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Abstract

In this paper, we present a novel approach to predict

the histological diagnosis of colorectal lesions from high-

magnification colonoscopy images by means of Pit Pattern

analysis. Motivated by the shortcomings of discriminant

classifier approaches, we present a generative model based

strategy which is closely related to content-based image re-

trieval (CBIR) systems. The ingredients of the approach are

the Dual-Tree Complex Wavelet Transform (DTCWT) and

the mathematical construct of copulas. Our experimental

study on a set of 627 images confirms, that the joint statis-

tical model leads to impressive prediction results compared

to previous work.

1. Motivation

According to the statistics of the American Cancer So-

ciety 1, colorectal cancer is the third most commonly di-

agnosed cancer and the third leading cause of US cancer

deaths in both men and women. Colorectal cancer is a

paramount example where existing knowledge in combina-

tion with early screening procedures can prevent death and

save lives. Computer-aided diagnosis systems have gained a

lot of research interest recently. A lot of work has been done

on the automated discrimination between normal and can-

cerous tissue using microscopic imaging, mainly by means

of texture analysis [5, 31]. While these studies work di-

rectly with tissue samples of resected specimen obtained
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from biopsies, other works have studied the versatility of

endoscopic video-frame processing for the detection of col-

orectal polyps [14, 26] and the assessment of colorectal ab-

normalities [20, 15, 12, 11]. However, conventional white-

light video colonoscopy as it is used in these studies has

its limitations, especially with respect to the detection of

flat and depressed lesions [10]. The emergence of high-

magnification chromoscopic colonoscopy (HMCC) poses

several advantages over white-light video colonoscopy. In

HMCC, high-magnification endoscopes with zoom-factors

of up to 150× are used to visualize the appearance of the

colon mucosa. The high optical zoom and resolution reveal

characteristic surface patterns (i.e. Pit Patterns) which can

be analyzed by the experienced physician to predict the his-

tological diagnosis. This visual inspection is guided by the

Kudo criteria for Pit Pattern analysis. Usually, chromoa-

gents such as indigo-carmine or methylene-blue are used

during endoscopic examination to enhance the visual ap-

pearance of the observed tissue. As a matter of fact, HMCC

is suggested as an in vivo staging tool to enhance the diag-

nostic process and guide therapeutic strategies.

1.1. Pit Pattern Analysis

Colorectal cancer predominantly develops from adeno-

matous polyps (adenomas), although adenomas do not in-

evitably become cancerous. Polyps of the colon are a fre-

quent finding and are usually divided into metaplastic, ade-

nomatous or malignant. Since the resection of all polyps

is rather time-consuming, it is imperative that those polyps

which warrant resection can be distinguished. The classi-

fication scheme presented by Kudo et al. [21] divides the

mucosal crypt patterns into five types (Pit Patterns I–V).

Fig. 1 provides a schematic illustration of the different Pit
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(a) I (b) II (c) III-S

(d) III-L (e) IV (f) V

Figure 1: Schematic illustration of the six colorectal crypt

architectures, according to the Kudo criteria [21].

(a) I (b) II (c) III-S

(d) III-L (e) IV (f) V

Figure 2: Representative HMCC images of the different

Pit Patterns. Note that types I and II show non-neoplastic

lesions while types III-S, III-L, IV and V show neoplastic

disease.

Patterns and Table 1 gives a textual description of their vi-

sual appearance. Exemplary HMCC images are shown in

Fig. 2. While Pit Patterns I and II are characteristic of be-

nign lesions and represent normal colon mucosa or hyper-

plastic polyps (i.e. non-neoplastic lesions), Pit Patterns III

to V represent adenomatous and carcinomatous structures

(i.e. neoplastic lesions). This includes serrated, tubular and

tibulovillous adenoma as well as lymphoma, carcinoma and

adenocarninoma.

