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Errata to R. Kwitt and A. Uhl, “Lightweight
Probabilistic Texture Retrieval”, IEEE

Transactions on Image Processing, 19(1):241–253,
January 2010

April 5, 2010

Corrections

There is a typo in the derivation of the Newton-Raphson update step for the
Gumbel (EV Type I) distribution. Eq. (21) lists f(σ) which is correct, but Eq.
(22) contains an error. The published version is
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and the corrected version (two signs, one additional term) reads as
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∂
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In an implementation, this error is usually not noticeable, since the moment esti-
mates to start the NR iteration are already that good most of the times so that
the NR algorithm is never invoked. Sorry for any inconvenience.
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Lightweight Probabilistic Texture Retrieval
Roland Kwitt, Student Member, IEEE, Andreas Uhl

Abstract—This article contemplates the framework of prob-
abilistic image retrieval in the wavelet domain from a com-
putational point of view. We not only focus on achieving high
retrieval rates, but also discuss possible performance bottlenecks
which might prevent practical application. We propose a novel
retrieval approach which is motivated by previous research work
on modeling the marginal distributions of wavelet transform
coefficients. The building blocks of our work are the Dual-Tree
Complex Wavelet Transform and a number of statistical models
for the coefficient magnitudes. Image similarity measurement is
accomplished by using closed-form solutions for the Kullback-
Leibler divergences between the statistical models. We provide
an in-depth computational analysis regarding the number of
arithmetic operations required for similarity measurement and
model parameter estimation. The experimental retrieval results
on a widely-used texture image database show that we achieve
competitive retrieval results at low computational cost.

Index Terms—Texture Image Retrieval, Wavelets, Kullback-
Leibler Divergence

I. INTRODUCTION

S
INCE the amount of digital image data in multimedia

databases is constantly growing, we face an increasing

need for systems which allow content-based image retrieval

(CBIR) through searching by example. The fields of appli-

cation range from searching databases of natural images to

images of textures or even medical content. The objective is

to find the K ≪ L most similar images to a given query

in a database of L candidate images, according to some

similarity criterion. A typical image retrieval system consists

of two elementary building blocks: the feature extraction (FE)

block and the similarity measurement (SM) block, which are

illustrated in Fig.1.

Statistical Models

SM

FE

Query Image

Database Images

N most similar Images

Retrieval Result

FE

Fig. 1. Schematic diagram of an image retrieval system.
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During feature extraction, a set of image features (sig-

natures) is computed from the image representation in the

pixel domain. This step usually comprises several intermediate

steps such as preprocessing, image transformation or statistical

model estimation. The ultimate aim is to design a set of image

descriptors which can unambiguously characterize the content

of an image. This fact implies an important chain of relations:

on the one hand, the feature extraction part strongly depends

on the type of image content, since buildings or objects for

example will most likely require a different set of image

features than textures or medical content. On the other hand,

similarity measurement consequently depends on the type of

image features which establishes the strong connection of both

building blocks. Comparing image signatures obtained from an

edge-detection system and texture features for example with

the same similarity function could be suboptimal for many

databases. In our work, we particularly focus on images which

exhibit texture characteristics. Since most publications on (tex-

ture) image retrieval solely aim at an improvement in retrieval

accuracy and often neglect computational issues, solutions

which are both computationally inexpensive and minimize the

retrieval error are rare. In a probabilistic framework, where

each image is represented by some statistical model and image

similarity is measured by a function of these models, we

have to deal with the trade-off between model complexity and

computational performance. Increasing the model complexity

to better capture image characteristics might lead to higher

retrieval rates on the one hand, but it is very likely that the

computational demand for feature extraction and/or similarity

measurement increases in a similar manner.

We consider two scenarios which impose computational

constraints on particular parts of the retrieval framework.

The scenarios differ in that possible performance bottlenecks

arise at different locations. The first scenario is the classic

retrieval scenario, where the model parameters of all database

images are calculated off-line and new images are added to the

database at a slow rate. Hence, overall runtime performance

is predominantly limited by similarity measurement which

inherently depends on the size of the image database. The

runtime impact of model parameter estimation and image

transformation is of secondary importance since both steps

have to be performed only once (i.e. for each new query). The

second retrieval scenario we discuss here has several facets

and imposes additional requirements on the building blocks

of the retrieval framework. First, we observe situations where

new images arrive at a high rate and have to be stored in

the database. At the same time, image queries are executed.

The computational demand for similarity measurement is still

the primary concern, however the complexity of parameter

estimation becomes an important issue. If the images are

represented in a domain other than spatial, the image trans-
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formation step possibly contributes a significant amount of

additional runtime as well. Other challenging situations occur

when online texture similarity measurement is required, e.g.

when then frames of an image stream have to be matched

to a limited set of query templates. Real-world examples for

that include video-controlled quality assurance in texture man-

ufacturing, or the detection of cancerous tissue during video-

colonoscopy. Computationally expensive parameter estimation

or image transformation can scale up to the limiting factors for

production throughput or complicate the diagnostic process.

In order to cover both retrieval scenarios we need a low-

complexity image transformation, a similarity measure which

exclusively depends on the image model parameters and an

efficient model parameter estimation procedure.

A. Related Work

Related work on the topic of texture image retrieval includes

a huge variety of publications in the last decade. Due to space-

limitations we focus on those approaches which are closely

related to the framework of probabilistic image retrieval. To

the best of our knowledge, the idea of a probabilistic approach

was first introduced by Vasconcelos and Lippman in [1] and

then taken up by several authors in the following years. Our ap-

proach is mainly motivated by their work presented in [2], [3]

as well as the work of Do and Vetterli in [4]. Both approaches

will be used as a reference for our retrieval experiments. In [3],

multivariate Gaussian Mixture Models (MGMM) are used to

model Discrete Cosine Transform (DCT) coefficients obtained

from overlapping sliding windows and Maximum-Likelihood

selection is employed for similarity measurement. In [4],

the pyramidal Discrete Wavelet Transform (DWT) is used to

decompose images and model the detail subband coefficients

by Generalized Gaussian distributions (GGD). A similarity

measure between two images is then computed using a closed-

form solution to the KL-divergence between GGDs. Hence,

the obtained retrieval framework allows efficient similarity

measurement by using the Maximum-Likelihood estimates

(MLEs) of the GGD distribution parameters of each wavelet

detail subband. However, the final similarity measure depends

on the assumption of subband independency which amounts

for a crucial simplification and indicates the trade-off be-

tween model complexity and computational performance. The

effect of assuming independency of the components in the

feature space is covered by Vasconcelos [5] in detail, with

the conclusion that independence has a negative impact on

the retrieval accuracy. In [6], Do and Vetterli present an

extension of the aforementioned probabilistic approach to

achieve rotational invariance. The new statistical model is

based on an overcomplete transform, known as the Steerable

Pyramid [7] and two particular forms of Hidden Markov

Trees (HMT) to capture coefficient dependencies across scales

and orientations. Image similarities are then measured by an

approximation of the KL-divergence between HMTs [8]. A

similar approach which follows the idea of measuring KL-

divergences is presented by Tzagkarakis et. al. [9] using

Symmetric Alpha-Stable distributions (SαS) to model the

wavelet detail subband coefficients. Since there exists no

closed-form solution for the KL-divergence in case of general

SαS distributions, the authors propose to use the characteristic

functions instead of the probability density functions (PDF) to

compute similarities. In [10], this approach is carried forward

to achieve rotational invariance by employing a Steerable

Pyramid approach together with alpha-stable modeling of the

subband coefficients and a Gaussianization procedure to obtain

a closed-form expression for the KL-divergence. Another in-

teresting approach is presented by de Ves et. al [11], where the

wavelet coefficients of the vertical and horizontal DWT detail

subbands are considered as realizations of a bivariate random

vector and the magnitude is modeled by a two-parameter

Gamma distribution. The authors report good retrieval results

using the Stationary Wavelet Transform (SWT, implemented

by the à-trous algorithm) as a substitution for the pyramidal

DWT to get rid of the shift-dependency problem (see Section

II-A). Again, the KL-divergence is then used for similarity

measurement.

