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ABSTRACT

In this paper we present a novel watermark detector for additive

spread-spectrum watermarking in the wavelet transform domain of

color images. We propose to model the highly correlated DWT sub-

bands of the RGB color channels by multivariate power-exponential

distributions. This statistical model is then exploited to derive a

likelihood ratio test for watermark detection. Our results indicate

that joint statistical modeling of color DWT detail subbands leads to

increased detection performance compared to previous approaches,

namely watermarking of the luminance channel only, decorrelating

the color bands, or relying on a joint Gaussian host signal model.

Index Terms— Watermark Detection, Power-Exponential Dis-

tribution, Color Images, Wavelet Transform

1. INTRODUCTION

Watermarking has been proposed as a technology to ensure copy-

right protection by embedding an imperceptible, yet detectable sig-

nal in digital multimedia content such as images or video. Most of

the watermarking research focuses on grayscale images. The exten-

sion to color image watermarking is usually accomplished by mark-

ing only the luminance channel or by processing each color channel

separately [1]. Alternatively, the watermark can be embedded only

in certain bands such as the blue channel since the human eye is less

sensitive to this frequency range [2]. Nevertheless, for best detection

performance all color channels should contribute to the watermark

signal.

For blind watermarking, i.e. when detection is performed with-

out reference to the unwatermarked host signal, the host interferes

with the watermark signal. Detection performance can be signifi-

cantly improved by accurately modeling the host signal noise [3].

However, expressing the joint statistical distribution of transform co-

efficients across correlated color channels for watermark detection

is tedious and has so far been proposed for the Gaussian host signal

case only [4].

The contribution of our work is the derivation of a novel water-

mark detection scheme for color image watermarking. We propose

to use a multivariate statistical model to accurately capture wavelet

detail subband statistics and dependencies across RGB color chan-

nels. We observe that watermark detection performance is improved

compared to watermarking the luminance channel only, decorrelat-

ing the color bands, or relying on a joint Gaussian host signal model.

The remainder of this paper is structured as follows: Section 2

gives a brief overview of related work on the topic of color image

watermarking. In Section 3 we introduce the statistical model, de-

rive the novel watermark detector and discuss parameter estimation
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as well as threshold computation. Section 4 presents experimental

results and a comparative study, followed by a summary of the main

points and an outlook on future research in Section 5.

2. WATERMARK DETECTION IN COLOR IMAGES

Most of the watermarking research focuses on grayscale image wa-

termarking. For color images, it is common practice to mark the

luminance band, disregarding the chromatic bands. However, it is

well known that the human visual system is least sensitive to the

yellow-blue channel in the opponent representation of color, thus

the watermark signal should be allocated to that band [2, 5]. In this

paper we focus not on perceptual shaping of the watermark signal

but on detecting the watermark in highly correlated color channels

where the watermark is embedded with constant strength. A direct

application might be a CMOS image sensor with watermarking ca-

pabilities [6] adding a spread-spectrum watermark to RGB data.

Barni et al. [4] investigate color watermarking in the full-frame

DCT domain and compare against luminance-channel only wa-

termarking. The same watermark sequence is added to the mid-

frequency transform coefficients of all three RGB bands. On the

detector side, they employ a linear correlator (LC) and take into

account the correlation between color channels for the computa-

tion of the detection threshold. Even for the simple LC detector,

the derivation of the detection statistic parameters under the null-

hypothesis (no watermark) is quite involved. Therefore, the same

authors consider to decorrelate the RGB color bands using the

Karhunen-Loeve Transform (KLT) so that a joint statistical model

of the multi-channel image coefficients becomes feasible [1]. They

employ a Weibull model for the absolute values of DFT transform

coefficients and derive a Likelihood-Ratio Test (LRT) assuming the

transform coefficients are statistically independent. Some caution

is in place here: first, decorrelating the color channels does not

guarantee that the transform domain coefficients across bands are

mutually decorrelated as well [7], and second, decorrelation does

not imply statistical independence.

It is well known that DWT and DCT coefficients of a single

color channel can be accurately modeled by a Generalized Gaussian

Distribution (GGD), leading to improved detection performance [3].

In the next section, we derive a detector based on the multivariate

power-exponential (MPE) distribution jointly modeling the DWT

subband coefficients of color images. For a comparative study on

detection performance, we implement the watermarking approaches

described above [4, 1, 3] in the DWT domain.