At first sight, the Kudo criteria seems to be straightfor-

ward and easy to be applied. Nevertheless, it needs some

experience and exercising to achieve good results. Correct

diagnosis very much relies on the experience of the gas-

troenterologist as the interpretation of the Pit Patterns may

be challenging [9]. Computer-assisted diagnosis is moti-

vated by the work of Kato et al. [17], where the authors state

that assessing the type of mucosal crypt patterns can actu-

ally predict the histological findings to a very high accuracy.

Pit Pattern Visual Appearance

I Round pit (normal pit)

II Asteroid pit, stellar or papillary

III-S Tubular or round pit (smaller than I)

III-L Tubular or round pit (larger than I)

IV Dentritic or gyrus-like pit

V Irregular arrangement and sizes

Table 1: Description of the visual appearance of the col-

orectal crypt patterns observed during HMCC.

Regarding the correlation between the Pit Patterns and the

histological findings, several (human-based) studies report

good results for distinguishing non-neoplastic from neo-

plastic lesions, although with different diagnostic accura-

cies. A recent comparative study by Kato et al. [16] reports

a histological prediction accuracy of 99.1% by means of

HMCC and Pit Pattern analysis. Hurlstone et al. [10] claim

a rate of approximately 95%, Tung et al. [33] claim 80.1%,

however at a very low sensitivity of only 64.6%. In an-

other work, Fu et al. [6] report 95.6% for HMCC compared

to 84.0% using conventional white-light colonoscopy and

89.3% using chromoendoscopy without magnification. An

even larger spread between HMCC and conventional white-

light colonoscopy is listed by Konishi et al. [18] with 92%
and 68%, respectively. In addition, inter-observer variabil-

ity of HMCC-based diagnosis has been described at least

for Barret’s esophagus [27]. This inter-observer variability

may to a lesser degree be also present in the interpretation

of Pit Patterns of colonic lesions.

1.2. Objective

The objective of this work is two-fold: first, we want

to reliably discriminate Pit Patterns I and II from III to

V which amounts to identify non-neoplastic and neoplas-

tic lesions. According to the medical literature, this is the

clinically most relevant application scenario of the Pit Pat-

tern analysis scheme. We denote this problem as the two-

class problem. Second, we focus on a more therapeutically

relevant subcategorization (see [16, 10]) in which neoplas-

tic lesions are further discriminated into invasive and non-

invasive types. The subgroups differ in that the representa-

tives of the non-invasive class allow endoscopic mucosal re-

section (EMR), whereas representatives of the invasive class

may require surgical resection. This second problem will be

denoted as three-class problem. We adhere to the particular

class assignment of Hurlstone et al. [10] where Pit Patterns

III-L and IV are grouped into the non-invasive class and Pit

Patterns III-S and V represent the invasive class.



2. A Generative Model Based Approach

In the context of our prediction/classification problem,

we identify three critical issues related to discriminant clas-

sifier approaches: first, classifier training usually requires a

sufficiently large number of training samples. Unless this

can be guaranteed, we will inevitably run into overtraining

issues. Second, most classifiers additionally require bal-

anced class distributions. Unfortunately, we cannot guar-

antee this requirement either. Since some Pit Patterns (e.g.

III-S) occur very rarely, the image distribution tends to be

highly unbalanced. Neglecting this fact leads to overtrain-

ing in favor of classes with a large number of samples (see

[28]). Third, we want to ensure that images with an al-

ready assigned histopathological diagnosis can be added to

the image database at any time without effort. This avoids

presumably time-consuming and unnecessary maintenance

operations which might prevent the actual deployment in

clinical practice. Since discriminant classifiers usually need

re-training in case new samples are added, this requirement

cannot be met as well.

2.1. The Probabilistic Framework

As a possible solution to the aforementioned disadvan-

tages, we propose to employ a prediction strategy based on

generative models. The baseline for this proposal is the

framework of Bayesian image retrieval [34], also referred

to as Minimum Probability of Error retrieval. Considering

the medical image classification/prediction problem from

the viewpoint of image retrieval brings along several advan-

tages which correspond to the requirements stated above.