B. Contribution

The contribution of this work is split into several parts:

we introduce a novel, probabilistic texture image retrieval

approach in the wavelet domain with the objective to strike

a balance between model complexity and computational per-

formance. In particular, we propose a set of statistical models

for the magnitudes of complex wavelet transform coefficients

which facilitate an easy derivation of closed-form expressions

for the corresponding KL-divergences. By compiling some

results form statistical literature on parameter estimation we

show that model parameters can be estimated in an efficient

manner which perfectly goes with the idea of lightweight

retrieval. To quantify the computational complexity of our

approach, we provide an in-depth analysis of the required

arithmetic operations for the main building blocks as well as

a comparative runtime study. This analysis confirms that our

method facilitates application to scenarios where low compu-

tational cost is a crucial requirement. From the viewpoint of

retrieval accuracy, the experimental results on a widely-used

texture database show higher or at least competitive retrieval

rates compared to previous research works. This is particularly

interesting since our models are less complex than some of the

presented reference approaches.

The remainder of the paper is organized as follows: in

Section II we introduce image representation in the wavelet

domain and the setting of probabilistic image retrieval. We

further discuss statistical models for wavelet transform co-

efficients and present closed-form expressions for the KL-

divergences. Model parameter estimation issues are investi-

gated in Section III, followed by a computational analysis for

the building blocks of our retrieval framework in Section IV.

Experimental results are then shown in Section V and Section

VI concludes the paper with a summary of the main points,

open problems and an outlook on future research.

II. STATISTICAL MODELS AND SIMILARITY

MEASUREMENT

First, we introduce some notational conventions: if not

stated otherwise, we use single indexing for the wavelet sub-



KWITT et al.: LIGHTWEIGHT PROBABILISTIC TEXTURE RETRIEVAL 3

band coefficients x1, . . . , xN and go without a complete speci-

fication of the concrete subband position in the decomposition

structure. Small boldface letters, such as a denote vectors,

big boldface letters such as A denote matrices. Distribution

parameters are denoted by Greek letters. In order to make

a quantitative statement about the quality of the statistical

models, we perform Chi-Square Goodness-of-Fit (GoF) tests

at the 5% significance level. The number of bins to compute

the Chi-Square test statistic is fixed to 0.3s, where s denotes

the sample standard deviation. This is the setting used in the

software DATAPLOT [12].

A. Image Representation

In the feature extraction step of our work, we leave the

spatial (pixel) domain and work in the wavelet domain instead.

This is motivated by several reasons: first, wavelets are a con-

venient way to obtain a multiscale representation of an image

which closely corresponds to the way the human visual system

processes information [13]–[15]. Second, we assume that this

multiscale representation allows to efficiently capture texture

characteristics by computing wavelet coefficient statistics.

Last, the characteristic shapes of the coefficient histograms

lead to simple statistical models which in turn lead to efficient

similarity measurement. We choose the Dual-Tree Complex

Wavelet Transform (DT-CWT) [16], since it overcomes two

shortcomings of the pyramidal DWT: lack of shift-invariance

and lack of directional selectivity, as is vividly illustrated and

explained in [17]. These shortcomings are particularly relevant

for image analysis purposes. Lack of shift-invariance implies

that singularities at different locations in an image lead to

different representations in the wavelet domain (i.e. different

coefficients). Hence, wavelet coefficients representing an edge

along an object contour are not necessarily large across all

scales which causes ringing artifacts when reconstruction is

done using just the coefficients at a specific scale. Of course,

the perfect reconstruction property guarantees that all artifacts

are canceled when computing the inverse DT-CWT using all

coefficients. The technical reason for the shift-dependency

problem is that the wavelet and scaling filter used to implement

the pyramidal DWT have finite support and the coefficients

are downsampled by two after each decomposition stage. As

a matter of fact, shift-dependency is a severe deficiency for

image analysis. The second shortcoming – lack of directionally

selectivity – is related to the fact that the filters of the DWT

are real functions and are thus supported on both sides of the

frequency axis. Since the 2-D DWT is usually implemented

by separate row- and column filtering (which is equivalent

to using tensor-product wavelets), this causes ambiguities in

distinguishing features oriented along ±45◦. All other features
oriented mostly along the vertical or horizontal direction are

lumped in the vertical and horizontal detail subbands. Since

orientation information can be an important characteristic for

some textures, better directional selectivity is desired. Both

deficiencies are eliminated to a certain extent by using the

DT-CWT at low computational overhead (see Section IV-A).

The basic idea is to use complex wavelets which are composed

of two real wavelets forming an approximate Hilbert transform

pair. Since this construction ensures that negative frequencies

are suppressed, aliasing effects are reduced and thus approx-

imate shift-invariance is guaranteed. Further, a higher degree

of directional selectivity is achieved with six complex detail

subbands at each decomposition stage. The detail subbands

are oriented along approximately ±15◦,±45◦ and ±75◦. A
schematic frequency tiling of the DT-CWT and DWT is shown

in Fig.2 for frequencies w2 > 0.

w2

w1

+15◦

+45◦

+75◦

−75◦

−45◦

−15◦

(a) DT-CWT

w2

w1

+90◦

±45◦

0◦

(b) DWT

Fig. 2. Schematic frequency tiling of the DT-CWT and DWT (w2 > 0).

B. Probabilistic Image Retrieval

We recapitulate some results from probabilistic, maximum

a-posteriori probability (MAP) image retrieval which con-

stitute the basis of our work. For a thorough treatment of

the decision-theoretic details, we refer to [18] and [19]. Let

I1, . . . , IL denote L database images. Each image is repre-

sented by some data vector xi = [xi1, . . . , xid]T ∈ X := Rd,

where X denotes the feature space and d denotes the feature

space dimensionality. The data vectors are obtained in the

feature extraction block of the retrieval system. We assume

that each image belongs to one of M image classes and that

each class has some associated class PDF pi(x), 1 ≤ i ≤ M .

Further, a variable Y ∈ {1, . . . ,M} signifies the class mem-

bership and P (Y = i) is the prior probability of class i. In
addition, let s : X → {1, . . . ,M} denote a similarity function

which assigns a query feature vector to one of the M image

classes. Minimization of the retrieval error is achieved using

the MAP similarity function

s(xq) = argmax
i

P (Y = i|xq), (1)

where xq denotes the feature vector of an arbitrary query

image Iq and P (Y = i|xq) denotes the posterior probability

of class i given xq . We assume that the elements of an

arbitrary feature vector x are d realizations of i.i.d. random

variables following some parametric PDF p(x|θi), 1 ≤ i ≤M .

