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1 Motivation

Recent statistics of the American Cancer Society reveal that colorectal cancer
is the third most common cancer in men and women and the second most com-
mon cause of US cancer deaths. Since most colorectal cancers develop from
polyps, a regular inspection of the colon is recommended, in order to detect
lesions with a malignant potential or early cancer. A common medical proce-
dure to examine the inside of the colon is colonoscopy, which is usually carried
out with a conventional video-endoscope. A diagnostic benefit can be achieved
by employing so called zoom-endoscopes, which achieve a magnification fac-
tor of up to 150 by means of an individually adjustable lens. In combination
with dye-spraying to enhance the visual appearance (chromo-endoscopy) of
the colon mucosa, zoom-endoscopy can reveal characteristic surface patterns,
which can be interpreted by experienced physicians. Commonly used dyes are
either methylene-blue, or indigo-carmine, which both lead to a plastic effect.
In the research work of (Kudo, 1994), the macroscopic appearance of colorec-
tal polyps is systematically described and results in the so called pit-pattern
classification scheme.

In this work, we tackle the problem of computer-assisted pit-pattern classifi-
cation using texture discrimination methods in the wavelet domain. This is
mainly motivated by the work of (Kato et al., 2001), where the authors state
that assessing the type of mucosal crypt patterns can actually predict the
histological findings to a very high accuracy. In particular, we employ three
different variants of the discrete wavelet transform, namely the classical, maxi-
mally decimated 2-D Discrete Wavelet Transform, the 2-D Stationary Wavelet
Transform (á-trous algorithm) and the 2-D Dual-Tree Complex Wavelet Trans-
form, originally proposed by Kingsbury. We further integrate color information
into the feature extraction process in order to show the improvements in clas-
sification accuracy compared to grayscale image analysis. This is accomplished
by either simple concatenation of computed feature vectors from each color-
channel or by using an extension of the classical cooccurrence matrices in the
wavelet domain.

The paper is structured as follows: in Section 2 we will briefly illustrate the
pit-pattern classification scheme from the medical point of view and provide
an overview of related work in this research area. In Section 3, we recapitulate
the background of the three wavelet transformations we use and outline their
differences with regards to feature extraction for image analysis. Further, we
discuss the computation of image features, the incorporation of color-channel
information and introduce the classification/feature selection setting of our
work. Finally, Section 4 presents empirical results and Section 5 concludes the
paper with a summary of the main points and an outlook on further research.
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2 Pit-Pattern Classification - The Medical Perspective

Polyps of the colon are a frequent finding and are usually divided into meta-
plastic, adenomatous and malignant. Since the resection of all polyps is rather
time-consuming, it is imperative that those polyps which warrant resection
can be distinguished. Furthermore, polypectomy 1 of metaplastic lesions is
unnecessary and removal of invasive cancer may be hazardous. The classifi-
cation scheme presented in (Kudo, 1994) divides the mucosal crypt patterns
into five types (pit-patterns I-V, see Figure 1), which can be observed using a
high-magnification endoscope.

(a) Class I (b) Class II (c) Class III-S

(d) Class III-L (e) Class IV (f) Class V

Fig. 1. Example images for the pit-pattern types I-V.

While types I and II are characteristic of benign lesions and represent nor-
mal colon mucosa or hyperplastic polyps (non-neoplastic lesions), types III
to V represent neoplastic, adenomatous and carcinomatous structures. Our
classification problem can be stated as follows: the problem to differentiate
pit-patterns I and II from III-L,III-S,IV and V will be denoted as the two-
class problem (neoplastic vs. non-neoplastic), whereas the more complex and
detailed discrimination of all pit-patterns I to V will be denoted as the six-
class problem. At first sight, the pit-pattern classification scheme seems to be
straightforward and easy to be applied. Nevertheless, it needs some experience
and exercising to achieve good results. Correct diagnosis very much relies on

1 the process of removing polyps
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the experience of the endoscopist as the interpretation of the pit-patterns may
be challenging (Hurlstone, 2002).