3. STATISTICALWATERMARK DETECTION

In this section we introduce a Likelihood-Ratio Test for watermark

detection in host signal noise which follows a multivariate power-
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Fig. 1. PDF of MPE2 (0,Σ, 0.4)

exponential (MPE) distribution and discuss threshold determination

as well as parameter estimation issues. This noise model for wavelet

detail subband coefficients has already been successfully applied in

the context of statistical color image retrieval [8] for example. In the

remainder of the paper, we follow the convention that small boldface

letters, such as x, denote vectors and big boldface letters, such as

Σ, denote matrices. First, the probability density function (PDF) of

the multivariate power-exponential distribution with dimensionality

n (MPEn) is given by

p(x;µ, Σ, β) =
nΓ
`

n
2

´
πn/2Γ

“
1 + n

2β

”
21+ n

2β

·

|Σ|−1/2 exp
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where Σ is a positive-definite symmetric n× n matrix, β ∈ (0,∞)
denotes the shape parameter and µ ∈ Rn denotes the location vec-

tor. The PDF of a MPE2 (0,Σ, 0.4) with Σ =
`

1 0.6
0.6 1

´
is shown

in Figure 1. We can reduce the number of free parameters: since

we aim at modeling wavelet coefficient distributions, it is reasonable

to assume zero mean. Second, we try to capture the joint distribu-

tion of wavelet coefficients from subbands of the same orientation

and scale but from different color channels. We assume RGB im-

ages, thus we have three color bands and n = 3. The main reason

for choosing a multivariate statistical model is the high correlation

which can be observed between the same wavelet detail subbands of

different color image channels (see Fig. 2). On all our test images

(see Fig. 4) we observe a linear correlation of ≥ 0.8. We further

note that the statistical model of Eq. (1) is a special case of the Kotz-

type family of distributions (see [9] for example). In what follows,

we write X ∼ MPEn(Σ, β) when X follows a MPEn(0,Σ, β)
distribution.

3.1. Parameter Estimation

In this work parameter estimation of the MPEn noise model is ac-

complished using the method of moments by matching the variance

and Mardia’s multivariate Kurtosis coefficient [10, 11] to their em-

pirical estimates. Let X ∼ MPEn(Σ, β), then the variance of X,

denoted by V(X), is given by

V(X) =
2

1
β Γ
“

n+2
2β

”
nΓ
“

n
2β

” Σ. (2)
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Fig. 2. Scatter-plot of the HL subband coefficients of the R,G and B

channel of the Island image at decomposition level two.
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Fig. 3. Histogram and kernel density fit for the shape parameter β̂
over all 24 Kodak test images.

Mardia’s multivariate Kurtosis coefficient is defined as

γ2(X) = E
»“

(X − µ)T Σ−1(X − µ)
”2
–
− n(n + 2) (3)

which leads to

γ2(X) =
n2Γ

“
n
2β

”
Γ
“

n+4
2β

”
Γ2
“

n+2
2β

” − n(n + 2) (4)

in case of a MPEn(Σ, β) distribution. Given that S denotes the

classic sample variance (setting µ = 0) we can estimate γ2(X) by

γ̂2(x1, . . . , xm) =
1

m

mX
i=1

“
xT

i S−1xi

”2

− n(n + 2). (5)

from our data x1, . . . ,xm where m denotes the number of wavelet

coefficients in each target subband. In the first step we estimate β

and then use β̂ to obtain an estimate for Σ. Figure 3 shows a his-

togram of the estimated shape parameters over a range of test im-

ages. We note that β = 1 corresponds to a multivariate Gaussian

distribution.

3.2. Watermark Embedding and Detection Problem

After decomposing all three color channels separately, we ar-

range the wavelet coefficients of the three second-level HL sub-

bands columnwise in a m × 3 signal matrix X. To generate

the watermark matrix, we first create a bipolar, one-dimensional



pseudo-random watermark sequence w = [w1, . . . , wm]T with

elements wi ∈ {+1,−1} (depending on a secret key K). This

sequence is used to construct a m × 3 dimensional watermark ma-

trix W = [wT wT wT ] by columnwise duplicating the watermark

vector (column vector). According to the rule of additive spread-

spectrum watermarking, W is then added to the signal matrix by

Y = X+αW, where α ∈ R+ denotes the embedding strength. We

could choose a separate embedding strength for each signal dimen-

sion, but for the sake of readability we focus on the most simple case

here. Based on this watermarking setting, we can now formulate the

two hypothesis for our signal detection problem:

H0 : Y = X (not watermarked)

H1 : Y = X + αW (watermarked)
(6)

Here, H0 is termed the null-hypothesis (not watermarked) and H1

denotes the alternative hypothesis (watermarked). By assuming in-

dependence of the observations x1, . . . ,xm we formulate the statis-

tic of the likelihood-ratio test as follows:

l(Y) =

Qm
i=1 p(yi − αwi;Σ, β)Qm

i=1 p(yi;Σ, β)
. (7)

After taking the logarithm and inserting the PDF of Eq. (1) we obtain

the detection statistic

L(Y) = −1

2
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“
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T Σ−1(yi − αwi)
”β

+

1

2
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“
yT
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”β

.

(8)

By considering all terms of the summation as independent, we can

apply the central limit theorem and conclude that L(Y) follows a

Normal distribution under both hypothesisH0 andH1 with parame-

ters (µ0, σ
2
0 ) and (µ1, σ

2
1), resp. If we consider yi as fixed, the only

variable term left is wi and the expected value µ0 under H0 (note

that yi = xi) can be calculated as

µ0 = −1

4

mX
i=1

“
(xi − α)T Σ−1(xi − α)

”β

+

“
(xi + α)T Σ−1(xi + α)

”β

+
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2
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“
xT

i Σ−1xi

”β

(9)

and the variance σ2
0 of the detection statistic L(Y) is given by

σ2
0 =

1

16

mX
i=1

„h
(xi + α)T Σ−1(xi + α)

iβ

−

h
(xi − α)T Σ−1(xi − α)

iβ
«2

. (10)

The derivation can be found in appendix A. Having obtained both

parameters of the Gaussian distribution under H0 allows the deter-

mination of a suitable detection threshold T in a Neyman-Pearson

sense as

T = erfc−1(2Pf )
q

2σ2
0 + µ0 (11)

where Pf denotes the desired probability of false alarm. Regarding

the detection statistic parameters (µ1, σ
2
1) under the alternative hy-

pothesisH1, it can easily be shown that µ1 = −µ0 and σ2
1 = σ2

0 by

remembering that now ∀i : yi = xi + αwi.

Fig. 4. Kodak test images (RGB, 768× 512 pixels)

Image µ0 µ̂0 σ0 σ̂0

Barn −238.71 −239.39 805.58 800.72
Facade −216.56 −216.51 658.74 637.65
Girl −133.77 −133.30 372.45 350.54
House −134.91 −134.23 254.95 244.17
Island −353.10 −353.55 1609.80 1571.80
Parrots −287.28 −285.25 1738.73 1657.28
Rafting −185.94 −186.64 801.52 826.01
Window −139.83 −140.59 986.03 984.52
Zentime −349.46 −352.74 1491.52 1461.93

Table 1. Theoretical and experimental values of the detector statis-

tics under H0.

4. EXPERIMENTAL RESULTS

For all reported results we take nine images of the widely used set of

Kodak color images (see Fig. 4). We resize the images to 192× 128
pixels (for a challenging detection scenario) and decompose the in-

dividual color bands of each image using the DWT with biorthogo-

nal 7/9 wavelet filters and – without loss of generality – select the

HL subbands at decomposition level two1. Before we start a com-

parative study of the detection performance, we have to verify two

important assumptions in order to ensure a reasonable threshold se-

lection. First, we verify that the detector responses under both hy-

pothesis follow a Gaussian law by employing a Lilliefors test [12]

at the 5% significance level. The normality assumption can not be

rejected for all images. Second, we check if the theoretical values µ0

and σ2
0 are close to the experimental values we obtain from Eq. (9)

and Eq. (10) under H0. Table 1 lists the corresponding theoretical

(µ0, σ
2
0) and experimental values (µ̂0, σ̂

2
0). As we can see, the the-

oretical values are close to the estimated ones which ensures that

the desired Pf is met. Since both assumptions hold, Eq. (11) can

be used to calculate a detection threshold T . We decide to set the

embedding strength α = 5 for all subbands which ensures a PSNR

of ≈ 46 dB for the luminance channel. For the computation of the

PSNR of color images we average the Mean-Square Error (MSE)

across all channels first. We compare the detection performance in

terms of the probability of missing the watermark (Pm) for a fixed

probability of false alarm (Pf = 10−6). The mean and variance of

the detection statistic are estimated experimentally under H1 from

1000 test runs for each image and P̂m = 1
2

erfc ((µ̂1−T )/
√

2σ̂2
1) is

used to determine the empirical probability of missing the water-

1The MATLAB code for our watermarking scheme is available upon re-
quest at http://www.wavelab.at/sources.