Since, under the image retrieval formulation of [3], each image

constitutes its own class (i.e. M = L), the parameter vector
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TABLE I
PERCENTAGE OF REJECTED NULL-HYPOTHESIS FOR A SET OF

STATISTICAL MODELS AND IMAGE REPRESENTATIONS

Scale

Transform Subband Model 1 2 3

DWT Laplace 91.98 68.36 48.13
DWT GGD 38.30 17.51 22.70

DT-CWT Rayleigh 96.99 85.05 54.87
DT-CWT Gamma 62.64 38.26 13.02
DT-CWT Weibull 75.41 40.84 11.93

θi serves to identify the image (class). In case we apply the

Bayes rule to (1) and assume equal priors P (Y = i) = 1/M , it

can be shown that the resulting Maximum-Likelihood selection

rule is asymptotically (i.e. d→∞) equivalent to searching the

minimum of the KL-divergence between the PDF of the query

image model and the PDFs of the candidate image models,

given by

s(xq) = argmin
i

∫
D

p(x|θq) log
(
p(x|θq)
p(x|θi)

)
dx, (2)

with D denoting the domain of p(x|·) [20]. It is thus obvious

that the setup of probabilistic image retrieval strongly connects

the feature extraction and the similarity measurement block.

For computational reasons we favor closed-form expressions

of (2). Otherwise, we would have to resort to the discrete

version of the KL-divergence which requires a reasonable his-

togram binning. Another possible way to compute similarities

when there is no closed-form solution available, is to resort

to Monte-Carlo (MC) simulation. This means that we exploit

the fact that

1
S

S∑
k=1

[log(p(xqk |θq))− log(p(xqk|θi))] (3)

converges to the KL-divergence between p(x|θq) and p(x|θi)

as S →∞. For practical use we generate a random sample of

size S from the query image model p(·|θq) and then compute

(3). Obviously, this procedure is computationally expensive

since S has to be chosen reasonable large to minimize the

impact of the sample size. As a matter of fact, MC simulation

is impractical in a lightweight approach. However, we mention

it here since one reference approaches in our comparative

study comprises a mixture-model with no closed-form KL-

divergence.

C. DWT Detail Subband Models

Several statistical distributions have been proposed in liter-

ature to model the marginal detail subband coefficient distri-

butions of the pyramidal DWT. It is commonly accepted that

the coefficients are highly non-Gaussian, exhibit heavy-tails

and can be accurately modeled by a Generalized Gaussian

distribution [21]. In the remainder of this work, we use the

parametrization of [22], where the PDF of the GGD is given

by

p(x|α, β) =
β

2αΓ(1/β)
exp

(
−
∣∣∣x
α

∣∣∣)β

, (4)

with −∞ < x < ∞, α > 0 (scale) and β > 0 (shape).

For β = 2, the GGD is the Gaussian distribution, whereas

for β = 1 we obtain the Laplace distribution [23]. Parameter

estimation will be briefly discussed in Section III. Table I lists

the percentage of rejected null-hypothesis of the Chi-Square

GoF tests when using either Laplace or GGD to model the

marginal coefficient distributions of our database images (see

Section V). The GoF tests confirm, that the GGD should be the

model of choice due to the low percentage of rejected null-

hypothesis. A closed-form expression of the KL-divergence

between two GGDs pi := p(x|αi, βi) and pj := p(x|αj , βj)
is provided in [4] as

KL
GGD

(pi||pj) = log
(
βiαjΓ(1/βj)
βjαiΓ(1/βi)

)
+(

αi

αj

)βj Γ((βj + 1)/βi)
Γ(1/βi)

− 1
βi
,

(5)

where Γ(·) denotes the Gamma function [24]. Another way

to model the non-Gaussian nature of the coefficients is to use

zero-mean Gaussian mixture models (GMM) [25]. Although

there exists no closed-form expression for the KL-divergence

between two GMMs we mention the GMM model at this point

since we will need it to explain a model for the DT-CWT

detail subbands later. The reasoning for a GMM is built upon

the compression property (i.e. two-Population property [25])

of the DWT. By transforming a signal with the DWT we

obtain a sparse representation with a small number of large

coefficients and a large number of small coefficients. This

gives rise to a two component GMM: one Gaussian component

to model the large coefficients and one Gaussian component

to model the small coefficients. Given that the PDF for the

small coefficients is denoted by p(x|0, σ2
S) and the PDF for

the large coefficients is denoted by p(x|0, σ2
L), the PDF of the

two-component GMM can be written as

p(x) =
∑

i∈{S,L}
wip(x|0, σ2

i ), with
∑

i∈{S,L}
wi = 1, (6)

where wi denote the prior probabilities for the corresponding

components. Usually, the model parameters for the GMM are

estimated by an Expectation-Maximization (EM) algorithm

(see [18]). Both, the GGD and the GMM represent accurate

models for marginal distributions of the subband coefficients.

D. DT-CWT Detail Subband Models

In case of the DT-CWT, each detail subband coefficient

xi is complex-valued. We start with a very simple model

for the complex detail coefficient magnitudes and refine it

to enhance the goodness-of-fit. An exemplary histogram of

coefficient magnitudes |xi| is shown in Fig.3. Apparently,

candidate models are positively skewed distributions (i.e.

skewed to the right) which often arise in reliability and

life-span modeling [26]. Similar distributions can be also

observed in modeling the statistics (especially the amplitude)

of Synthetic Aperture Radar (SAR) data (see [27], [28]). In

order to derive a model for the coefficient magnitudes, we

first follow the naive approach of assuming that both the real

and imaginary component of the complex-valued signal can

be modeled by zero-mean Gaussian distributions with equal

variance. Under this assumption, it can easily be verified by a
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variable transformation to polar coordinates that the magnitude

follows a Rayleigh distribution with PDF

p(x|α) =
x

α2
exp

(
− x2

2α2

)
, (7)

0 < x <∞ and α > 0 (shape). The ML parameter estimates

have an explicit expression and are given in [23]. The KL-

divergence between two Rayleigh distributions pi := p(x|αi)
and pj := p(x|αj) is

KL
Rayleigh

(pi||pj) =
(
αi

αj

)2

+ 2 log
(
aj

ai

)
− 1. (8)

However, due to the high percentage of rejected null hypoth-

esis (see Table I), this first statistical model is probably not

flexible enough to describe the underlying data.

The next model we consider is the two-parameter Weibull

distribution which includes the Rayleigh distribution as a

special case. This is a reasonable choice since there are

more degrees of freedom to adapt to the data. In [29] we

exploited the Weibull distribution parameters for the purpose

of medical image classification and in [30] this model was first

successfully employed in texture image retrieval. The PDF of

a Weibull distribution is

p(x|α, β) =
α

β

(
x

β

)α−1

exp
{
−
(
x

β

)α}
, (9)

with 0 < x < ∞, α > 0 (shape) and β > 0 (scale).

For α = 2 and β =
√

2β (9) reduces to the Rayleigh

distribution. Solutions for the MLEs of β and α are again

given in [23] and will be discussed in Section III, together

with an alternative estimation method. Inserting the PDF of the

Weibull distribution into (2) leads to the following closed-form

expression for the KL-divergence between pi := p(x|αi, βi)
and pj := p(x|αj , βj),

KL
Weibull

(pi||pj) = Γ
(
αj

αi
+ 1
)(

βi

βj

)αj

+ log
(
β−αi

i αi

)−
log
(
β
−αj

j αj

)
+ log (βi)αi − log (βi)αj +

γαj

αi
− γ − 1,

(10)

where γ = 0.577216 denotes the Euler-Mascheroni constant.

