1
di

is always less than 1 it is easy to see that the upper part of the fraction is always
less than n. Therefore the distance is always less than 1.

In table 4.2 the resulting distances according to figure 4.2 using “distance by decomposi-
tion strings” are shown. Again, just like the previous method, the results in the table clearly
show, that, as intended, differences in the upper levels of a quadtree contribute more to the
distance than differences in the lower levels.

Compared to the distances in table 4.1, the results in table 4.2 are quite similar as long
as the number of differences between two trees is low. But the more differences between
two trees are present, the more different are the distance values between the two presented
methods. The method based on decomposition strings shows significantly higher distance
values if there are many differences between the trees.

4.3.3.3 Best basis method using structural features (BBS)

This method is very similar to the best-basis method presented section 4.2.1.1 in that it is
also based on the best-basis algorithm. But in contrast to the best-basis method, this method
uses feature extractors which are not based on the coefficients of the subbands resulting from
a wavelet decomposition but on the decomposition structures resulting from the best-basis
algorithm. For this we developed three distinct feature extractors.
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Unique node values (FEUNV) The first feature extractor constructs a feature vector
for a given decomposition from the unique node values stored along with each subband (see
4.3.2).

This feature extractor limits the number of subbands to use too, just like explained at the
beginning of section 4.2.1.1. Thus a feature vector created by this feature extractor can be
written as

Fi = {U1, U2, . . . , Usmax} (4.55)

where Uj denotes the unique node value of the j-th leaf node of Ti chosen to be in the feature
vector (based on a cost information) and smax is the number of subbands to be used for the
feature vector.

For this feature extraction we again use the dominance tree extension to guarantee that
all created feature vectors contain the same subbands in the same order. However, if a tree
T1 contains a unique node value v which is not present among the other trees the according
feature vector entry in the feature vectors for all other trees is set to 0.

(a)

(b)

Figure 4.4: Illustration of the feature vector equalization for FEUNV

This process is illustrated in figure 4.4. In figure 4.4(a) we see feature vectors for some
images 1 to n. As we notice, each of these feature vectors contains a feature vector entry
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(unique node value in this context), which is not present among the other feature vectors (de-
noted by v, w, x and y in the colored boxes). Since the feature vectors are not compareable in
this form, a zero is inserted at each position, where a feature vector is missing a unique node
value which is present in another feature vector. The resulting feature vectors are shown
in figure 4.4(b). Now, the unique node values are located at the same positions among all
feature vectors and the feature vectors can be compared by some distance metric.

When using this feature extractor along with the k-NN classifier, the distance metric used
to calculate the distances between the feature vectors is the euclidean distance metric already
presented in equation (3.5).

For example the distance between the feature vectors for images 1 and 2 presented in fig-
ure 4.4(b) along with euclidean distance metric would then result in the following distance

D(f1, f2) = v2 + w2 (4.56)

where f1 and f2 are the first two feature vectors from figure 4.4(b).

Tree structure (FETS) This feature extractor is very similar to the feature extractor
presented in the previous paragraph since it is based on the unique node values too. But
instead of limiting the number of subbands to use for feature vector generation, this feature
extractor always uses the complete decomposition tree for the process of feature vector
creation. A feature vector for a decomposition tree Ti can be written as

Fi = {U1, U2, . . . , Un} (4.57)

where Uj denotes the unique node value of the j-th leaf node of Ti and n is the total number
of leaf nodes in Ti.

Since this feature extractor uses all subbands of a decomposition tree to construct the
feature vector from the dominance tree extension is not needed. But due to the nature of the
best-basis algorithm it is also possible, like it was the case for the FEUNV feature extractor,
that some feature vector contains a unique node value, which is not present among the other
feature vectors. Thus, again the process illustrated in figure 4.4 is applied to the feature
vectors before they are passed into any classifier.

Again, if this feature extractor is used along with the k-NN classifier, the distance metric
is the euclidean distance metric from equation (3.5).

Tree distances (KNNTD) The last structural feature extractor we developed, uses the
quadtree structures resulting from the best-basis algorithm directly to compute the k nearest
neighbours in the k-NN algorithm. Thus we search for the k nearest neighbours with respect
to the decomposition trees which can be regarded here as feature vectors, along with a
quadtree distance metric. As quadtree distance metric we use the “distance based on unique
node values” here (see section 4.3.2)
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4.3.4 Centroid classification (CC)

Similar to the best-basis method presented in section 4.2.1.1 this method is based on the
calculation of the best wavelet packet basis too. But in contrast to the best-basis method
this method is not based on features extracted from the subbands resulting from the wavelet
packet decomposition but on the quadtrees resulting from the wavelet packet decomposi-
tion.

The idea behind this method is the question whether images decomposed using the
wavelet packets algorithm in conjunction with the best-basis algorithm result in decom-
position trees which can be further used for classification. A perfect classification would
then be possible if trees of one image class are more similar than trees resulting from im-
ages of different classes. In other words, the similarity between trees of the same class must
be much higher than the similarity of trees of different classes to be able to perform some
useful classification.
The similarity of two quadtrees can be expressed by the distance between them as explained
in section 4.3.1.

It is worthwhile to mention that having a method to express the distances between two
quadtrees we could easily use that distance measure for a k-NN classification. This is exactly
what the feature extractor KNNTD (see section 4.3.3.3 above) does. Since we know the
classes for all training images, for an unknown test image we create the respective best-
basis decomposition tree and calculate the quadtree distances to all trees of the training
images. The class, which dominates over the k nearest training images is then assigned to
the unknown training image.

Now, having a method to express the distance between two quadtrees and a set of images
IT used for training, first of all the distances between all possible pairs of quadtrees of
images out of this set are calculated as follows

di,j = d(Ti, Tj) i, j ∈ {1, . . . , n} (4.58)

where Ti and Tj are the decomposition trees of the i-th and the j-th image respectively, n is
the number of images in IT and d is the quadtree distance metric used. ITc is the subset of
IT which contains all images of class c.

IT = IT1 ∪ IT2 ∪ · · · ∪ ITC
(4.59)

where C is the total number of classes of images.

The trees Ti and Tj , as stated above, are the result of the best-basis algorithm and are the
optimal basis for the respective images in respect to a certain cost function such as the ones
listed in section 4.2.1.1.
The distances di,j obtained above are now used to construct a distance matrix D of size
n× n with

dTi,Ti
= 0 ∀i = 1, . . . , n (4.60)

54



4.3 Structure-based classification

since dTi,Ti
is just the distance of a quadtree of an image to itself, which must by definition

of a metric always be 0. Therefore D is

D =


0 dT1,T2 . . . dT1,Tn

dT2,T1 0 . . . dT2,Tn

...
... . . . ...

dTn,T1 dTn,T2 . . . 0


This matrix then contains the quadtree distances (similarities) between all possible pairs

of images out of the training image set.
For each class c the matrix contains a submatrix Dc which contains the distances between
all images belonging to class c. Therefore D can also be written as

D =



0 dT11 ,T12
. . . dT11 ,T1n

. . . dT11 ,TC1
. . . dT11 ,TCn

dT12 ,T11
0 . . . dT12 ,T1n

. . . dT12 ,TC1
. . . dT12 ,TCn

...
... . . . ...

...
...

...
...

dT1n ,T11
dT1n ,T12

. . . 0 . . . dT1n ,TC1
. . . dT1n ,TCn

...
...

...
... . . . ...

...
...

dTC1
,T11

dTC1
,T12

. . . dTC1
,T1n

. . . 0 . . . dTC1
,TCn

...
...

...
...

...
... . . . ...

dTCn ,T11
dTCn ,T12

. . . dTCn ,T1n
. . . dTCn ,TC1

. . . 0


where dTij

,Tkl
is the distance between the j-th image (quadtree) of class i and the l-th image

(quadtree) of class k.

Figure 4.5(a) shows an example distance matrix for the two-class case. This example
shows a perfect distance matrix with very small intra-class distances (black boxes) and very
high inter-class distances (white boxes). In reality however, a distance matrix is more likely
to look like the one illustrated in figure 4.5(b), since the trees for different images from a
specific class hardly will be totally identical in real-world applications.
As can been seen in figure 4.5 and following from equation (4.40) the distance matrices are
all symmetric.