An unknown HMCC image is considered as a query im-

age in the probabilistic framework and classification is per-

formed by first searching for the most similar image in the

database of available HMCC images with an assigned his-

tological diagnosis. Then, the class of the retrieved image is

used as a prediction for the class of the unknown image. In

classification terminology, this resembles a nearest neigh-

bor classifier.

Next, we briefly recapitulate the theoretical foundation

of the probabilistic formulation of CBIR which serves as

the basis for our work. We assume that we have L database

images I1, . . . , IL. In the formulation of Vasconcelos &

Lippman, an image I consists of a number of pixel obser-

vations (x1, . . . , xN ) = x ∈ X residing in the space of ob-

servations X . Further, each image belongs to its own image

class and the classes have equal prior probability. The ran-

dom variable Y signifies the class membership, with proba-

bility mass function pY (y) = 1/L. In a first step, referred to

as the feature transformation step, we map an image from

the space of observations to the so called feature space Z ,

i.e. T : X → Z . Consequently, z = T (x) denotes a so

called feature vector. The key issue here is, to represent the

image content in a domain which is more suitable for fur-

ther processing. In the second step, a probabilistic model

is constructed which captures how the feature vectors pop-

ulate the feature space with respect to their class member-

ship. The corresponding class-conditional p.d.f. pZ|Y (z|y)
constitutes the feature representation. In the final step, we

identify a retrieval function which retrieves the most simi-

lar image from the database and assigns the corresponding

class label to the unknown image. This retrieval function

g : Z → {1, . . . , L} is designed to minimize the probabil-

ity of retrieval error. In [34], it is shown that the optimum

retrieval function for this criterion is given by

g(z) = arg max
y

pZ|Y (z|y)pY (y). (1)

By noting that pY (y) is a constant term, the retrieval func-

tion is simply the Maximum-Likelihood (ML) selection cri-

terion. In any practical scenario, we have to estimate pZ|Y

from a collection of feature vectors z1, . . . ,zM and the ac-

tual retrieval process will be based on a collection of fea-

ture vectors z∗
1, . . . ,z

∗
K , extracted from the unknown im-

age I∗. The assumption that the feature vectors are i.i.d.

and conditionally independent given the true class member-

ship facilitates estimation of pZ|Y and allows to write the

ML selection rule as

g(z∗
1, . . . ,z

∗
K) = arg max

y

K
∏

k=1

pZ|Y (z∗
k|y). (2)

We omit the notation Z|Y from this point on and instead in-

dicate that a feature representation belongs to image Ij by

adding the superscript j to the collection of model parame-

ters Θ
(j).

Regarding the choice of feature transformation, we build

upon previous research work [22] and use the Dual-Tree

Complex Wavelet Transform (DTCWT). This transforma-

tion has turned out to be beneficial for image analysis pur-

poses, since it provides high directional selectivity and ap-

proximate shift-invariance at low computational cost, see

[30]. In contrast to the pyramidal DWT, we get six com-

plex orientation subbands per decomposition scale. In the

following section, we discuss the contribution of this work,

namely the feature representation for the complex transform

coefficient magnitudes of all subbands (from all color chan-

nels) on one decomposition level.

2.2. A Copulabased Feature Representation

Many previous approaches in the field of image re-

trieval, e.g. [3, 24], solely focus on statistical models for the

marginal distributions of wavelet coefficients, mainly due to

the associated computational advantages. However, we ex-

pect that additional information about the association struc-

ture of wavelet coefficients across subbands and color chan-

nels plays a key part in contributing to higher discrimination



rates. Unfortunately, many multivariate statistical models

tend to become analytically quite involved, especially when

it comes to parameter estimation and it is in general not

possible to have marginal distributions from different dis-

tribution families. An elegant way to cover both problems

is to rely on the mathematical construct of copulas. From a

formal point of view, a copula is a B-dimensional distribu-

tion function C : [0, 1]B → [0, 1] with uniform marginals,

satisfying certain regularity conditions, see [29]. The key

element of copula theory is Sklar’s theorem [32]. Given a

B-dimensional distribution function FX of a random vector

X with marginals F1, . . . , FB , it states that there exists a

B-dimensional copula C such that

FX(x1, . . . , xB) = C(F1(x1), . . . , FB(xB)), (3)