Table I shows, that the Weibull distribution is a good statistical

model, especially for decomposition depths ≥ 2.
The third model we consider is the Gamma distribution,

which has previously been proposed as an alternative to the

Rayleigh distribution for modeling the magnitudes of Gabor

filter outputs [31]. The Gamma PDF is

p(x|α, β) =
β−αxα−1

Γ(α)
exp

(
−x
β

)
, (11)

with x < 0 < ∞, α > 0 (shape) and β > 0 (scale). Again,

there exists a closed-form expression for the KL-divergence

between the PDFs pi := p(x|αi, βi) and pj := p(x|αj , βj),

KL
Gamma

(pi||pj) = ψ(αi)(αi − αj)− αi+

log
(

Γ(αj)
Γ(αi)

)
+ αj log

(
βj

βi

)
+
αiβi

βj
,

(12)

where ψ(·) denotes the Digamma function [24]. The numbers

in Table I indicate that the Gamma distribution seems to be a

good model as well, with almost equal percentages of rejected

null-hypothesis compared to the Weibull distribution.

The last model we discuss here is a direct result of modeling

the DWT coefficients by GMMs (see Section II-C). Since the

real and imaginary components of the complex coefficients can

be fairly well modeled by a GGD, it seems reasonable to derive

the corresponding distribution for the absolute values. This has

already been done in [27], however with the result that the

PDF (termed Generalized Gaussian Rayleigh) has no analytic

expression and requires numerical integration. Fortunately, the

real and imaginary component can also be modeled by separate

GMMs. Relying on the same arguments that are used to derive

the Rayleigh distribution leads to a two-component mixture

of Rayleigh distributions (RMM) as a statistical model for the

absolute values. The parameters of the RMM are estimated

using an EM algorithm which is given in Appendix A. As with

GMMs, there exists no closed-form expression for the KL-

divergence and we have to resort the MC simulation. Although

the RMM is impractical for lightweight texture retrieval we use

it as a reference model for our comparative study. To visualize

the PDF shape of the discussed statistical models, Fig.3 shows

a histogram of DT-CWT coefficient magnitudes together with

the fitted PDFs.
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Fig. 3. Histogram (shaded) of DT-CWT wavelet coefficients magnitudes
|xi|, xi ∈ C together with fitted PDFs of the discussed statistical models
(second-level detail subband of image Fabric.0000, see Fig.5(a)).

E. A Final Similarity Measure

In the previous sections we discussed how to measure

similarity between the statistical wavelet coefficient models of

one subband. Yet, we do not have a final similarity measure

between two images. For that reason we follow the same

approach as in [4] and assume that the detail subbands of

the DT-CWT are independent. This allows application of the

chain-rule of entropy which leads to a simple final similarity

measure where we can sum up the KL-divergences over all

subbands [32]. To formalize this, let J denote the maximum
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decomposition depth, k denotes the subband index and K
denotes the number of subbands per scale. The final similarity

measure between two images Iq and Ii is defined as

S(Iq, Ii) :=
J∑

j=1

K∑
k=1

KL(psk
q ||psk

i ), (13)

where the superscripts s and k identify the PDF of the

statistical model for the k-th subband at decomposition level j.
Although, the independency assumption is likely to be violated

for any overcomplete transform, we neglect this fact for the

sake of computational simplicity. We further note, that the

KL-divergence is not a metric, since it violates the symmetry

property and the triangle inequality. To remedy the lack of

symmetry, we follow the approach of [33] and artificially sym-

metrize the KL-divergence. Let pi and pq denote two arbitrary

PDFs, then the symmetrized KL-divergence is defined as

∗
KL(pq||pi) :=

1
2

(KL(pi||pq) + KL(pq||pi)) . (14)

We use this symmetric version of the KL-divergence for all

experiments.

III. PARAMETER ESTIMATION

In this section we cover the issue of model parameter esti-

mation which is crucial to achieve good retrieval performance.

To the best of our knowledge, the issue of both precise and

computationally inexpensive estimation is often neglected in

research works on probabilistic image retrieval. We discuss

the two most prominent estimation methods in the context

of distribution parameter estimation: Maximum-Likelihood

estimation (MLE) and the method of Moment Matching (MM).

A. GGD Parameters

Since estimation of the GGD parameters has already been

extensively covered in literature, we only provide a brief

overview of the main results. Maximum Likelihood estimation

is studied in the work of Varanasi et al. [34] including both

joint parameter estimation and situations where one parameter

is already known. In image retrieval both parameters are

unknown and estimation of the shape parameter β requires

to find the root of a transcendental equation. Do and Vetterli

provide a Newton-Raphson algorithm in [4] which involves

computation of the Digamma and Trigamma function. For

the computational analysis in Section IV-C we refer to their

implementation. The starting value for the Newton-Raphson

iteration is usually obtained using the moment estimate of β,
presented by Birney et al. [35] and Mallat [36]. However, even

moment matching is challenging since it requires a numerical

solution to a function inversion problem. This problem can

either be solved using the combination of a lookup-table and

some sort of interpolation method, or by employing the ap-

proximation of Krupinski [37]. The author proposes to define

an invertible approximation to the aforementioned function

and solves a non-linear curve fitting problem for certain ranges

of β. Moment matching then reduces to a simple function

evaluation. In a very recent publication, Song [38] proposes

another alternative method to ML estimation of β. The idea

is based on exploiting a convex shape equation, leading to a

globally convergent and computationally appealing Newton-

Raphson algorithm which is free of any kind of Gamma

function. Furthermore, with probability tending to one, the

author shows that if we choose β̂1 ∈ [β,∞], where β de-

notes the true shape parameter, the Newton-Raphson iteration

converges to β for N → ∞. Hence, a good choice for β̂1

is 3, since most detail subband coefficient distributions of

natural images exhibit 0 < β < 3. This remedies at least

the starting value problem. In our retrieval experiments, we

assess the interesting question whether it is actually necessary

to compute ML estimates, or if it is enough to use moment

estimates with low computational requirements.

B. Weibull Parameters

We discuss two ML estimation methods for the parameters

α and β of the Weibull distribution. Our experiments show,

that by using a theoretical result from statistics, we can

significantly decrease the computational effort required to

determine α̂ and β̂. First, we present the direct approach of

using the log-likelihood function of the Weibull distribution.

For that reason, let x1, . . . , xN be a random sample drawn

from a Weibull distribution with parameters α, β. According
to [23], the MLE of α is the solution to

g(α) :=
N∑

i=1

xα
i log(xi)−K

N∑
i=1

xα
i −

1
α

N∑
i=1

xα
i = 0, (15)

with K := 1
N

∑N
i=1 log(xi). In order to solve (15) using

Newton-Raphson, we determine the first derivative ∂g/∂α as

g′(α) :=
∂g

∂α
=

N∑
i=1

xα
i log(xi)2−

K

(
N∑

i=1

xα
i log(xi)

)
+

1
α2

N∑
i=1

xα
i −

1
α

N∑
i=1

xα
i log(xi).