Having calculated the matrix D the next task is to find the centroid of each class. A
centroid of a class c in this context is the training image out of ITc which has the smallest
average distance to all other images of class c. In other words, it is now necessary to find the
image of class c to which all other images of class c have the smallest distance in respect to
the chosen quadtree distance metric. After the centroids of all classes have been found the
classification process can now take place.

To classify an arbitrary image first of all the image is decomposed using the wavelet
packets transform to get the respective decomposition tree. It is important to note that for
classification the same cost function has to be used for pruning the decomposition tree as
was used during the training phase for all training images. Then the distances of the result-
ing decomposition tree to the decomposition trees of the centroids of all possible classes are
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(a) Perfect (b) Noisy

Figure 4.5: Distance matrices for the two-class case

calculated. The class which is assigned to the image to classify is the one which has the cen-
troid with the smallest distance to the input image according to the respective decomposition
trees.

4.3.5 Centroid classification based on BB and LDB (CCLDB)

Like the previous method, this method does not use any wavelet based features too, al-
though, in contrast to the previous method, it is based on the best-basis algorithm and the
LDB algorithm. This approach uses the BB and the LDB just for the creation of wavelet
decomposition trees.

First of all the LDB is calculated for the training images which results in a LDB tree TLDB.
Then, using the best-basis algorithm, the decomposition trees Ti for all training images
based on some cost function are calculated. Based on these decomposition information, for
each training image Ii a distance vector Di is calculated:

Di = dv(Ti, TLDB) (4.61)

where dv is a function, which returns a vector containing all subband ids which are not equal
among the two trees passed as arguments. In other words the distance vector contains all
subband ids which are present either in Ti or TLDB but not in both trees. Thus the distance
vectors represent the differences between the LDB tree and the trees for the images in terms
of the tree structure.

Then, based on the distance vectors of the images, a distance matrix D can be calculated.
The matrix D is similar to the one described in section 4.3.4, but the matrix now contains
the euclidean distances between the difference vectors instead of the distances between the
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decomposition trees. Therefore D is

D =



0 dD11 ,D12
. . . dD11 ,D1n

. . . dD11 ,DC1
. . . dD11 ,DCn

dD12 ,D11
0 . . . dD12 ,D1n

. . . dD12 ,DC1
. . . dD12 ,DCn

...
... . . . ...

...
...

...
...

dD1n ,D11
dD1n ,D12

. . . 0 . . . dD1n ,DC1
. . . dD1n ,DCn

...
...

...
... . . . ...

...
...

dDC1
,D11

dDC1
,D12

. . . dDC1
,D1n

. . . 0 . . . dDC1
,DCn

...
...

...
...

...
... . . . ...

dDCn ,D11
dDCn ,D12

. . . dDCn ,D1n
. . . dDCn ,DC1

. . . 0


where dDij

,Dkl
now is the euclidean distance between the j-th image (distance vector) of

class i and the l-th image (distance vector) of class k.

Then similar to section 4.3.4, the centroids for all classes can be calculated. But in this
approach the centroids are not decomposition trees anymore, but distance vectors. Thus, a
centroid in this context is the distance vector of the image of class c, which has the smallest
average euclidean distance to all other distance vectors of class c.

Once the centroids have been calculated, the classification is done by first decomposing
an arbitrary test image IT into the according decomposition tree TT using the best-basis al-
gorithm. Then the distance vector DT between the decomposition tree TT and the LDB tree
TLDB is calculated. Having calculated the distance vector, the class of the closest centroid
can be assigned to the image TT , where the closest centroid is the one having the smallest
euclidean distance to DT .

4.4 Classification

In this section we present the two concrete classifiers used in this thesis - namely the k-
nearest neighbour classifier and the support vector machines.

4.4.1 K-nearest neighbours (k-NN)

The k-NN classifier (see section 3.3.1) was chosen due to its simplicity when it comes to
implementation. And yet this classifier already delivers promising results.
To apply the k-NN classifier to the data first of all the feature vector Fα for the image Iα to
classify is calculated. Then the k-NN algorithm searches for the k training images for which
the respective feature vectors have the smallest distances to Fα according to some distance
function such as the euclidean distance. The class label which is represented most among
these k images is then assigned to the image Iα.
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Throughout this thesis an extended version of the euclidean distance metric from equation
(3.5) is used:

d(Fa,Wa,Fb,Wb) =
smax∑
i=1

(Fa(i)Wa(i)− Fb(i)Wa(i))
2 (4.62)

where Wa and Wb are weighting vectors for the according feature vectors. The weights in
these vectors are derived from the cost information obtained by a wavelet decomposition.

The motivation behind using a weighted version of the euclidean distance is that feature
vector entries associated with large weights (features from subbands with high energy for
example) should contribute more to the distance the more these entries differ among differ-
ent feature vectors.

However, regarding our test results presented in chapter 5 it does not make much of a
difference whether we use the common version of the euclidean distance from equation
(3.5) or the weighted version from equation (4.62).

4.4.2 Support vector machines (SVM)

The other classifier chosen for this thesis is the SVM classifier (see section3.3.3). For our
implementation we use the libSVM [8].

For the training process of this classifier the training data for all images in I is calculated
and provided to the classifier.

The classification is similar to the k-NN classifier - for a given image Iα, which should be
classified, the according feature vector Fα is calculated and presented to the SVM classifier.
The SVM classifier then returns a class prediction which is used to assign the given test
image to a specific pit pattern class.

To improve classification accuracy the feature vectors extracted from the subbands are
scaled down to the range between−1 and +1 before they are used to train the SVM classifier
as suggested in [20]. As a consequence the feature vectors used to test the classifier must be
scaled down by the same factor before they can be used for classification.
Additionally to scaling down the feature space we use a naive grid search for the SVM
parameters γ and ν [20]. γ is a parameter used in the gaussian radial basis function kernel
type. The parameter ν is used to control the number of support vectors and errors [9].

Since optimal values for γ and ν are not known beforehand we employ a naive grid search
to find the best choices for these parameters for a single test run. The goal is to identify such
γ and ν that the classifier is able to classify unknown data as accurate as possible. The grid
search is done by iterating two values a and b which are then used as follows to calculate γ
and ν:

γ = 2a with al ≤ a ≤ au and a, al, au ∈ Z (4.63)
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ν = 2b with bl ≤ b ≤ bu and b, bl, bu ∈ Z (4.64)

where al and au are the lower and the upper bound for parameter a and bl and bu are the
lower and the upper bound for parameter b. In our implementation the parameter ν is limited
by 1 [9], thus we set bu = 0.

From equations (4.63) and (4.64) it is clear that in our implementation the grid search is
not optimal at all since it suffers from a high granularity because a ∈ Z and b ∈ Z. It is
therefore quite possible that the best choices for γ and ν are not in Z but in R. For the sake
of speed and simplicity however we use the naive and faster approach and simply iterate
over values out of Z regardless of the possibility to miss the best possible choices for γ and
ν.
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5 Results
If I have a thousand ideas and only one turns
out to be good, I am satisfied.

- Alfred Nobel

In the previous chapter the methods implemented for this thesis have been presented. In this
chapter we will now present the used test setup and the obtained classification results.

5.1 Test setup

5.1.1 Test images

In our experiments with the different methods from the previous chapter we used two dif-
ferent sets of images.

First of all, as already mentioned in the first chapter, we used 364 endoscopic color images
of size 256× 256 pixel, which were acquired in 2005 at the Department of Gastroenterology
and Hepatology (Medical University of Vienna) with a zoom-colonoscope (Olympus Evis
Exera CF-Q160ZI/L) which produced images 150-fold magnified. These images haven been
histopathologically classified, which resulted in the classification results shown in table 5.1,
which are used as ground truth for our experiments.

Pit Pattern I II III-S III-L IV V
2 classes 156 208
6 classes 99 57 12 59 112 25

Table 5.1: Histopathological classification of the images acquired

As can been seen in table 5.1 the number of images for the different pit pattern types
available for our tests significantly differs from class to class. Especially in the 6-class case
we had only a very few images for types III-S and V to test our algorithms with.