Regarding the correlation between the mucosal pit-patterns and the histolog-
ical findings, several studies reported good results, although with quite differ-
ent diagnostic accuracies. A comparative study by (Kato et al., 2006) shows
that the classification accuracy in magnifying colonoscopy ranges from 80.6%
to 99.1%. Another extensive study by (Hurlstone et al., 2004) reports error
rates of approximately 5%. In (Fu, 2004) the authors claim 95.6% for chro-
moendoscopy with magnification in contrast to diagnosis using conventional
colonoscopy (84.0%) and diagnosis using chromoendoscopy without magnifi-
cation (89.3%). In addition to that, inter-observer variability of magnification
chromoendoscopy has been described at least for Barret’s esophagus (Meining,
2004). This inter-observer variability may to lesser degree be also present in
the interpretation of pit-patterns of colonic lesions. This work aims at allowing
computer-assisted pit-pattern classification in order to enhance the quality of
differential diagnosis.

In previous work, we have used several methods from the field of texture-
classification to obtain image features with high discriminative power. In
(Häfner et al., 2006a) several histogram-based techniques (e.g.: luminance his-
togram, color-channel histogram) are used to capture the characteristics of the
pit-pattern types. A k-Nearest Neighbor (NN) classifier is then used to clas-
sify the images based on histogram intersection used as a distance function.
The best classification accuracies in the two- (85.6%) and six-class (67.3%)
problem are achieved using three-dimensional color histograms.

In (Häfner et al., 2006b) the authors propose to use wavelet-based texture
descriptors for feature extraction. More precisely, the classical 2-D DWT and
the 2-D wavelet packet decomposition with local discriminant basis (Saito
and Coifman, 1994) are used. In the classification stage, the performance of
Support Vector Machines (SVM) and k-NN classification is evaluated on each
color-channel specific feature set individually. The best Leave-One-Out cross-
validation (LOOCV) accuracy is achieved using features computed from the
red color-channel of the RGB model with 75% in the two-class and 57% in the
six-class case.

A completely different approach is presented in (Häfner et al., 2007a,b), where
the authors compute a set of texture-descriptors from the outputs of the Dis-
crete Cosine Transform (DCT) and the discrete Fourier Transform. Features
are either computed from non-overlapping pixel blocks in the DCT domain or
from adaptively sized rings in the Fourier domain. Concatenation of the feature
vectors of each color-channel is then used to incorporate color-information.
The authors employ a Bayes normal classifier (Fukunaga, 1990) together with
feature subset selection to classify the endoscopy images. The best achieved
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LOOCV accuracy in the two-class problem is 97.7% and 86.36% in the six-class
problem.

In (Kwitt et al., 2008) the feature extraction step is based on the Gabor
Wavelet Transform (Manjunath and Ma, 1996) and the Dual-Tree Complex
Wavelet Transform (DT-CWT) (Kingsbury, 1998), which both provide ap-
proximate shift-invariance and a directionally-selective frequency partition-
ing. Color-information from the RGB color-channels is incorporated by fea-
ture vector concatenation or by using a parallel multi-classifier. Best reported
LOOCV results are 96.28% (two-class) and 81.82% (six-class). However, no
feature subset selection was conducted in this work.

Another approach that is completely based on grayscale-image analysis is pre-
sented in (Kwitt and Uhl, 2007), where the marginal distributions of wavelet
detail subbands computed from the DT-CWT are modeled by two-parameter
Weibull distributions. Maximum-likelihood estimates of the distribution pa-
rameters are then composed into feature vectors and are used for k-NN clas-
sification. Even though this approach is based on the luminance-channel only,
the experiments show superior results when compared to the early approaches
in (Häfner et al., 2006a,b).

In the work of (Karkanis et al., 2003), so called color wavelet covariance fea-
tures are computed for a set of color models, including RGB and LAB. The
image database of this work consists of endoscopic video frames extracted from
video sequences, which were acquired during colonoscopy. The approach is
based on computing classical cooccurrence matrices from the detail subbands
of wavelet-decomposed color-channels. The feature vectors are then composed
by a set of the commonly known Haralick features (Haralick, 1973). Depen-
dencies between the color-channels are incorporated by calculating covariances
between equal features of different color-channel subbands. However we have
to point out, that the classification problem of (Karkanis et al., 2003) is re-
stricted to the binary case and a conventional video-endoscope is used.