(16)

The MLE is then obtained by using the update step α̂n =
α̂n−1−g(α̂n−1)/g′(α̂n−1) for n ≥ 2. Subsequently, the MLE

of β has the explicit expression:

β̂ =

(
1
N

N∑
i=1

xα̂
i

)1/α̂

(17)

The starting value α̂1 is usually computed by moment match-

ing. Unfortunately, even that requires a numerical procedure,

since the parameter estimate α̂ is the solution to

Γ3 − 3Γ2Γ1 + 2Γ3
1

(Γ2 − Γ2
1)

3/2
− a3 = 0, (18)

where Γk := Γ(1 + k/α) and

a3 :=
1
N

∑N
i=1(xi − x)3[

1
N

∑N
i=1(xi − x)2

]3/2
(19)

denotes the sample skewness. A first approximation of α̂ to

solve (19) can be obtained from a α-versus-a3 table and linear

interpolation. However, as noted in [26], computational diffi-

culties can arise for ML estimation in cases where α < 2.2.
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The second, alternative estimation method we discuss is based

on the theoretical result, that if a random variable X follows

a Weibull distribution, then the random variable Y = log(X)
follows an Extreme Value distribution of type I (Gumbel

distribution). Now, let yi := log(xi) using the random sample

x1, . . . , xN of the Weibull distribution from above. The PDF

of the Gumbel distribution is

p(y|µ, σ) =
1
σ

exp
(
y − µ
σ

)
exp

{
− exp

(
y − µ
σ

)}
, (20)

with −∞ < y <∞, 0 < µ <∞ (location) and σ > 0 (scale).

This Extreme Value distribution might be though of as a Log-

Weibull distribution [26]. The MLE of σ requires a numerical

solution to

f(σ) := y − σ −
∑N

i=1 yi exp
(− yi

σ

)∑N
i=1 exp

(− yi

σ

) = 0, (21)

where y denotes the sample mean of the observations. We can

determine the first derivative of f(σ) w.r.t. σ as

f ′(σ) :=
∂f

∂σ
=

1
σ2

N∑
i=1

y2
i exp

(
−yi

σ

)
−

N∑
i=1

exp
(
−yi

σ

)
− 1
σ

N∑
i=1

yi exp
(
−yi

σ

) (22)

which now allows to employ the Newton-Raphson algorithm.

In contrast to the problematic computation of the starting value

α̂1 in case of the direct MLE approach from above, the starting

value σ̂1 can be easily obtained from the explicit expressions

of the moment estimates [26]

σ̂1 := σ̂ =
1
π

√
6s ≈ 0.779697s and µ̂ = y − γσ̂, (23)

where s denotes the sample standard deviation. Given that we

have determined a ML solution σ̂, the MLE µ̂ then directly

follows as

µ̂ = σ̂ log

(
1
N

N∑
i=1

exp
(yi

σ̂

))
. (24)

The only thing left to do is to transform the estimates (either

MLE or moment estimates) µ̂ and σ̂ to estimates α̂ and β̂ of

the Weibull parameters by using

α̂ = exp(σ̂) and β̂ =
1
µ̂
. (25)

As we have noted in case of the GGD parameters, we evaluate

whether the moment estimates lead to different retrieval results

when they are used instead of the MLEs for similarity mea-

surement. In what follows, we use the abbreviation Weibull-G

in order to refer to the Weibull parameter estimation method

via the Gumbel distribution.

C. Gamma Parameters

In order to estimate the parameters α and β of the Gamma

distribution, we follow the approach presented in [39]. Given

that x1, . . . , xN denotes a random sample drawn from a

Gamma distribution with parameters α and β, then the explicit

expression for the Newton-Raphson update step is

α̂n = α̂n−1 − log(α̂n−1)− ψ(α̂n−1)−M
1/α̂n−1 − ψ′(α̂n−1)

, (26)

for n ≥ 2, where ψ(·) denotes the Digamma function, ψ
′
(·)

denotes the Trigamma function and

M := log(x)− 1
N

N∑
i=1

log(xi). (27)

The MLE of β then follows as

β̂ =
µ̂

x
. (28)

We can significantly reduce the computational overhead to

evaluate the Digamma and Trigamma function by using a

lookup-table and linear interpolation for example. A starting

value α̂1 is obtained from the moment estimates [40]

α̂1 := α̂ =
(
x

s

)2

and β̂ =
s2

x
. (29)

Note, that no computationally expensive operations have to be

performed to estimate these starting values.

IV. COMPUTATIONAL ANALYSIS

In this section we present an in-depth computational anal-

ysis in terms of arithmetic operations for the main building

blocks of our image retrieval framework: image representation,

similarity measurement and parameter estimation. This anal-

ysis is a necessary step, since it allows to quantify the term

lightweight. We further present a comparative runtime analysis

using MATLAB implementations of the different estimation

methods and similarity measurement parts.

A. Image Representation

Besides its advantages for image analysis, the DT-CWT is

appealing from a computational point of view, since it can be

implemented very efficiently by four parallel pyramidal DWTs

using appropriate filter sets. Regarding space requirements,

the DT-CWT is an overcomplete transform with a redundancy

factor of four in case of 2-D images. In contrast, the DCT

(used in [5]) is non-redundant, the Steerable Pyramid [7] is

overcomplete by a factor of 4k/3 (k denotes the number of

orientation subbands) and the Stationary Wavelet Transform

(SWT) [41] is overcomplete by a factor of 3J , where J de-

notes the maximum decomposition depth. The computational

complexity of the DT-CWT is linear O(N) in the number of

input pixels N , since it requires computation of four parallel

DWT decompositions which are of linear complexity. Hence,

both DWT and DT-CWT differ only by a constant factor. For

comparison, the DCT, SWT, Steerable Pyramid and Gabor

wavelets (when implemented in the frequency domain) have

complexity O(N logN). However, in case of a block-based

DCT with 8 × 8 blocks, the logN term carries no weight

compared to a full-frame DCT.
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B. Similarity Measurement

In the classic retrieval scenario, the similarity measurement

part is most critical for runtime performance since each new

query image requires computation of the similarity measure

for all candidate images in the database. In case the statistical

model parameters of the database images are estimated at the

time of storage, the runtime performance of the retrieval task

is completely determined by the performance of the similarity

measurement process. Although all presented KL-divergences

can be computed with constant complexity (except for the

RMM model, where we use MC simulation), it is interesting

to take a closer look at the required arithmetic operations.

By arithmetic operations we understand the number of ad-

ditions/subtractions and multiplications/divisions (basic arith-

metic operations) as well as the computationally expensive

log, ex and xr operations with x, r ∈ R. We further take

into account any non-trivial operation, such as the evaluation

of the Gamma Γ(·) or the Digamma ψ(·) function. To avoid

numerical difficulties, we compute log Γ(·) instead of Γ(·)
at the cost of perhaps one additional exponentiation. The

function values of log Γ(·) and ψ(·) are obtained by employing

lookup-tables and the method of linear interpolation. Both

operations can be performed with constant complexity and

only require basic arithmetic (e.g. 5 additions/subtractions, 4
multiplications/divisions and 2 table-lookups in our implemen-

tation). To conduct a relative runtime measurement, all KL-

divergences are implemented in MATLAB. The runtime is

measured on a Intel Core2 Duo 2.66Ghz system with 2GB

of memory running MATLAB 7.6. We emphasize that the

focus is on relative runtime differences not on absolute values.