Figure 5.1 shows for each pit pattern type five different examples images from our test set
of endoscopic images.
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(a) Pit Pattern I

(b) Pit Pattern II

(c) Pit Pattern III-S

(d) Pit Pattern III-L

(e) Pit Pattern IV

(f) Pit Pattern V

Figure 5.1: Example images taken from our test set of endoscopic images.

The second set of images, used throughout our experiments, was taken from the Outex
image database [1]. This image database provides gray scale images at different resolutions
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exhibiting many classes of patterns for which always the same number of images is avail-
able. For our experiments we chose images of size 128 × 128 pixel. Table 5.2 shows the
used classes and the number of images used from these classes for the 2-class and 6-class
case.

Class Canvas002 Carpet002 Canvas011 Canvas032 Carpet009 Tile006
2 classes 180 180
6 classes 180 180 180 180 180 180

Table 5.2: Details about the Outex images used (6 classes)

Figure 5.2 shows five different examples images from each class of the used Outex im-
ages.

One advantage of the Outex images is the fact, that we have the same number of images
among all image classes, which is not the case for the endoscopic images as already pointed
out above.

5.1.2 Test scenarios

The methods introduced in chapter 4 are based on parameters for which the best choices
were not known beforehand. Therefore during our tests we had to test several different
values for each of the parameters, which are

• the wavelet family to be used for the decomposition process (Haar, Daubechies 4,
Daubechies 8 or the biorthogonal Daubechies 7/9).

• the maximum depth of wavelet decomposition (3-5).

• a specific quadrant for further wavelet decomposition. This parameter limits the de-
composition to one specific quadrant (child node in terms of the decomposition tree),
but - if set to a specific quadrant - this parameter is only used for the first decomposi-
tion step. All further decomposition steps are done for all four possible sub-quadrants
of the chosen quadrant.

• a specific color channel combination to be used for the wavelet decomposition process
(Intensity, Red, Green, Blue or a combination of Red, Green and Blue). The intensity
i is calculated by the simple equation

i =
(

min
(
r,min(g, b)

)
+ max(r,max(g, b)

))
/2 (5.1)

where r, g and b are the color components representing red, green and blue, respec-
tively. For combinations of these color channels we simply set the components to be
discarded to zero in this formula.

63



5 Results

(a) Canvas002

(b) Carpet002

(c) Canvas011

(d) Canvas032

(e) Carpet009

(f) Tile006

Figure 5.2: Example images taken from the Outex image database.

If we want to use a combination of the green and blue color component for example
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for the decomposition process, the intensity would be calculated by the equation

i =
(

min
(
0,min(g, b)

)
+ max(0,max(g, b)

))
/2 = max(g, b)/2 (5.2)

This parameter affected tests only which are based on the endoscopic images, since
the Outex images do not contain any color information.

• a cost function for best basis based methods (see section 2.6.1.1).

• a quadtree distance metric (see section 4.3).

• the number of subbands to use for feature extraction (1-50).

• the number of neighbours for the k-NN classifier (1-100) (see section 3.3.1).

• the type of feature to extract from a given subband (see section 4.2.1).

• the type of discriminant measure for the LDB algorithm (see section 2.6.1.3).

• the SVM gridsearch parameters ν and γ (see section 3.3.3).

Looking at this list of parameters it is obvious that testing our algorithms with the different
choices resulted in a huge number of different tests.

5.2 Results

In this section we will present the best results from our experiments for each of our im-
plemented methods. Since, as mentioned above, the number of test performed during our
experiments, we select the feature extraction and classification configuration based on the
maximal value of correctly classified images, applied to the 2 or 6 classes case.

Tables 5.3, 5.4 and 5.5 show the final results of our experiments. The values throughout
these tables are the number of true positives divided by the overall number of images in the
according class. It is also important to mention that the results are rounded throughout all
tables presented in this chapter.

In the following sections we well investigate the results in more detail.

5.2.1 Best-basis method (BB)

The best results with this method have been obtained using the gray scale versions of the
images (i.e. the color information contained within the original pit pattern images has been
discarded).

As we can see in table 5.3, in the two classes case the best result achieved was 70% using
the SVM classifier. The best result achieved with the k-NN classifier was clearly lower with
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Pit Pattern Type I II III-S III-L IV V Total
BEST-BASIS METHOD (BB)

k-NN (2 classes) 65 57 60
k-NN (6 classes) 50 0 0 42 52 0 36
SVM (2 classes) 76 66 70
SVM (6 classes) 56 37 8 27 40 16 39
BEST-BASIS METHOD (STRUCTURAL FEATURES) (BBS)
k-NN (2 classes) 19 87 58
k-NN (6 classes) 28 0 0 0 89 0 35
SVM (2 classes) 78 77 78
SVM (6 classes) 88 9 0 14 91 8 56

BEST-BASIS CENTROIDS (BBCB)
k-NN (2 classes) 66 71 69
k-NN (6 classes) 68 26 0 44 49 0 45
SVM (2 classes) 74 71 72
SVM (6 classes) 52 37 0 44 53 12 56

PYRAMIDAL WAVELET TRANSFORM (WT)
k-NN (2 classes) 54 74 62
k-NN (6 classes) 62 37 0 34 54 0 45
SVM (2 classes) 58 78 70
SVM (6 classes) 47 44 8 34 47 12 41

LOCAL DISCRIMINANT BASES (LDB)
k-NN (2 classes) 49 88 71
k-NN (6 classes) 61 37 0 58 52 0 45
SVM (2 classes) 67 83 76
SVM (6 classes) 47 47 8 47 59 20 48

CENTROID CLASSIFICATION (CC)
2 classes 95 59 74
6 classes 95 0 0 7 52 3 43

CC BASED ON BB AND LDB (CCLDB)
2 classes 74 67 70
6 classes 47 14 33 42 25 48 34

Table 5.3: Percentage of correctly classified images (Pit pattern images)

a percentage of correctly classified images of only 60%. Both, the SVM classifier and the
k-NN classifier show slightly different classification results for both classes. The images
belonging to the non-neoplastic class are clearly better classified by both classifiers.

Regarding the six classes case the best result achieved was 39%, again using the SVM
classifier. The best result for the k-NN classifier again is a bit lower with a classification
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Class 1 2 Total
BEST-BASIS METHOD (STRUCTURAL FEATURES) (BBS)
k-NN 95 99 97
SVM 72 92 89

BEST-BASIS CENTROIDS (BBCB)
k-NN 100 100 100
SVM 100 100 100

PYRAMIDAL WAVELET TRANSFORM (WT)
k-NN 100 100 100
SVM 100 100 100

LOCAL DISCRIMIANNT BASES (LDB)
k-NN 100 100 100
SVM 100 100 100

CENTROID CLASSIFICATION (CC)
100 96 98

CC BASED ON BB AND LDB (CCLDB)
86 84 85

Table 5.4: Percentage of correctly classified images (Outex images, 2 classes)

Class 1 2 3 4 5 6 Total
BEST-BASIS METHOD (STRUCTURAL FEATURES) (BBS)
k-NN 23 72 57 54 52 58 53
SVM 51 51 41 50 58 18 45

BEST-BASIS CENTROIDS (BBCB)
k-NN 99 100 97 94 100 99 98
SVM 100 100 100 99 100 100 100

PYRAMIDAL WAVELET TRANSFORM (WT)
k-NN 100 96 100 99 97 93 98
SVM 100 100 99 100 99 99 100

LOCAL DISCRIMINANT BASES (LDB)
k-NN 100 100 100 100 100 100 100
SVM 100 100 100 100 99 99 100

CENTROID CLASSIFICATION (CC)
96 93 77 64 52 64 74

CC BASED ON BB AND LDB (CCLDB)
65 47 38 54 58 32 49

Table 5.5: Percentage of correctly classified images (Outex images, 6 classes)
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Feature Feature vector length s k-value for k-NN
BEST-BASIS METHOD (BB)

k-NN (2 classes) Subband energy 1 14
k-NN (6 classes) Subband energy 1 50
SVM (2 classes) Subband energy 8 N/A
SVM (6 classes) Subband energy 41 N/A

BEST-BASIS METHOD (STRUCTURAL FEATURES) (BBS)
k-NN (2 classes) KNNTD N/A 50
k-NN (6 classes) KNNTD N/A 43
SVM (2 classes) FEUNV 14 N/A
SVM (6 classes) FEUNV 30 N/A