3 Feature Extraction and Classification

In this section we will discuss the different wavelet transforms we use for image
representation and introduce the computation of the image features. Our aim
is to emphasize the differences of the various wavelet-transform approaches
and not to give a thorough treatment of the theoretical details. For further
information on the theoretical aspects, take a look at the corresponding refer-
ences. Further, we outline the incorporation of color-channel information and
discuss our classification and feature selection setup.
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3.1 Image Representation in the Different Wavelet Domains

The three wavelet transforms we discuss are the classical, maximally deci-
mated Discrete Wavelet Transform (DWT) implemented by the Mallat algo-
rithm (Mallat, 1989), the Stationary Wavelet Transform (SWT) implemented
by the undecimated à-trous algorithm and the Dual-Tree Complex Wavelet
Transform (DT-CWT). All transformations have rather different properties.
Whether these properties are either advantages or disadvantages heavily de-
pends on the field of application. Our focus here is on capturing important
image information for classification purposes. Thus, our suggestion for the best
suitable wavelet transform does not necessarily have to coincide with findings
in the field of image compression, encryption or watermarking for example.

Probably the most commonly used wavelet transform for texture analysis is
the classical 2-D DWT, implemented by the Mallat algorithm (Mallat, 1989),
which roughly works as follows: in 1-D, a given input signal is subjected to con-
volution with two filter-sequences (high- and lowpass filters), followed by dec-
imating the filter outputs by two (subsampling). This convolution-decimation
procedure is recursively computed on the lowpass channel. In practice we will
work with compactly supported wavelets, where the filters in this case are
finite impulse response (FIR) filters. In the language of digital signal pro-
cessing, this is equivalent to using a two-channel perfect reconstruction (PR)
filterbank with Quadrature Mirror Filters (QMF) satisfying certain admissi-
bility conditions, since not every PR filterbank is capable of implementing a
DWT (Fliege, 1994). Since we will rely on commonly known wavelet filters
(i.e. Daubechies filters) these conditions are of course satisfied in our case.
The classical extension of the 1-D DWT to 2-D is straightforward by separate
row- and column filtering of the input image, which leads to a decomposition
into a set of detail images and one approximation image. The detail images are
denoted as the horizontal (LH subband), vertical (HL subband) and diagonal
(HH subband) detail subband, where HL signifies lowpass filtering the rows
and highpass filtering the columns of an image for example.

Due to the fact that the implementation of the DWT involves downsampling
the filter outputs by two, the DWT has zero-redundancy, which is a nice
property for many applications (e.g.: compression). However, downsampling
introduces aliasing effects, since high-pass content is folded back into low fre-
quencies and leads to severe shift-dependency. This means that shifts of the
same input signal might produce completely different coefficients after the
transformation. Regarding image analysis purposes, this is definitely a great
disadvantage. Just consider the fact, that the process of colonoscopy is sub-
jected to varying physical conditions. We will thus have to deal with shifted
images showing the same mucosal pit-patterns. Producing different coefficients
in that case might lead to different image features and as a consequence to

6



wrong classification results.

A second disadvantage arises, when we take a closer look why the 2-D DWT
can actually be implemented by separate row and column filtering. This results
from the fact that we are using so called tensor-product wavelets, which are
constructed by tensoring 1-D wavelet functions. However, since 1-D wavelets
are real functions and thus have a two-sided frequency spectrum (positive and
negative frequencies), tensoring leads to ambiguities when trying to distinguish
image features oriented along +45◦ or −45◦ (HH subband). This problem is
vividly illustrated in (Selesnick et al., 2005) and is commonly known as the
lack of directional selectivity.

A first approach to remedy the problem of shift-dependence of the classi-
cal DWT is to use the Stationary Wavelet Transform (Shensa, 1992; Nason
and Silverman, 1995) instead. This transform is implemented by the undec-
imated à-trous (with-holes) algorithm, whose name originates from the fact
that it involves spreading the filter-sequences with zeros. The general idea is
to completely avoid downsampling the filter outputs, which actually causes
the shift-dependency problem of the DWT. Instead, the filters at each de-
composition stage of the SWT are upsampled by two (dyadic upsampling).
The convolution-decimation procedure now reduces to a simple convolution
step, where a given input sequence is convolved with the filter coefficients.
The extension to 2-D is again straightforward by separate row and column
filtering. However, since the downsampling step is omitted, we end up with a
redundancy of 3 · J + 1 times in 2-D for a decomposition depth of J .