Given that the statistical model parameters of an arbitrary

wavelet subband are available (i.e. pre-computed) for the

query and all L database images, we simulate a search for

L = 104. Table II lists the number of arithmetic operations

for each KL-divergence as well as the runtime relative to

the longest runtime (marked bold). As we can see, the KL-

divergence for the GGD has the worst performance, due to the

computations of log Γ(·). The KL-divergence of the Gamma

model shows slightly worse runtime performance than the KL-

divergence for the Weibull model which can be attributed to

computation of ψ(·) and the additional log Γ(·). The Rayleigh
KL-divergence performs best but unfortunately the model as

such is too inflexible, as we have seen in Section II-D. Last,

we note that since all KL-divergences have a closed-form

expression, no histogram computation and discrete version

of the KL-divergence is required. In practice, this is a huge

advantage since we only have to store the model parameters

per image and further avoid the search for a reasonable

histogram binning.

C. Parameter Estimation

Except for the Rayleigh model, all ML parameter estimation

procedures require numerical root-finding to obtain estimates.

Since we can determine the derivatives of the log-likelihood

functions w.r.t. the relevant parameters in all cases, it is rea-

sonable to use the Newton-Raphson algorithm due to its good

convergence properties. However, optimal (i.e. quadratic) con-

TABLE II
NUMBER OF ARITHMETIC OPERATIONS FOR SIMILARITY MEASUREMENT

BETWEEN TWO ARBITRARY SUBBANDS

Model ± ×, ex, xr
log Γ ψ

Relative
÷ log Runtime

GGD, see (5) 6 10 3 4 0 1.00
Gamma, see (12) 6 5 1 2 1 0.56
Weibull, see (10) 8 9 8 1 0 0.31
Rayleigh, see (8) 2 4 1 0 0 0.01

TABLE III
NUMBER OF ARITHMETIC OPERATIONS FOR NEWTON-RAPHSON AS A

FUNCTION OF THE SIGNAL LENGTHN

Model ± ×, | · | ex, xr
ψ, ψ′ Relative

÷ log Runtime

GGD, MLE [4] 3N 2N N 2N 2 0.76
GGD, Song [38] 4N 3N N 2N 1.00

Weibull-G 4N 3N N 0.21
Weibull 4N 2N 2N 0.62
Gamma 2N 4 N 2 0.21

vergence is only possible if the first estimate (starting value)

is close to the actual root. To fulfill this requirement, we use

moment estimates for the Gamma, Weibull and GGD model.

By employing the invertible approximation proposed in [37] in

case of the GGD and the Weibull-G moment matching method

in case of the Weibull distribution, we can at least eliminate the

issue of computationally intensive starting value calculations.

The exact computational requirements for moment matching

will be discussed later. To get an impression of the computa-

tional demand in each iteration step of the Newton-Raphson

algorithm, we determine the number of required arithmetic op-

erations. For the exact expressions of the update steps in case

of the GGD MLE approach and Song’s method, we refer to [4]

and [38]. We optimize computation in such a way, that terms

(e.g. summations, logarithms, etc.) which occur repeatedly in

an iteration step are temporary stored for further use. Since

many operations depend on the signal length N , we omit any

additional constants for readability reasons in these cases. The

number of arithmetic operations per iteration and the runtime

performance of the ML estimation procedures relative to the

longest runtime (marked bold) are listed Table III. Further,

Fig.4 shows a boxplot of the mean estimation times over a

set of parameter values for all ML estimation approaches.

For each parameter value, estimation is repeated 100 times on

105 random numbers drawn from the corresponding statistical

model. ML estimation using the Weibull-G approach shows

the best performance, with only one iteration on average to

reach convergence (i.e. absolute difference of two successive

estimates is less than 10−6). In contrast, direct estimation of

the Weibull parameters is less competitive, mainly due to the

impact of starting value computation which takes about 50% of

the total runtime. The Gamma MLE procedure performs good

as well, although the number of iterations is the limiting factor

here, since one Newton-Raphson update step requires fewer

arithmetic operations compared to the Weibull-G approach.

As expected, the complex update step of the GGD model with

more log, xr , ex operations leads to an increase in computation

time compared to the Weibull-G or Gamma model. Regarding

the number of iterations, we confirm the results of [4] with
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Fig. 4. Boxplot of the model parameter estimation times, together with
the average number of Newton-Raphson iterations to reach the defined
convergence bound.

TABLE IV
NUMBER OF ARITHMETIC OPERATIONS FOR MOMENT MATCHING AS A

FUNCTION OF THE SIGNAL LENGTHN

Model ± ×, | · | ex, xr
log Γ

Relative
÷ log Runtime

GGD [37] 2N N N 3 2 0.15
Weibull-G, see (23) 3N N N 1.00
Gamma, see (29) 3N N 0.32

four iterations on average to reach convergence. The estimation

approach proposed by Song [38] shows the worst runtime

performance and a quite strong dispersion as well. A closer

look at the number of iterations for each shape parameter

reveals an average of 10 iterations for β < 1.0 which slightly

distorts the average. This seems reasonable, since the starting

value of β̂1 = 3 is actually far-off the true value in these

situations. We omit the estimation effort for the RMM, since

comparing an EM algorithm to MLE procedures is not fair.

The estimation time for a RMM subband model with 65536
coefficients is in the order of seconds, i.e. by a factor of at least

one magnitude slower than the method of Song for example.

As a last point, we assess the number of arithmetic opera-

tions to compute moment estimates of the GGD, Gamma and

Weibull distribution. A careful analysis of moment estimation

is reasonable, since we use these estimates as a fast alternative

to the MLEs in our experiments. The corresponding numbers

are listed in Table IV. We emphasize, that this is the total effort

to compute a first parameter estimate. No iterative procedures

are necessary and mostly basic arithmetic operations are

performed. Only in case of Weibull-G moment estimation,

the logarithm operation is dependent on the signal length

N . This fact is reflected in the relative runtime differences

because the logarithm is an expensive operation compared

to addition/subtraction or multiplication/division. The fast ap-

proximative GGD parameter estimation of [37] shows the best

performance since the expensive computations like log Γ(·),
ex or log do not depend on the signal length N . Further, this

approach apparently benefits from our lookup-table implemen-

tation of log Γ(·). Regarding moment estimation of the Gamma

parameters, we note that this approach basically requires to

compute the sample mean and sample standard deviation and

hence performs at a competitive level compared to [37] as

well.

V. EXPERIMENTAL RESULTS

The objective of the experimental section is to cover three

important issues: first, we address the impact of either using

moment estimates or ML estimates on the retrieval results.

Second, we compare the retrieval performance of the DT-

CWT and the proposed statistical models to previous research

work, including the approaches presented in [3], [4] and the

classic mean/standard deviation features of [42] (abbreviated

by Classic). Third, based on the computational analysis of the

previous section and the achieved retrieval rates, we intend to

give a guideline for lightweight retrieval w.r.t. the scenarios of

Section I.

We work with a selection of images from the popular

MIT Vision Texture Database (VisTex) [43], consisting of 40
textures which have already been extensively used in texture

image retrieval literature. All images are first converted to the

LUV color model and only the luminance (L) channel infor-

mation is retained. The 512×512 pixel versions of the textures

are split into 16 non-overlapping subimages (128×128 pixel).

The only preprocessing step is to normalize the subimages

by subtracting the pixel mean and dividing by the standard

deviation. A selection of example textures is shown in Fig.5.