BEST-BASIS CENTOIDS (BBCB)
k-NN (2 classes) Subband energy 32 3
k-NN (6 classes) Subband energy 23 33
SVM (2 classes) Subband variance 45 N/A
SVM (6 classes) Subband variance 29 N/A

PYRAMIDAL WAVELET TRANSFORM (WT)
k-NN (2 classes) Subband energy 9 22
k-NN (6 classes) Subband energy 9 25
SVM (2 classes) Subband variance 50 N/A
SVM (6 classes) Subband energy 15 N/A

LOCAL DISCRIMINANT BASES (LDB)
k-NN (2 classes) Subband variance 7 13
k-NN (6 classes) Subband energy 21 14
SVM (2 classes) Subband energy 19 N/A
SVM (6 classes) Subband variance 69 N/A

Table 5.6: Test configuration details for the best results obtained (Pit pattern images)

result of 36%. However, in the six classes case the k-NN classifier shows only poor classifi-
cation results for the pit pattern types II, III-S and V. For the latter two types this is possibly
due to the limited number of images available for these classes. The SVM classifier however
shows a clearly better classification performance for the pit pattern type II.

The tables 5.8 and 5.9 show the result distribution matrices for the two classes case and
the six classes case, respectively, using pit pattern images. An entry ai,j in such a result
distribution matrix located at row i and column j means, that ai,j percent of the images
belonging to class i have been classified as class-j images. Therefore, a result distribution
matrix for a perfect classification result would be a matrix having only values of 100 on the
main diagonal - thus a diagonal matrix.

Looking at the tables 5.8 and 5.9, we can clearly see that these matrices are far from be-

68



5.2 Results

Feature Feature vector length s k-value for k-NN
BEST-BASIS METHOD (STRUCTURAL FEATURES) (BBS)

k-NN (2 classes) KNNTD N/A 2
k-NN (6 classes) KNNTD N/A 2
SVM (2 classes) FETS N/A N/A
SVM (6 classes) FETS N/A N/A

BEST-BASIS CENTOIDS (BBCB)
k-NN (2 classes) Subband energy 1 2
k-NN (6 classes) Subband energy 33 1
SVM (2 classes) Subband variance 4 N/A
SVM (6 classes) Subband variance 31 N/A

PYRAMIDAL WAVELET TRANSFORM (WT)
k-NN (2 classes) Subband energy 1 1
k-NN (6 classes) Subband energy 10 5
SVM (2 classes) Subband variance 3 N/A
SVM (6 classes) Subband energy 8 N/A

LOCAL DISCRIMINANT BASES (LDB)
k-NN (2 classes) Subband variance 3 1
k-NN (6 classes) Subband energy 43 3
SVM (2 classes) Subband energy 3 N/A
SVM (6 classes) Subband variance 41 N/A

Table 5.7: Test configuration details for the best results obtained (Outex images)

ing diagonal matrices, although the SVM case in table 5.8 already shows high classification
results on the main diagonal. In the six classes case however we can see, that most images
are assigned to the pit pattern types I, III-L and IV. For the k-NN classifier no images at all
are assigned to pit types II, III-S and V. Compared to the k-NN classifier the SVM classi-
fier classifies many more images of II and V correctly, but nevertheless, the classification
performance is very low here too.

Pit Pattern Type Non-Neoplastic Neoplastic
k-NN

Non-Neoplastic 64 35
Neoplastic 42 57

SVM
Non-Neoplastic 76 24
Neoplastic 34 66

Table 5.8: Result distribution matrices for BB for 2 classes (Pit pattern images)

From table 5.6 we can see that the best test results were obtained using the feature ex-
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Pit Pattern Type I II III-L III-S IV V
k-NN

I 49 0 5 0 45 0
II 36 0 14 0 49 0
III-L 30 0 42 0 27 0
III-S 25 0 50 0 25 0
IV 33 0 14 0 51 0
V 40 0 8 0 52 0

SVM
I 56 11 14 5 12 2
II 33 37 2 4 19 5
III-L 27 5 27 8 27 5
III-S 25 0 50 8 8 8
IV 27 13 13 2 40 4
V 36 12 12 0 24 16

Table 5.9: Result distribution matrices for BB for 6 classes (Pit pattern images)

tractor “Subband energy”. The feature vector dimensions are quite different among the
classifiers used, with s = 1, 1 for the k-NN classifier and s = 8, 41 for the SVM classifier
(note that these values for s correspond to the number of subbands used to compute features
for the two classes case and the six classes case, respectively).

Additionally the k-value for the k-NN classifier differs very much between the two classes
case and the six classes case, with k = 14 and k = 50, respectively.

Figure 5.3 shows the results obtained for different choices for s and k in the six classes
case using pit pattern images and the k-NN classifier.

While figure 5.3(a) shows the classification results for all classes, figures 5.3(b)-(g) show
the classification results for the separate classes. In these figures the color shows the classi-
fication result for a specific combination of s and k, where a black pixel denotes a classifi-
cation rate of 0% and yellow denotes a classifcation result of 100%.

As we can see from 5.3(a) the best overall classification results are obtained by using a
small value for s, while the choice of k does not play such an important role. As already
pointed out above, we can clearly see that for pit pattern types II, III-S and V the classifica-
tion accuracy is very low no matter what choice we make for s and k. For all other types we
clearly obtain better classification results.
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(a) All classes

(b) Pit Pattern I (c) Pit Pattern II

(d) Pit Pattern III-L (e) Pit Pattern III-S

(f) Pit Pattern IV (g) Pit Pattern V

Figure 5.3: Results for the BB method (6 classes, k-NN, pit pattern images)
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5.2.2 Best-basis method based on structural features (BBS)

As we saw in section 4.3.3.3 this method is similar to the method in the previous section. But
for the tests with this method we used the structural feature extractors FEUNV (based on the
unique node values) and FETS (based on the complete tree structure) already presented in
section 4.3.3.3. Apart from that we used KNNTD (distances based on trees and a quadtree
distance metric instead of feature vectors and a vector distance metric) in conjunction with
the k-NN classifier.

Just like in the previous method, the best results have been obtained using the gray scale
versions of the pit pattern images.

As we can see in table 5.3, in the two classes case the best result obtained for the pit
pattern images was 78% using the SVM classifier. The best result achieved with the k-NN
classifier was clearly lower with a percentage of correctly classified images of 58%.

In the six classes case again the SVM classifier clearly outperforms the k-NN classifier
with a classification result of 56% compared to 35% and the misclassification rates for pit
pattern types III-S and V again are extremely high, just like in the previous method.

Additionally we can see in table 5.3 that the classification performance seems to be supe-
rior for the second class in the two classes case for the k-NN classifier. In the six classes
case the results are similar - while pit pattern type I gets classified clearly worse than type
IV, the classification fails completely for all other types.

Compared to the tests with the pit pattern images, the tests performed using the Outex
images resulted in very high classification results, as can been seen in the tables 5.4 and
5.5. In the two classes case the total classification result was 97% for the k-NN classifier
and 89% for the SVM classifier. In the six classes case the classification result was 53% for
the k-NN classifier. The top result achieved with the SVM classifier is a bit lower with an
overall classification result of 45%.

At this point it is worthwhile to mention that during the first test runs the SVM results
for the Outex images were conspicuously worse with a top result of 0%. After limiting the
number of SVM training samples however, we were able to get clearly higher results. To
achieve these results we trained the SVM classsifier with only 10% out of all images.

From table 5.6 we see, that regarding the pit pattern images in conjunction with the k-NN
classifier the structural feature extractor KNNTD always delivered the best results. While
in the two classes case the best result has been achieved with a value for k of 50, the best
results in the six classes case has been obtained using a smaller k-value of 43. When using
the SVM classifier however, the best results have been achieved using the FEUNV feature
extractor.

For the Outex images in connection with the k-NN classifier the values for k leading to
the best overall classification results are clearly much lower than for the pit pattern images
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as we can see in figure 5.7. For the two classes case as well as for the six classes case the
best results have been obtained with a k-value of 2.