exploiting the fact that every random variable can be

transformed to a uniform random variable by its prob-

ability integral transform, i.e. the mapping R
B →

[0, 1]B , (x1, . . . , xB) 7→ (F1(x1), . . . , FB(xB)). Since

we only consider the case of random vectors X =
(X1, . . . ,XB) with continuous and strictly increasing

marginal distribution functions, the copula is uniquely de-

termined on [0, 1]B . As a corollary of Sklar’s theorem, it

follows that given a B-dimensional distribution function F
with margins F1, . . . , FB and copula C, we have the rela-

tion

C(u) = F (F−1
1 (u1), . . . , F

−1
B (uB)) (4)

where F−1
i denotes the quantile function of the i-th mar-

gin and u ∼ U([0, 1]B). Regarding the process of finding

a suitable statistical model for a collection of multivariate

observations, the copula framework brings along an appeal-

ing simplification: the process of modeling the marginals

is completely decoupled from the process of modeling the

association structure. This allows to thoroughly adopt the

findings of previous research work on the marginal distribu-

tions of complex wavelet coefficient magnitudes, however,

raises the question which copula to choose.

In [25], it was shown that the Student t and the Gaussian
copula are suitable choices to capture the association struc-

ture among the coefficients. Both copulas are members of

the family of elliptical copulas and arise from the family of

elliptical distributions. In fact, they are the copulas of ellip-

tical distributions and inherit all the properties such as sim-

ple simulation of random numbers or well-known parameter

estimation procedures for example. Since estimation of the

Student t copula is computationally more involved than esti-

mation of the Gaussian copula, we focus on the latter choice

here. Further, we will later see that it is computationally less

expensive to evaluate the likelihood of a collection of mul-

tivariate observations under a Gaussian copula model.

As we have noted before, the DTCWT leads to six com-

plex detail subbands per decomposition level. Considering

all subbands on a specific scale of a decomposed color im-

age givesB = 18 subbands in total. Consequently, a feature
vector z contains B = 18 elements, where each element is

a transform coefficient magnitude zi = |zi| from one sub-

band, i.e. z = (z1, . . . , zB). The joint p.d.f. of the copula-
based model can be written as

pZ(z;Θ) =

c(F1(z1;θ1), . . . , FB(zB ;θB);Λ) ·
B
∏

i=1

fi(zi;θi)
(5)

where c denotes the copula p.d.f., fi denotes the p.d.f. of

the i-th margin andΘ = {θ1, . . . ,θB ,Λ}. In our setup, the
copula is restricted to a Gaussian copula and the marginal

distributions Fi are limited to two-parameter Weibull dis-

tributions with shape αi > 0 and scale βi > 0, i.e.

θi = [αi βi]. The p.d.f. of a Gaussian copula is determined

in the next section.

2.2.1 Parameter Estimation

Due to the fact, that it is computationally expensive and nu-

merically cumbersome to jointly estimate the parameters of

the marginal distributions and the copula parameters (de-

noted as the exact Maximum-Likelihood approach), we fol-

low a convenient two-step procedure, termed the Inference

Functions from Margins (IFM) method. The basic idea was

introduced by Joe [13] and is based on a very simple de-

coupling of the estimation procedure. Given a collection of

z1, . . . ,zM observations, we first estimate the parameters

of the margins (e.g. Weibull)