Image LC-L LC-J LC-KLT LRT-GGD-L MPE

Barn 10−6 10−7 10−27 10−31 10−50

Facade 0.46 0.35 10−5 10−5 10−24

Girl 0.97 0.97 0.43 10−95 10−103

House 0.03 0.02 10−12 10−8 10−22

Island 10−9 10−10 10−42 10−189 10−166

Parrots 10−6 10−6 10−20 10−70 10−86

Rafting 0.21 0.15 10−7 10−12 10−16

Window 0.02 0.03 10−9 10−54 10−79

Zentime 0.12 0.06 10−10 10−121 10−168

Table 2. Empirical probability of missing the watermark (P̂m) at

46 dB PSNR for different detectors (Pf = 10−6, 1000 test runs).

mark. Table 2 provides the results for the five detectors: the LC de-

tector on the luminance (LC-L) channel, the LC detector operating

on the joint RGB (LC-J) subbands, the LC detector operating on the

KLT-decorrelated color-channels (LC-KLT), further the LRT con-

ditioned on Generalized Gaussian modeled luminance coefficients

(LRT-GGD-L) and the proposed MPE detector. The best results are

marked bold. The LC-L and LC-J detector are described in [4], the

LC-KLT detector is proposed in [1] and the LRT-GGD-L detector is

analyzed in [3]. We adapted the respective watermarking schemes

to work in the DWT domain. As we can see, the MPE detector per-

forms better than the LRT-GGD-L detector, except for one image.

It significantly outperforms the LC detectors, though. Further, we

note that taking into account all color components improves detec-

tion performance (compare the improved performance of the LC-J

and LC-KLT over the LC-L detector). The proposed MPE detec-

tor also compares favorable after common signal processing attacks.

However, with increasing JPEG compression ratios the advantage of

the MPE detector diminishes as the chromatic bands are heavily sub-

sampled and quantized. We have to omit detailed results due to lack

of space.

5. CONCLUSION

We proposed a novel detector for additive, spread-spectrum water-

marking of color image DWT subbands based on the multivariate

power-exponential distribution. This signal model allows to capture

the highly correlated structure of the subbands. The derived likeli-

hood ratio test achieves increased detection performance compared

to watermarking the luminance channel only and earlier detectors

based on a Gaussian host signal model.

A. APPENDIX

Proof of Eq. (10). Let X denote a random variable and k denote a

constant. We want to determine the variance of L(Y) (see Eq. 8)

under H0 (i.e. yi = xi). Since the second summation term is a

constant w.r.t. wi and V(X + k) = V(X) it follows that

V(L(Y)) = V
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By noting that the variance of a sum of i.i.d. random variables is the

sum of the variances and since V(kX) = k2V(X), it follows that
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Next, we remember that wi is our variable term following a discrete

probability distribution with equiprobable values in {+1,−1}. The
corresponding PDF is given by

P(X = x) = f(x) =

(
1/2 if x = +1

1/2 if x = −1
, (14)

then the variance V(X) follows as

V(X) =
1

2

0@ 2X
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2
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where x1 = −1 and x2 = +1. By substituting x1 =
`
(xi −

α)T Σ−1(xi − α)
´β

and x2 =
`
(xi + α)T Σ−1(xi + α)

´β
, we

finally obtain

V(L(Y)) =
1

16

mX
i=1

„h
(xi + α)T Σ−1(xi + α)

iβ

−

h
(xi − α)T Σ−1(xi − α)

iβ
«2

(16)

References

[1] M. Barni, F. Bartolini, A. DeRosa, and A. Piva, “Color im-

age watermarking in the Karhunen-Loeve transform domain,”

Journal of Electronic Imaging, vol. 11, no. 1, pp. 87–95, Jan.

2002.

[2] E. Sayrol, J. Vidal, S. Cabanillas, and S. Santamarı́a, “Opti-

mum watermark detection in color images,” in Proceedings of

the IEEE International Conference on Image Processing, ICIP

’99, Kobe, Japan, Oct. 1999, vol. 2, pp. 231–235.

[3] J. Hernández, M. Amado, and F. Pérez-González, “DCT-
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