In figure 5.4 we see the results obtained for different choices for s in the six classes case
using pit pattern images and the SVM classifier.

As we can see from figure 5.4(a) the overall classification results seem to get higher with
increasing values for s until a value of 33. Then the classification rate drops and remains
constant for higher values for s.
From the figures for the separate classes we again see, that pit pattern type III-S delivers
very low results only, while all other classes definitely show better classification results.

5.2.3 Best-basis centroids (BBCB)

Just like with the previous method, the best results have been achieved using the gray scale
versions of the pit pattern images.

As we can see in table 5.3, in the two classes case the best result obtained for the pit pattern
images was 72% using the SVM classifier. The best result achieved with the k-NN classifier
was only insignificantly lower with a percentage of correctly classified images of 69%.
In contrast to the BB method, both classifiers show approximately the same classification
results for each separate class.

In the six classes case again the SVM classifier outperforms the k-NN classifier with a
classification result of 56% compared to 45% and the misclassification rates for pit pattern
types III-S and V again are extremely high, just like in the previous method.

The tables 5.10 and 5.11 show the result distribution matrices for the two classes case
and the six classes case, respectively, using pit pattern images. For the two classes case the
classification results are very similar to the BB method and also for the six classes case we
again observe a poor classification performance for pit pattern types III-S and V, just like in
the BB method.

Pit Pattern Type Non-Neoplastic Neoplastic
k-NN

Non-Neoplastic 66 33
Neoplastic 28 71

SVM
Non-Neoplastic 73 26
Neoplastic 28 71

Table 5.10: Result distribution matrices for BBCB for 2 classes (Pit pattern images)

The BBCB method has also been tested with the Outex images, which resulted in excellent
classification results, as can been seen in the tables 5.4 and 5.5. In the two classes case the
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(a) All classes

(b) Pit Pattern I (c) Pit Pattern II

(d) Pit Pattern III-L (e) Pit Pattern III-S

(f) Pit Pattern IV (g) Pit Pattern V

Figure 5.4: Results for the BBS method (6 classes, SVM, pit pattern images)
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Pit Pattern Type I II III-L III-S IV V
k-NN

I 67 10 7 0 15 0
II 43 26 12 0 17 0
III-L 37 3 44 0 15 0
III-S 33 0 50 0 16 0
IV 33 8 8 0 49 0
V 24 12 8 0 56 0

SVM
I 51 10 16 2 20 0
II 17 36 19 0 22 3
III-L 20 11 44 0 20 3
III-S 25 8 33 0 33 0
IV 7 14 20 1 52 3
V 16 16 8 0 48 12

Table 5.11: Result distribution matrices for BBCB for 6 classes (Pit pattern images)

total classification result was 100% for the k-NN classifier as well as for the SVM classifier.
In the six classes case the classification result was 100% for the k-NN classifier and 100%
for each separate class. The result achieved with the SVM classifier is even better with
an overall classification result of 100% and classification results for each separate class
between 99% and 100%.

The result distribution matrix for the two classes case is a diagonal matrix, containing
100’s only on the main diagonal and zero at all other positions in the matrix. In the six
classes case all the entries on the main diagonal are very close to 100.

According to table 5.6 the best test results for the tests with the pit pattern images were
obtained using the feature extractors “Subband energy” and “Subband variance”. The fea-
ture vector dimensions are s = 32, 23 for the k-NN classifier and s = 45, 29 for the SVM
classifier. Additionally the k-value for the k-NN classifier differs very much between the
two classes case and the six classes case, with k = 3 and k = 33, respectively.

For the test with the Outex images, these parameters are very similar as we can see from
table 5.7. But the feature vector dimensions as well as the k-values for the k-NN classifier
are lower in general. The feature vector dimensions for the classifiers are s = 1, 33 for the
k-NN classifier and s = 4, 31 for the SVM classifier. The k-value for the k-NN classifier are
very similar between the two classes case and the six classes case, with k = 2 and k = 1,
respectively.

In figure 5.5 we see that for the two classes case the overall classification results for pit
pattern images in conjunction with the k-NN classifier are better for choices for k between
1 and 40 and values for s between 22 and 35. But more interesting are the figures for the
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(a) All classes

(b) Non-neoplastic (c) Neoplastic

Figure 5.5: Results for the BBCB method (2 classes, k-NN, pit pattern images)

two separate classes shown in 5.5(b) and 5.5(c). While the classification results for the non-
neoplastic images seem to get better when using lower values for k, the neoplastic images
seems to get better classified the higher we set value k.

Regarding the two classes case the overall classification results are pretty constant, not
matter what value we choose for s, as we can see from figure 5.6. The classification results
for the non-neoplastic images are a bit jagged but the results are always between 60% and
80%. Despite some small spikes, the curve for the neoplastic images is more smooth than
the curve for the non-neoplastic images.

In figure 5.7 we see the classification results for six classes case using the Outex images
in conjunction with the k-NN classifier. As we can see the overall classification results are
clearly better than the overall classification results for the pit pattern images. This applies
to the results obtained for the the single classes too. For the overall classification result as
well as for the classes 3 and 4 it seems like smaller values for k and values for s between
10 and 35 lead to an excellent classification performance, while for the classes 2 and 6 we
also obtain good classification results for a higher value of k. For classes 1 and 5 it seems
like the value of k has no great effect on the classification results as long as the value of s is
chosen between 5 and 35.
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(a) All classes

(b) Non-neoplastic (c) Neoplastic

Figure 5.6: Results for the BBCB method (2 classes, SVM, pit pattern images)

5.2.4 Pyramidal decomposition (WT)

In contrast to the previous two methods, regarding the tests with the pit pattern images,
this method achieved the best classification result using only the R-channel of the pit pat-
tern images (i.e. the information stored in the color channels for green and blue has been
discarded).

As we can see in table 5.3, in the two classes case the best result obtained for the pit
pattern images was 70% using the SVM classifier. The best result achieved with the k-NN
classifier was a bit lower, with a percentage of correctly classified images of 62%. Therefore,
with this method, the SVM classifier again outperforms the k-NN classifier. However, it is
interesting that in contrast to the previous two methods the neoplastic images seem to get
significantly more accurately classified than the non-neoplastic ones. This property might
be interesting for future extensions, since by combining this method with another method
which classifies the non-neoplastic images more accurately, we could possibly expect better
overall classification results.

In the six classes case again the SVM classifier outperforms the k-NN classifier with a
classification result of 56% compared to 45% and the misclassification rates for pit pattern
types III-S and V again are very high, just like in the previous method.
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(a) All classes

(b) Class 1 (c) Class 2

(d) Class 3 (e) Class 4

(f) Class 5 (g) Class 6

Figure 5.7: Results for the BBCB method (6 classes, SVM, Outex images)
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Pit Pattern Type Non-Neoplastic Neoplastic
k-NN

Non-Neoplastic 54 45
Neoplastic 25 74

SVM
Non-Neoplastic 57 42
Neoplastic 21 78

Table 5.12: Result distribution matrices for WT for 2 classes (Pit pattern images)

Pit Pattern Type I II III-L III-S IV V
k-NN

I 61 9 8 0 21 0
II 14 36 14 0 35 0
III-L 33 8 33 0 23 0
III-S 25 0 50 0 25 0
IV 19 17 8 0 53 0
V 12 24 8 0 56 0

SVM
I 47 19 17 0 16 0
II 17 43 12 1 22 1
III-L 22 8 33 0 33 1
III-S 8 0 41 8 41 0
IV 14 16 17 0 47 3
V 16 16 20 0 36 12

Table 5.13: Result distribution matrices for WT for 6 classes (Pit pattern images)

The tables 5.12 and 5.13 show the result distribution matrices for the two classes case
and the six classes case, respectively, using pit pattern images. For the two classes case, as
already stated above, we observe significantly better classification results for the neoplastic
images. For the six classes case we again observe a poor classification performance for pit
pattern types III-S and V, just like in the previous two methods.

The method has been tested with the outex images too, which again resulted in excellent
classification results, as can been seen in the tables 5.4 and 5.5. In the two classes case the
total classification result was 100% for the k-NN classifier as well as for the SVM classifier.
In the six classes case the classification result was 98% for the k-NN classifier and only
slightly below 100% for some separate classes. The result achieved with the SVM classifier
is pretty similar with an overall classification result of nearly 100%.