∀n ∈ {1, . . . , B} : θ̂n = arg max
θ

M
∑

i=1

log fn(zin;θ) (6)

using ML estimation, see [19]. Second, we use the obtained

estimates to conduct a probability integral transform on the

margins, i.e. yij = Fj(zij ;θj). Third, we estimate the cop-

ula parameters in a ML sense by

Λ̂ = arg max
Λ

M
∑

i=1

log c(yi1, . . . , yiB ;Λ). (7)

For our concrete case of a Gaussian copula, we first deduce

the copula p.d.f. and then derive the ML estimate of R. We

know that the Gaussian copula is the copula of a multivari-

ate Gaussian distribution with correlation matrix R and we

know that the margins of the multivariate Gaussian are stan-

dard Gaussian distributionsN (0, 1). Hence, we just have to
manipulate the p.d.f.

pX(x;R) =
1

2π
B

2 |R|
1

2

exp

(

−
1

2
xT R−1x

)

(8)



such that we get an expression similar to Eq. (5). After

some algebraic manipulations, it turns out that the p.d.f. of

the Gaussian copula has the form

c(u1, . . . , uB ;R) = |R|−
1

2 exp

(

−
1

2
ξT (R−1 − 1)ξ

)

(9)

with ξ = [Φ−1(u1), . . . ,Φ
−1(uB)]. Then, it is straightfor-

ward to determine the ML estimate of R as

R̂ =

M
∑

i=1

ξT
i ξi (10)

by taking the partial derivative w.r.t. R of the log-likelihood

function corresponding to Eq. (9) and setting the resulting

term to zero.

2.3. Similarity Measurement

For similarity measurement, we can directly employ the

ML selection rule of the probabilistic CBIR framework, see

Eq. (2). This is a natural choice, since it does not require

to estimate any parameters of the unknown image’s feature

representation. We just have to perform the feature trans-

formation step T and extract a collection of feature vectors

z∗
1, . . . ,z

∗
K from the unknown image. We consciously use

K instead of M to denote the number of feature vectors,

since it is no requirement to use all vectors in the similarity

measurement step. Eventually, we can write the ML selec-

tion rule as

g(z∗
1, . . . ,z

∗
K) = arg max

j

K
∑

i=1

log pZ(z∗i ;Θ
(j)). (11)

The principle is visualized in Fig. 3. For the computation

of Eq. (11), we have to evaluate the marginal p.d.f.s as well

as the multivariate copula p.d.f. for each feature vector z∗
i .

Our choice of a Gaussian copula pays-off now, since eval-

uation of the Student t copula p.d.f. is a rather expensive

operation in terms of computation time.

I
∗ z

∗

1, . . . , z
∗

K

d1 =
∑

K

i=1 pZ(z
∗

i
;Θ(1))

...

dr =
∑

K

i=1 pZ(z
∗

i
;Θ(r))

...

dL =
∑

K

i=1 pZ(z
∗

i
;Θ(L))

T

assign label of Ir
(e.g. non-neoplastic)

I
∗ . . . . . . . . . . unknown Image

ML . . . .Maximum-Likelihood

T . . . Feature Transformation

ML

Figure 3: Illustration of the ML selection rule.

3. Experimental Study

Our original set of images consists of 269 RGB images

(53 patients, either 624 × 533 or 586 × 502 pixel) acquired

I II III-S III-L IV V

114 64 18 119 232 80

Table 2: Class distribution of the HMCC images.

in 2005–2009 at the Department of Gastroenterology and

Hepatology of the Medical University of Vienna using a

zoom-endoscope (Olympus Evis Exera CF-Q160ZI/L) with

a magnification factor of 150×. All images were selected

by the gastroenterologist conducting the colonoscopy with

special emphasis to provide images with similar lightning

conditions at approximately the same camera angle. To en-

hance the visual appearance of the mucosa, dye-spraying

with indigo-carmine was applied and biopsies or mucosal

resections were taken to obtain a histopathological diagno-

sis (our ground truth). The histology was obtained by a

pathologist blinded to the colonoscopic procedure. Table 2

lists the distribution of Pit Patterns among all HMCC im-

ages. In order to increase the number of samples, we cre-

ate an extended dataset by extracting subwindows of size

256 × 256 pixel from the original images such that the Pit

Patterns are clearly distinctive and the subwindows contain

a minimum number of specular reflections. This is a rea-

sonable way to extend the dataset since the process closely

resembles the clinical methodology. During colonoscopy,

the gastroenterologist will typically look at more than just

one region of an image. Eventually, the extended dataset

contains 627 HMCC images.