Regarding the filter sets for the wavelet transforms, we use the

CDF 9/7 filter [44] for the pyramidal DWT and Kingsbury’s

Q-Shift (14,14)-tap filters (levels ≥ 2) in combination with

(13,19)-tap near-orthogonal filters (level 1) for the DT-CWT

(see [45]).

The experimental setup for the reference approach of [3]

is as follows: we extract the first 16 DCT coefficients (in

zigzag scan order) of a sliding 8 × 8 window (step size of

two pixel in vertical and horizontal direction) as features and

then fit a multivariate GMM with eight components using the

classic EM algorithm. The EM algorithm terminates if either

200 iterations are reached or the log-likelihood difference be-

tween two successive iterations is less than 10−6. Covariance

matrices are restricted to diagonal matrices and are regularized

by a small ǫ > 0 to ensure positive definiteness. The starting

parameters of the EM algorithm are initialized according to

[20], where the author uses the Linde-Buzo-Gray (LBG, aka

generalized Lloyd) algorithm [46] with the codeword splitting

procedure proposed by Gray [47]. LBG terminates when the

difference between the average distortions of two successive

iterations is less than 10−3. For similarity measurement, we

compute the feature-likelihood as proposed in [3]. Features

are extracted from the first 16 DCT coefficients of all non–

overlapping 8×8 blocks. Hence, we obtain 256 feature vectors

for each query image. We further evaluate the impact of using

only every second or every fourth block. This gives 128 or

64 query feature vectors (QV), resp. Other possible choices

for similarity measurement are the Asymptotic-Likelihood

approximation of [20] or the approximations proposed by

Goldberger [48]. In what follows, we abbreviate the approach

by DCT (MGMM, EM) and additionally add the number of

extracted QVs when necessary.

To evaluate the performance of the retrieval system we

determine the number of correctly retrieved images among

the top K matches. A retrieval result is correct if an image of
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(a) Fabric.0000 (b) Food.0000 (c) Bark.0000

(d) Bark.0009 (e) Brick.0001 (f) Metal.0000

Fig. 5. Six example textures of the VisTex [43] database.

the same parent is retrieved. Formally, let Q := {r1, . . . , rB}
denote the set of correct membership indices to a given

query, where B denotes the number of subimages. Further,

let {q1, . . . , qK} denote the index set of the top K matches.

The percentage of correctly retrieved images is then calculated

as follows:

sK =
1
B

K∑
i=1

1Q(qi), with 1Q(x) :=

{
1, if x ∈ Q,
0, else

(30)

Since each image is split into 16 subimages, we set K =
B = 16. Table V lists the percentage of correctly retrieved

images among the top K = 16 matches with decomposition

depths less than three. Table VI provides detailed texture-

specific results, where the highest retrieval rates per texture

are marked bold (in case of no ties).

In case of the pyramidal DWT, we can almost reproduce

the results of [4] and further observe a slight trade-off be-

tween estimation accuracy and retrieval performance when

comparing the rates for ML estimation and moment matching.

Regarding the DT-CWT results, the situation is somewhat

different. The estimation accuracy vs. retrieval rate trade-off

is only evident in case of the Weibull-G model, since moment

matching for the Gamma parameters leads to the second-best

overall retrieval results with 81.73%. This is 3.21 percentage

points less than the DCT (MGMM, EM, 256) rate and 0.94
percentage points above the rate of the DT-CWT (RMM,

EM) reference model. Figures 6(a) and 6(b) show a receiver

operating characteristic (ROC) curve comparison when relying

on either moment matching or ML estimation. The figures

are obtained by plotting the retrieval rate 100 · sK as a

function of the number of retrieved images K . We conclude,

that the differences in retrieval accuracy are rather small, no

matter which estimation method we choose. Nevertheless, our

observations lead to the presumption that ML estimation does

not necessarily lead to the best retrieval results.

With respect to the quality of the proposed statistical models

for the DT-CWT coefficient magnitudes, we see that the DT-

CWT (Weibull-G, MLE) as well as the DT-CWT (Gamma,

MM) approach clearly improve retrieval performance by 5.43
and 3.91 percentage points, resp., compared to the DWT

(GGD, MLE) results of [4]. Even the combinations DT-CWT

(Rayleigh, MLE) and DT-CWT (Classic) show acceptable

performance, although the Rayleigh model is a very coarse

approximation to the distribution of the complex coefficient

magnitudes (see Table I) and the Classic features do not

assume any statistical model at all. We thus conjecture that

the increase in retrieval performance cannot be exclusively

attributed to the statistical models, but in a large part to

the choice of image representation. The advantages of the

DT-CWT over the DWT (see Section II-A) are definitely

reflected in the experimental results. To visualize the retrieval

performance of the top approaches, Fig.6(c) shows a ROC

curve comparison between the DWT (GGD, MLE) [4], DT-

CWT (Gamma, MM), DT-CWT (RMM, EM) and the DCT

(MGMM, EM, 256) [3] approach. It is evident that the

slope of the curves becomes more shallow as the number of

retrieved images K increases. This implies that the difference

in retrieval accuracy becomes increasingly relevant as K
grows, since significantly more retrieved images are required

to achieve equal rates.

With respect to the two retrieval scenarios we mentioned in

Section I, it seems plausible that not all presented approaches

are applicable in both situations. Considering the first scenario

from a purely computational viewpoint, all models except the

DT-CWT (RMM, EM) are practicable since the complexity of

similarity measurement is the primary concern. However, we

emphasize that the numbers in Table II indicate considerable

runtime differences for the KL-divergences which can be a

relevant issue in cases of large databases. In case we accept to

to trade computational performance for retrieval accuracy, the

DCT (MGMM, EM, 256) approach of [3] is the first choice.

Although the computation of the feature likelihood is expen-

sive compared to constant complexity similarity measurement

with closed-form expressions for the KL-divergences, we get a

remarkable increase of 3.21 percentage points. Decreasing the

computational cost by reducing the number of QVs to 64 still

leads to the best results with 82.28%, however, the margin to

the DT-CWT (Gamma, MM) approach shrinks to only 0.55%.

Taking the retrieval results into account, we recommend the

the DT-CWT (Gamma, MM) approach for very large databases

where no indexing is in place and favor the DCT (MGMM,

EM) approach otherwise. With respect to the second retrieval

scenario, the situation is different. Virtually all parts of the

retrieval system are constrained by computational limitations,

hence only a few approaches remain practicable. As a general

guideline, we propose to switch from ML estimates to moment

estimates since we cannot report any significant decrease in

retrieval performance. With the results of our computational

study in mind, we favor the DT-CWT (Gamma, MM) approach

which achieves constant complexity similarity measurement,

linear-complexity parameter estimation and linear-complexity

image transformation at the second-highest retrieval rate of

our experiments.

VI. CONCLUSION

In this work, we analyzed the framework of probabilis-

tic texture retrieval in the wavelet domain from the view-

points of retrieval accuracy and computational performance.
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TABLE V
TOPK = 16 RETRIEVAL RATES [%]

Scales
DT-CWT DWT

DCT & MGMM [3]
Rayleigh

Gamma Weibull-G
Classic RMM

GGD [4]
Classic

MLE MM MLE MM MLE MM

1 62.96 72.83 73.07 71.80 71.94 67.49 74.25 67.53 67.27 59.77 84.94 (256 QV)
1,2 68.44 77.27 77.74 76.11 76.04 70.91 77.93 74.43 73.83 64.55 84.53 (128 QV)
1,2,3 73.96 81.06 81.73 80.21 79.61 75.99 80.79 76.30 75.65 65.50 82.28 (64 QV)
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Fig. 6. ROC curves of the retrieval rate as a function of the number of retrieved images K .