The result distribution matrix for the two classes case is a diagonal matrix, containing
100’s only on the main diagonal and zero at all other positions in the matrix. In the six
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classes case all the entries on the main diagonal are very close to 100.

From table 5.6 we see that the best test results for the tests with the pit pattern images
were obtained using the feature extractors “Subband energy” and “Subband variance”. The
feature vector dimensions are s = 9, 9 for the k-NN classifier and s = 50, 15 for the SVM
classifier. Additionally the k-value for the k-NN classifier is very similar between the two
classes case and the six classes case, with k = 22 and k = 25, respectively.

For the test with the outex images, these parameters are different as we can see from
table 5.7. The feature vector dimensions as well as the k-values for the k-NN classifier are
lower in general. The feature vector dimensions for the classifiers are s = 1, 10 for the
k-NN classifier and s = 3, 8 for the SVM classifier. The k-value for the k-NN classifier are
very similar between the two classes case and the six classes case, with k = 1 and k = 5,
respectively.

(a) All classes

(b) Non-neoplastic (c) Neoplastic

Figure 5.8: Results for the WT method (2 classes, k-NN, Pit pattern images)

In figure 5.8 we see the overall classification results for the two classes case for the pit
pattern images in conjunction with the k-NN classifier. As we can see the best overall
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(a) All classes

(b) Non-neoplastic (c) Neoplastic

Figure 5.9: Results for the WT method (2 classes, SVM, Pit pattern images)

classification results are obtained for values for k between 10 and 70. Apart from that we
see that for a given value for k the results remain constant for values for s between 10 and
50. The reason for this is the fact that for this test set we used a decomposition level of 3
which results in a total number of 10 subbands after a pyramidal decomposition. Thus the
method can only use 10 subbands and therefore higher values for s are clamped to a value
of 10, which results in the same classification results.
For the separate classes we see a similar behaviour like for the BBCB method in figure
5.5. While for the non-neoplastic images smaller values for k result in better classification
results it is the other way round for the neoplastic images. Apart from that we clearly see
that the combination of s and k exhibiting the best results for the neoplastic images delivers
the worst results for the non-neoplastic images.

In figure 5.9 we again see the overall classification results for the two classes case for the
pit pattern images, but this time for the SVM classifier.

The results are very similar to the results shown above for the k-NN classifier. The results
remain constant as soon as s exceeds 13. In this case this value is a bit higher than above
for the k-NN classifier since we used a decomposition level of 4 for this test set.

Interestingly the results for the non-neoplastic start high and get lower with an increasing
value for s, while it is the other way round for the neoplastic images. This is very similar to
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the behaviour described above for the k-NN classifier, but this time the choice of s seems to
lead to this effect.

5.2.5 Local discriminant bases (LDB)

Just like in the previous method, this method achieved the best result using the R-channel
information of the pit pattern images only.

As we see from table 5.3, in the two classes case the best result obtained for the pit
pattern images was 76% using the SVM classifier. The best result achieved with the k-NN
classifier was a bit lower, with a percentage of correctly classified images of 71%. Again,
it is interesting that in contrast to the first two methods the neoplastic images seem to get
significantly more accurately classified than the non-neoplastic ones.

In contrast to all previous methods, using the LDB method in the six classes case the k-
NN classifier outperforms the SVM classifier with a classification result of 45% compared
to 41% and again the misclassification rates for pit pattern types III-S and V are extremely
high.

Pit Pattern Type Non-Neoplastic Neoplastic
k-NN

Non-Neoplastic 48 51
Neoplastic 12 87

SVM
Non-Neoplastic 67 32
Neoplastic 17 82

Table 5.14: Result distribution matrices for LDB for 2 classes (Pit pattern images)

The tables 5.14 and 5.15 show the result distribution matrices for the two classes case
and the six classes case, respectively, using pit pattern images. For the two classes case, as
already stated above, we observe significantly better classification results for the neoplastic
images. For the six classes case we again observe a poor classification performance for pit
pattern types III-S and V, just like in all previous methods.

The method has been tested with the outex images too, which again resulted in excellent
classification results, as can been seen in the tables 5.4 and 5.5. In the two classes case the
total classification result was 100% for the k-NN classifier as well as for the SVM classifier.
In the six classes case the classification result was 100% for the k-NN classifier. The result
achieved with the SVM classifier is very similar with an overall classification result of nearly
100% and only slightly below 100% for some separate classes.
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Pit Pattern Type I II III-L III-S IV V
k-NN

I 60 6 16 0 17 0
II 17 36 21 0 24 0
III-L 16 3 57 0 22 0
III-S 16 0 66 0 16 0
IV 14 14 19 0 51 0
V 4 24 8 0 64 0

SVM
I 47 15 17 0 19 1
II 8 47 14 0 26 3
III-L 15 6 47 0 28 1
III-S 16 16 41 8 16 0
IV 7 12 16 0 58 4
V 12 20 8 0 40 20

Table 5.15: Result distribution matrices for LDB for 6 classes (Pit pattern images)

The result distribution matrix for the two classes case is a diagonal matrix, containing
100’s only on the main diagonal and zero at all other positions in the matrix. In the six
classes case all the entries on the main diagonal are very close to 100.

From table 5.6 we see that the best test results for the tests with the pit pattern images
were obtained using the feature extractors “Subband energy” and “Subband variance”. The
feature vector dimensions are s = 7, 21 for the k-NN classifier and s = 19, 69 for the SVM
classifier. Additionally the k-value for the k-NN classifier is very similar between the two
classes case and the six classes case, with k = 13 and k = 14, respectively.

For the test with the outex images, these parameters are different as we can see from table
5.7. The feature vector dimensions as well as the k-values for the k-NN classifier are lower
in general. The feature vector dimensions for the classifiers are s = 3, 43 for the k-NN
classifier and s = 3, 41 for the SVM classifier. The k-value for the k-NN classifier are
very similar between the two classes case and the six classes case, with k = 1 and k = 3,
respectively.

In figure 5.10 we see the overall classification results for the two classes case for the pit
pattern images in conjunction with the k-NN classifier. Obviously the overall classification
performance is better for values for k between 2 and 25 and values for s between 3 and
70. For the separate classes we again observe the behaviour that non-neoplastic images get
classified better with small value for k while the neoplastic get classifier better for higher
values for k.

Figure 5.11 shows the overall classification results for the six classes case for the pit
pattern images in conjunction with the k-NN classifier. As we can clearly see, the best
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(a) All classes

(b) Non-neoplastic (c) Neoplastic

Figure 5.10: Results for the LDB method (2 classes, k-NN, Pit pattern images)

overall classification results have been achieved with a value for s of 21 and a k-value
between 24 and 41. For the separate classes we instantly see that again we obtain a poor
classification performance for pit pattern types III-S and V for most different combinations
of k and s.

For the Outex images the results are mostly superior no matter which value we choose
for k and s as shown in figure 5.12. But as we can see, the overall classification results
are better for values for k between 1 and 24. For the classes 1, 2, 5 and 6 we get excellent
results for nearly all combinations of k and s, while for the classes 3 and 4 the classification
performance gets clearly worse for values for k between 40 and 50 and values for s between
30 and 100.

5.2.6 Centroid classification (CC)

For the two classes case the centroid classification achieved the best result using the R-
channel of the pit pattern images too. In the six classes case the best result was obtained
using the information stored in the R-channel and G-channel of the pit pattern images (i.e.
the information stored in the color channel for blue has been discarded).
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(a) All classes

(b) Pit Pattern I (c) Pit Pattern II

(d) Pit Pattern III-L (e) Pit Pattern III-S

(f) Pit Pattern IV (g) Pit Pattern V

Figure 5.11: Results for the LDB method (6 classes, k-NN, Pit pattern images)
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(a) All classes

(b) Class 1 (c) Class 2

(d) Class 3 (e) Class 4

(f) Class 5 (g) Class 6

Figure 5.12: Results for the LDB method (6 classes, k-NN, Outex images)
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As we can see from table 5.3, in the two classes case the best result obtained for the pit
pattern images was 74%. It is worthwhile to mention that the classification of the non-
neoplastic images results in a very high classification rate of 95% while the classification of
the neoplastic images reaches a classification rate of 59% only.