3.1. Evaluation Setup

Our evaluation strategy is based on a Leave-One-Out

Cross Validation (LOOCV) process [4]. Each image of the

database is considered as an unknown image once and the

class label is predicted by the system. The percentage of

misclassified images represents the estimate of the predic-

tion error of the whole system. Regarding to computation

of the nearest neighbor, we differ to previously published

works in one particular point. Up to now, the problem

was considered from a purely classification oriented point

of view. In such as setup, it does not matter which image is

selected as the one to predict the class of an unknown im-

age. The obtained classification rates, however, only con-

vey an impression of how well an approach captures image

information relevant for discrimination and are less inter-

esting from the medical point of view. This becomes evi-

dent when we reconsider the fact that there is no restriction

on the type of nearest neighbor, whatsoever. In the con-

text of the dataset extension technique mentioned above, it

is hence possible that the retrieved image stems from the

same parent as the unknown image. In order to obtain clin-

ically more meaningful classification rates, we modify the

setup to resemble a more practical scenario. We impose the
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Figure 4: Illustration of the constrained and unconstrained

nearest neighbor principle.

constraint that images are only admissible as nearest neigh-

bors in case they do not stem from the same parent as the

unknown image. We refer to this setup as the constrained

setup, whereas the setup in previous works is referred to as

the unconstrained setup. To visualize the difference, both

setups are illustrated in Fig. 4.

3.2. Assessing Statistical Significance

In any reasonable comparative study on classification

performance, situations occur where classification rates be-

tween two approaches seem very similar and do not allow to

make any statements whether one approach performs better

than the other. To have a quantitative measure of whether

the class assignments of two approaches show significant

differences, we employ a McNemar test [2]. Besides the

5x2 cross-validation test, this is one of the most popular

and recommended tests for this purpose. The test statistic is

based on counting the number of samples where approach

A assigns the correct class label and approach B fails (de-

noted by n10) and vice versa (denoted by n01). Based on

these counts the test statistic is defined as

S =
(|n10 − n01| − 1)

2

n10 + n01
. (12)

In case the null-hypothesis of no statistically significant dif-

ference is true, S follows as Chi-Square distribution with

one degree of freedom, i.e. S ∼ χ2
1. In our comparative

study, we plan to conduct n pairwise comparisons to the

top approach at the 5% significance level. Such a multi-

ple hypothesis testing scenario, however, requires to correct

the significance level α. For that purpose, we employ two

different strategies: (i) the classic Bonferroni correction to

control the Familywise Error Rate (FWER), i.e. α′ = α/n
and (ii) we implement the False-Discovery Rate (FDR) con-

trol algorithm proposed by Benjamini & Hochberg [1].

3.3. Results

For a comparative study, we select three recently pro-

posed discriminant classifier based approaches and two gen-

erative model based approaches which follow the principle

of probabilistic CBIR. In the first group, we include the

color-histogram approach of Häfner et al. [8], the Color-

Eigen Subband features of Kwitt & Uhl [23] as well as the

Weibull distribution features of Kwitt & Uhl [22]. In the

second group, we include the CBIR approaches of Vascon-

celos & Lippman [34] and Verdoolaege et al. [35]. Regard-

ing the presentation of the results, we adhere to the conven-

tion to identify an approach by the names of the authors and

the year of publication.

Tables 3 and 4 list the corresponding LOOCV results.