TABLE VI
PER-TEXTURE RETRIEVAL RATES (K = 16) [%]

Texture

DWT DT-CWT
DCT & MGMM
(256 QV) [3]

GGD [4]
Rayleigh

Weibull Gamma
RMM

MLE MM MLE MM MLE MM

Bark.0000 60.16 55.86 54.69 64.45 63.67 62.50 55.47 60.94 53.12
Bark.0006 52.34 50.78 49.22 57.81 56.25 60.16 63.67 58.20 71.48
Bark.0008 72.66 69.92 74.22 82.81 78.12 81.64 86.72 88.28 92.58
Bark.0009 58.20 57.81 58.98 64.84 63.28 63.67 63.67 58.98 70.70
Brick.0001 71.09 72.27 76.95 80.08 78.12 79.69 83.98 79.30 96.09
Brick.0004 63.67 61.33 50.78 70.70 73.44 75.39 74.61 71.09 67.19
Brick.0005 85.16 77.73 82.03 92.19 92.58 92.58 90.23 93.36 76.95
Buildings.0009 93.36 92.97 91.41 94.92 96.09 95.70 96.09 94.53 93.36
Fabric.0000 85.55 85.16 80.08 91.41 91.02 94.14 96.48 95.31 99.61
Fabric.0004 64.45 65.62 63.28 66.41 66.41 66.41 67.97 64.45 59.77
Fabric.0007 96.88 96.88 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Fabric.0009 82.81 80.86 89.06 99.61 99.61 99.61 99.61 94.53 95.31
Fabric.0011 82.81 83.59 71.09 78.52 75.78 78.91 83.98 85.55 91.80
Fabric.0014 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Fabric.0015 99.61 99.61 94.92 98.44 98.05 99.22 99.22 99.61 99.61
Fabric.0017 86.33 86.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Fabric.0018 89.84 90.23 99.22 100.00 100.00 100.00 100.00 100.00 99.61
Flowers.0005 58.20 55.86 53.12 65.23 65.62 69.53 66.41 69.53 94.14
Food.0000 78.52 75.00 82.42 92.19 92.58 94.53 96.09 96.88 100.00
Food.0005 86.72 86.33 93.36 97.27 97.66 98.05 99.61 99.22 98.83
Food.0008 96.48 97.27 90.62 93.75 89.06 99.61 99.61 98.83 100.00
Grass.0001 64.06 64.84 57.42 71.48 69.14 69.14 67.97 69.53 87.11
Leaves.0008 64.45 66.80 79.69 72.66 71.88 66.80 69.14 75.39 59.77
Leaves.0010 34.38 32.03 21.48 32.42 32.81 36.33 37.89 36.72 66.02
Leaves.0011 82.42 78.52 76.56 84.77 82.42 82.81 78.52 80.08 94.92
Leaves.0012 73.83 76.95 69.14 75.78 75.78 78.52 86.33 82.81 94.14
Leaves.0016 83.98 81.25 55.08 80.08 75.39 80.08 83.20 67.97 89.45
Metal.0000 68.75 69.14 66.80 66.80 67.97 71.48 73.83 66.80 82.81
Metal.0002 99.61 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Misc.0002 76.56 76.17 66.02 76.95 80.08 81.64 85.16 83.98 96.09
Sand.0000 76.95 76.95 81.25 91.02 88.67 92.58 92.58 94.14 94.53
Stone.0001 48.83 59.77 69.53 60.94 59.38 57.81 58.59 58.20 32.42
Stone.0004 81.25 80.86 73.83 78.91 78.52 80.86 85.16 80.86 85.55
Terrain.0010 56.64 52.73 50.78 57.81 57.81 60.55 60.16 48.05 64.45
Tile.0001 51.56 51.95 38.28 51.56 49.61 54.30 56.25 54.69 76.17
Tile.0004 99.61 97.66 82.03 98.83 99.22 99.22 98.44 96.48 98.44
Tile.0007 99.61 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Water.0005 96.48 96.09 92.97 94.14 95.70 96.88 96.09 92.19 96.48
Wood.0001 47.66 45.70 26.56 29.30 30.08 32.42 30.47 37.50 38.28
Wood.0002 80.47 77.34 95.31 94.53 92.58 89.84 85.94 97.66 80.86
Avg. 76.30 75.65 73.96 80.21 79.61 81.06 81.73 80.79 84.94
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We introduced a novel retrieval approach based on image

representation in the complex wavelet domain and several

statistical models for the magnitude of the complex transform

coefficients. We further presented closed-form expressions for

the KL-divergences between the proposed statistical models,

thus allowing constant complexity similarity measurement. By

assessing the impact of using moment estimates instead of

ML estimates for computing the KL-divergence, we showed

that the difference between estimation and retrieval accuracy

is negligible and we can achieve a remarkable improvement

w.r.t. computational performance. Unexpectedly, the DT-CWT

(Gamma, MM) model even lead to the second-best retrieval

rate. In general, the experimental results indicate superior

performance of our approach compared to [4] and competitive

performance to a significantly more complex method [3] (in

terms of computational cost). In addition, we observed that

all DT-CWT based approaches apparently benefit from the

transform-specific advantages of the DT-CWT over the pyra-

midal DWT. Future research includes three particular points:

first, we plan to evaluate the quality of our models for natural

images. Second, we focus on a rotational-invariant extension

while keeping the computational cost as low as possible. Third,

the reasonable incorporation of color information is still an

open issue and poses a challenging task.

APPENDIX A

EM ALGORITHM FOR RAYLEIGH MIXTURES

The following steps provide an EM algorithm for estimating

the parameters of a K-component Rayleigh Mixture Model

(RMM). Let x1, . . . , xN denote a sample drawn from the

RMM model and let πk denote the prior probability of

selecting the k-th component. Further, let π = [π1, . . . , πK ]
and α = [α1, . . . , αK ]. The EM steps are as follows:

1) Initialize: θ(0) =
[
α(0) π(0)

]
and m← 0

2) E-Step: Evaluate the conditional probability of selecting

component k given datapoint xn and current model

parameters θ(m) as follows:

p(m)(k|n) =
π

(m)
k p

(
xn|α(m)

k

)
∑

j π
(m)
j p

(
xn|α(m)

j

) , (31)

3) M-Step: Determine π
(m+1)
k , α

(m+1)
k ∀k as follows:

π
(m+1)
k =

1
N

N∑
n=1

p(m)(k|n) (32)

α
(m+1)
k =

∑N
n=1 p

(m)(k|n)x2
n

2
∑N

n=1 p
(m)(k|n)

(33)

4) Evaluate the log-likelihood log p
(
x|θ(m+1)

)
as fol-

lows:
N∑

n=1

log

{
K∑

k=1

π
(m+1)
k p

(
xn|α(m+1)

k

)}
(34)

and check for convergence of the log-likelihood, i.e.

| log p
(
x|θ(m+1)

)
− log p

(
x|θ(m)

)
| < ǫ with ǫ = 1−6

for example. In case the termination criteria is not met,

set m← m+ 1 and goto Step 2.
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