In the six classes case the classification result is 43% with a very high classification rate
of 95% for pit pattern type I and very high misclassification rates for pit pattern types II,
III-S and V.

Pit Pattern Type Non-Neoplastic Neoplastic
Non-Neoplastic 95 5
Neoplastic 41 59

Table 5.16: Result distribution matrix for CC for 2 classes (Pit pattern images)

Pit Pattern Type I II III-L III-S IV V
I 95 0 5 0 0 0
II 91 0 9 0 0 0
III-L 20 0 7 0 73 0
III-S 25 0 25 0 50 0
IV 46 0 2 0 52 0
V 72 0 20 0 0 8

Table 5.17: Result distribution matrix for CC for 6 classes (Pit pattern images)

The tables 5.16 and 5.17 show the result distribution matrices for the two classes case
and the six classes case, respectively, using pit pattern images. For the two classes case,
as already stated above, we observe significantly better classification results for the non-
neoplastic images. For the six classes case we observe a poor classification performance for
pit pattern types II, III-S and V. If wee look at table 5.17, we see that most of the type II
images are misclassified as being of type I, which explains, why the classification for type
II is that poor. This behaviour can also be observed for images of type V.

Figure 5.13 shows the distance matrices for the two classes and the six classes case. The
red bars at the top and the left of the images denote the different classes. Compared to the
example distance matrices presented in figure 4.5 (section 4.3.4) we can clearly see, that
there is no visible structure in these matrices.

Testing this method with the outex images resulted in fairly good results as can be seen in
tables 5.4 and 5.5. For the two classes case the best overall result was 98%, while in the six
classes case the best classification result is only 74% which is a fairly bad result compared
to all previous methods.

While in the two classes case the result distribution matrix is nearly identical to the result
distribution matrices for the previous methods in conjunction with the outex images, the
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(a) 2 classes (b) 6 classes

Figure 5.13: Distance matrices for the two classes and the six classes case (Pit pattern im-
ages)

Class 1 2 3 4 5 6
1 96 4 0 0 0 0
2 7 93 0 0 0 0
3 0 0 77 9 9 4
4 0 0 10 64 14 12
5 0 0 4 19 52 24
6 0 0 0 8 27 64

Table 5.18: Result distribution matrix for CC for 6 classes (Outex images)

result distribution matrix for the six classes case is quite different compared to the result
distribution matrices for the previous methods, as we notice from table 5.18. We can see
that while the first two classes get classified fairly well, the classification rate is getting
lower for the classes 3 to 6, with the lowest classification result of 52% only for class 4.

Figure 5.14 shows the distance matrices for the two classes and the six classes case. In
contrast to the distance matrices presented above for the pit pattern images, these matrices
are similar to the example distance matrices presented in figure 4.5. Especially for the dis-
tance matrix for the two classes case shown in figure 5.14(a) we are able to clearly identify
a typical structure for low intra-class distances and high inter-class distances.
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(a) 2 classes (b) 6 classes

Figure 5.14: Distance matrices for the two classes and the six classes case (Outex images)

5.2.7 CC based on BB and LDB (CCLDB)

The last of the used methods achieved the best result for the two classes case using the B-
channel of the pit pattern images (i.e. discarding the red and green color components). In the
six classes case the best result was obtained using the information stored in the G-channel
of the pit pattern images (i.e. the information stored in the color channels for red and blue
has been discarded).

As we can see from table 5.3, in the two classes case the best result obtained for the pit
pattern images was 70%. The classification results for the separate classes are fairly equal
with 74% and 67% for non-neoplastic and neoplastic images, respectively.

In the six classes case the classification result is 34%, which is the lowest classification
result for pit pattern images using six classes throughout all methods. But interestingly this
method does not suffer from such low classification rates for pit pattern types II, III-S and
V, like all other previous methods did. This might be an interesting property for combining
this method with other method to obtain better, more stable classification results.

Pit Pattern Type Non-Neoplastic Neoplastic
Non-Neoplastic 74 26
Neoplastic 33 67

Table 5.19: Result distribution matrix for CCLDB for 2 classes (Pit pattern images)

The tables 5.19 and 5.20 show the result distribution matrices for the two classes case
and the six classes case, respectively, using pit pattern images. As already stated above,
we observe fairly equal classification rates over the two classes. For the six classes case
we observe a poor classification performance for all pit pattern types, which means, that no
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Pit Pattern Type I II III-L III-S IV V
I 47 21 7 4 17 3
II 45 14 12 5 19 4
III-L 14 5 42 10 24 5
III-S 0 8 17 33 33 8
IV 21 10 15 13 25 15
V 8 12 4 4 24 48

Table 5.20: Result distribution matrix for CCLDB for 6 classes (Pit pattern images)

pit pattern type has a classification rate exceeding 48%. But as already mentioned above,
this method does not suffer from low classification rates for pit pattern types II, III-S and V
compared to the other pit pattern types, as shown in table 5.20.

Using this method with the outex images resulted in good results, at least for the two
classes case, as shown in table 5.4. For the two classes case the best overall result was 85%,
which is the worst result for outex tests compared to all other methods. In the six classes
case the results are even worse. The best result obtained here is only 49% which is a fairly
bad result compared to all previous methods as shown in table 5.5.

Pit Pattern Type Non-Neoplastic Neoplastic
Non-Neoplastic 86 14
Neoplastic 16 84

Table 5.21: Result distribution matrix for CCLDB for 2 classes (Outex images)

Class 1 2 3 4 5 6
1 65 0 13 5 3 13
2 12 47 10 5 22 4
3 19 4 38 6 22 11
4 6 0 8 54 15 17
5 1 11 6 7 58 17
6 3 3 9 8 45 32

Table 5.22: Result distribution matrix for CCLDB for 6 classes (Outex images)

From table 5.21 we see that the classification rates and therefore the misclassification rates
for the two classes in the two classes case are nearly identical. In the six classes case, as
depicted in table 5.22, we see that although the highest classification rates for the classes
are located on the main diagonal, almost any other entry in the table contains a value greater
than 0, which results in a bad classification result for each single class, and thus in a fairly
bad total classification result.
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5.2.8 Summary

5.2.8.1 Pit pattern images

Regarding our experiments with pit pattern images and two classes of images the results dif-
fer from method to method, using the feature extractors “Subband energy”, “Subband vari-
ance”, FETS, FEUNV and KNNTD only. When looking at table 5.3, we see that all meth-
ods achieve overall classification results between 43% and 78%, where the BBS method in
combination with the SVM classifier returns the best result (78%) using the FEUNV feature
extractor. The worst result (58%) was obtained again using the BBS method, but this time
in conjunction with the k-NN classifier using the KNNTD feature extractor.

Regarding our experiments with pit pattern images and six classes of images the results
again are quite different between the methods. Looking at table 5.3, we see that the overall
classification results are between 34% and 56%, where the BBS method (using the FEUNV
feature extractor) and the BBCB method - both in combination with the SVM classifier -
return the best overall classification result (both 56%). The worst result (34%) has been
obtained using the CCLDB method.

Apart from that, we obviously have the problem that all methods tested except for the
CCLDB method and the BB method in conjunction with the SVM classifier have significant
problems with classifying some specific pit pattern types. This can be observed especially
for the pit pattern types III-S and V. But as already mentioned earlier, this is most likely due
to the low number of images available for these classes.
However, the CCLDB method, although delivering quite bad classification results for the
six classes case, does not seem to suffer from this problem.

In general, from the results obtained, we can say that the SVM classifier seems to outper-
form the k-NN classifier, except for the six classes case of the WT method, where the k-NN
classifier returns a slightly better overall classification result of 45 % compared to the SVM
classifier achieving only 41%. But from table 5.3 we see, that for most methods the results
between the SVM classifier and the k-NN classifier are very much alike.

Interestingly, as we can see from table 5.6, it seems that the SVM classifier needs a much
higher feature vector dimension (ranging from 8 to 69) than the k-NN classifier (ranging
from 1 to 32) to perform well. The k-value mostly is rather high with values between 13
and 50. Only the BBCB method seems to achieve higher results with a rather low k-value
of 3.