In both classification setups, the copula approach exhibits

the highest LOOCV rate. Besides, we notice that speci-

ficity is consistently higher than sensitivity in the two-class

case. Hence, the diagnostic accuracy of neoplastic disease

is higher than for non-neoplastic disease. In the three-class

problem, the situation is reversed, signifying higher diag-

nostic accuracy of non-invasive neoplasia. We note, that the

specificity is far superior than the 50% reported by Hurl-

stone et al. [10].

Finally, we take the copula-approach and perform pair-

wise comparisons to the other approaches to investigate if

there is evidence for statistically significant differences in

the classification results. A ’∗∗’ next to the LOOCV accu-

racy of an approach signifies a significant difference using

the corrected significance level based on either Bonferroni

or Benjamini & Hochberg correction. As we see, the test

results allow to report superior performance of our copula

approach to all the other approaches in the two-class case.

In the three-class case, only the CBIR method by Vascon-

celos & Lippman [34] exhibits competitive performance.

Compared to the currently highest reported LOOCV rates

of ≈ 99% in the two-class problem [7], we highlight that

(i) these rates were obtained in the unconstrained nearest

neighbor setup and (ii) the authors note that the approach

might suffer overtraining issues due to feature subset se-

lection [4]. Our approach, however, does not suffer any of

these issues. In fact, overtraining is not possible at all, since

no information about the class membership is used to esti-

mate the feature representation.

4. Discussion

In this work, we presented a theoretically well-founded

approach for the prediction of histological diagnosis of col-

orectal lesions. Motivated by the shortcomings of discrim-

inant classifiers, we approached the problem from an im-

age retrieval point of view. On the basis of a probabilistic

formulation of CBIR, we introduced a novel, joint statisti-

cal model for complex wavelet coefficient magnitudes. The



Approach Accuracy Sensitivity Specificity PPV NPV

Gaussian Copula, Weibull Margins 96.65 94.94 97.33 93.37 97.98
Vasconcelos & Lippman, 2000 94.74∗∗ 84.27 98.89 96.77 94.07
Verdoolaege et al., 2008 92.98∗∗ 91.01 93.76 85.26 96.34
Kwitt & Uhl, 2007 93.30∗∗ 91.01 94.21 86.17 96.36
Kwitt & Uhl, 2008 93.14∗∗ 90.45 94.21 86.10 96.14
Häfner et al., 2006 84.37∗∗ 74.16 88.42 71.74 89.62

Table 3: LOOCV results for the discrimination between non-neoplastic and neoplastic lesions.

Approach Total
Non-Invasive vs. Invasive

Accuracy Sensitivity Specificity PPV NPV

Gaussian Copula, Weibull Margins 93.46 95.42 97.95 86.32 96.26 92.13
Vasconcelos & Lippman, 2000 92.50 97.28 98.26 93.81 98.26 93.81
Verdoolaege et al., 2008 88.52∗∗ 93.35 96.36 82.42 95.21 86.21
Kwitt & Uhl, 2007 89.47∗∗ 94.33 96.66 86.17 96.07 88.04
Kwitt & Uhl, 2008 88.84∗∗ 93.62 96.08 84.62 95.80 85.56
Häfner et al., 2006 78.31∗∗ 90.43 96.09 71.11 91.90 84.21

Table 4: LOOCV results for the discrimination between non-invasive and invasive neoplasia.

rule of Maximum-Likelihood image selection then proved

to be a convenient way to predict the histology of an HMCC

image. Our experiments show that we achieve significantly

better prediction performance compared to recently pro-

posed discriminant classifier approaches and slightly bet-

ter performance than two state-of-the-art approaches from

CBIR. In addition to that, the presented results for the non-

neoplastic vs. neoplastic case are competitive to the results

reported in medical literature and we achieve considerably

better rates for the prediction of non-invasive vs. invasive

neoplasia. We suggest, that this approach is not only ben-

eficial in clinical practice, but also during the education of

future gastroenterologists.
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