5.2.8.2 Outex images

The results we obtained from our experiments with the outex images are superior compared
to the results we got for the pit pattern images. From table 5.4 we see that all methods
but BBS, CC and CCLDB are able to classify all outex images correctly in the two classes
case. The CC method and the CCLDB method reach overall classification results of 98%
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and 85%, respectively. The BBS method achieved overall classification results of 97% and
89% for the k-NN classifier and the SVM classifier, respectively.

As we can see from table 5.5, the results for the six classes tests return very similar clas-
sification rates. Again, the CC method and the CCLDB method return lower classification
results of 74% and 49%, respectively, The BBS method delivers 53% and 45% for the k-
NN classifier and the SVM classifier, respectively. All other methods return overall results
between 97% and 100%.

For the outex images we cannot say that a particular classifier performs better, since both
classifiers used return only slightly different results, if at all. Only for the BBS method it
seems that k-NN classifier outperforms the SVM classifier.

The classification rates for the separate classes are all very much alike, in contrast to the
test with the pit pattern images.

As we already saw above, the feature vector dimensions as well as the k-values are rather
low compared to the pit pattern tests. In the two classes cases the feature vectors have
dimensions between 1 and 4 only, while in the six classes cases the dimensions are quite
higher with values between 7 and 43. The k-values are equally low among all tests with
values between 1 and 5.
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6 Conclusion
It is good to have an end to journey toward,
but it is the journey that matters in the end.

- Ursula K. LeGuin

The main aim of this work was to investigate whether computer assisted pit pattern classi-
fication is feasible. For this purpose we first shortly introduced the concept of wavelets and
some possible classification methods. Based on these preliminaries we then implemented
various wavelet based methods such as Local discriminant bases, Pyramidal decomposition,
Best-basis based methods, Centroid classification and combinations of these methods.

When it came to the choice of a classifier we restricted our tests to k-NN and SVM, since
the first one is easy to implement, while the latter one has strong capabilities in adapting to
more complex classification problems.

To have comparable results we did not limit our tests to the pit pattern images only. We
also used the Outex image library to test the classification abilities of our methods in gen-
eral.

From the previous chapter we see that the results already obtained by our methods are
encouraging. Especially the classification of pit pattern images in the two classes case
delivers promising results for some methods. On the other hand, we also see that especially
the classification of neoplastic lesions in the six classes case is a serious problem. Examining
the results it is obvious that for a clinical usage there is still a physician needed who still
provides significantly higher recognition rates.

One possible explanation of the results for the pit pattern images, as already mentioned
repeatedly in the previous chapters, is that the image set we were provided for our experi-
ments was rather limited. Especially for the pit pattern types III-S and V we only had very
few images, due to the fact that these types of lesions are rare compared to the other types.
Thus the bad classification results may stem from this fact.

Apart from the partly limited image set we mainly focused on standard wavelet based
textural features known from texture classification. But pit patterns have not yet been proven
to exhibit specific textural properties. Additionally the ground truth classification does not
rely on visual properties, therefore it is not even clear yet whether visual properties exist
which could theoretically be used to correctly classify.

Regarding the tests carried out with the Outex images we obtained excellent classifica-
tion results, especially for the two classes case, where most methods classified all images
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correctly. But also in the six classes case we obtained very promising results for the Outex
images.

The results we gained from our experiments showed that for nearly all methods the SVM
classifier outperformed the k-NN classifier, although the differences are not that huge. Re-
garding our results and the much higher computational complexity of the SVM classifier
for most of our methods implemented the k-NN would be the better choice. When look-
ing at our results for the Outex images, the differences between the two classifiers get even
smaller and for one method the classification accuracy of the k-NN classifier is even a bit
higher than for the SVM classifier.

Comparing the results obtained for the pyramidal wavelet transform and the adaptive
methods, we see that in most cases the adaptive methods perform better. This is the case for
the pit pattern images as well as for the Outex images, although the differences are not very
big. In the six classes case with the Outex images the results are even equally well.

6.1 Future research

Regarding our methods and the resulting classification accuracy for each method the main
goal of future research must be to get better results, also across the different image classes.
To accomplish this there are several possibilities, which may lead to better results.

As already mentioned above, it is not proven yet whether pit patterns exhibit specific
textural properties. Thus one possibility is trying to find features which describe a pit pattern
more appropriately. Therefore what we need are features which are more focused on the
structure of pit patterns.

Another possibility is to combine several different features for the classification process.
This could possibly stabilize the results and eventually produce even better classification
results than we obtained until now.

Also artificial neural networks have been widely used successfully for classification prob-
lems. Perhaps this classifier could deliver more accurate classification results than the clas-
sifiers we used throughout this thesis.
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[38] Raúl Rojas. Theorie der Neuronalen Netze. Springer, 1996.

[39] N. Saito and R. R. Coifman. Local discriminant bases. In Proceedings of the Inter-
national Society for Optical Engineering SPIE Wavelets: Applications in Signal and
Image Processing II, volume 2303, pages 2–14, 1994.

101

http://decisiontrees.net


Bibliography

[40] Naoki Saito. Classification of geophysical acoustic waveforms and extraction of geo-
logical information using time-frequency atoms. In 1996 Proceedings of the Comput-
ing Section of the American Statistical Association, pages 322–327, 1997.

[41] Naoki Saito and Ronald R. Coifman. Local discriminant bases and their applications.
J. Mathematical Imaging and Vision, 5(4):337–358, 1995.

[42] N. Stergiou et al. Reduction of miss rates of colonic adenomas by zoom chromoen-
doscopy. International Journal of Colorectal Diseases, 2006. To appear.

[43] N. G. Theofanous, D. E. Maroulis, D. K. Iakovidis, G. D. Magoulas, and S. A. Karka-
nis. Tumor recognition in endoscopic video images using artificial neural network
architectures. In 26th EUROMICRO Conference, pages 423–429, September 2000.

[44] Marta P. Tjoa and Shankar M. Krishman. Feature extraction for the analysis
of colon status from the endoscopic images. BioMedical Engineering OnLine,
April 2003. Online available at http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=155673 (07.10.2004).

[45] S.-Y. Tung, C.-S. Wu, and M.-Y. Su. Magnifying colonoscopy in differentiating neo-
plastic from nonneoplastic colorectal lesions. American Journal of Gastroenterology,
96:2628–2632, 2001.

[46] Mladen Victor Wickerhauser. Adapted Wavelet Analysis from Theory to Software. A
K Peters, 1994.

102

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=155673
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=155673

	Introduction
	Colonoscopy
	Pit patterns
	Computer based pit pattern classification

	Wavelets
	Introduction
	Continuous wavelet transform
	Discrete wavelet transform
	Filter based wavelet transform
	Pyramidal wavelet transform
	Wavelet packets
	Basis selection
	Best-basis algorithm
	Tree-structured wavelet transform
	Local discriminant bases



	Texture classification
	Introduction
	Feature extraction
	Wavelet based features
	Other possible features for endoscopic classification

	Classification
	k-NN
	ANN
	SVM


	Automated pit pattern classification
	Introduction
	Classification based on features
	Feature extraction
	Best-basis method (BB)
	Best-basis centroids (BBCB)
	Pyramidal wavelet transform (WT)
	Local discriminant bases (LDB)


	Structure-based classification
	A quick quadtree introduction
	Distance by unique nodes
	Unique node values
	Renumbering the nodes
	Unique number generation
	The mapping function
	The metric
	The distance function

	Distance by decomposition strings
	Creating the decomposition string
	The distance function
	Best basis method using structural features (BBS)

	Centroid classification (CC)
	Centroid classification based on BB and LDB (CCLDB)

	Classification
	K-nearest neighbours (k-NN)
	Support vector machines (SVM)


	Results
	Test setup
	Test images
	Test scenarios

	Results
	Best-basis method (BB)
	Best-basis method based on structural features (BBS)
	Best-basis centroids (BBCB)
	Pyramidal decomposition (WT)
	Local discriminant bases (LDB)
	Centroid classification (CC)
	CC based on BB and LDB (CCLDB)
	Summary
	Pit pattern images
	Outex images



	Conclusion
	Future research

	List of Figures
	List of Tables
	Bibliography