The last wavelet transform transform variant we discuss is the Dual-Tree Com-
plex Wavelet Transform, originally introduced in (Kingsbury, 1998). The DT-
CWT is approximately shift-invariant and produces six oriented detail sub-
bands in 2-D. All of these properties come with a very limited redundancy
of 2d in d ∈ N dimensions. The basic concept of the DT-CWT in 1-D is,
to use two parallel wavelet-transform trees, where the wavelets of each tree
form an approximate Hilbert transform pair. With regards to digital filters,
the Hilbert-Transform property is equivalent to requiring that the lowpass
filter of one tree is a half-sample delayed version of the lowpass filter of the
other tree (half-sample delay condition). If this key property is satisfied, the
outputs of each tree can be interpreted as the real and imaginary parts of
complex wavelet coefficients. From the computational point of view the main
advantage of the 2-D DT-CWT is, that it allows an efficient implementation
based on four parallel 2-D DWTs. For more information on the theoretical
background, see (Selesnick et al., 2005; Selesnick, 2001). The detail subbands
containing the real- and imaginary parts of the complex wavelet coefficients
are obtained by adding and subtracting the right detail subbands of the four
trees. The 2-D DT-CWT leads to six complex detail subbands, which capture
image details oriented along ≈ 15◦, 45◦, 75◦, 105◦, 135◦, 160◦. The approxi-
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mate shift-invariance together with the the property of directional selectivity
make the 2-D DT-CWT a good candidate for capturing texture-information.
Remark: if not stated otherwise, the identifiers DWT, SWT and DT-CWT
will denote the 2-D variants of the transformations.

3.2 Image Feature Computation

For feature extraction purposes, we consider only the wavelet detail subbands.
In general, we cannot directly input the coefficients to a classifier, due to the
curse of dimensionality (Bishop, 1995). We have to reduce the dimensionality
by computing features from our wavelet detail subbands. Given that N × N

denotes the dimensions of an arbitrary detail subband at decomposition depth
m, we search for some mapping φ : RN2

→ Rd, with d ≪ N2. Each subband
Dm

k is mapped to a feature vector in the d-dimensional feature space Rd,
Dm

k 7→ vm
k := [v1, . . . , vd], where k (i.e. k ∈ {HH, HL, LH} for example)

identifies the detail subband.

The features we use in this work are based on two statistics computed from the
wavelet detail subbands. The coefficients of Dm

k will be denoted by dm
k (i, j), 1 ≤

i, j ≤ N . Note, that in case of the SWT the dimensionality of the subbands
is equal to dimensionality of the input image C0 (the 0 signifies that we work
with the original). In case of the DWT and SWT we have dm

k (i, j) ∈ R, whereas
in case of the DT-CWT we have dm

k (i, j) ∈ C, with k = 1, . . . , 6. However,
this is no problem since we will use the complex coefficient magnitudes in that
case. For the DWT/SWT, the first feature we compute is called the mean
deviation (Van de Wouwer et al., 1999) λm

k , given by

λm
k =

1

N2

∑

1≤i,j≤N

|dm
k (i, j) − dm

k |. (3.1)

For the DT-CWT we simply compute the mean µm
k of the absolute coefficient

values, which is used in (Hatipoglu and Mitra, 1999) or (Manjunath and Ma,
1996) for instance. The second feature we employ is the standard deviation
σm

k of the coefficients of a subband at position (m, k), given by

σm
k =





1

N2 − 1

∑

1≤i,j≤N

(

dm
k (i, j) − dm

k

)2





1

2

. (3.2)

Again, in case of the DT-CWT, dm
k in Eq. (3.2) is replaced by |dm

k |. Based
on these features, we can construct a feature vector vi for each image i ∈
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{1, . . . , L} by simple concatenation of the subband features. For example, in
case of the DWT or SWT we have

vi := [λ1

LH , λ1

HL, λ1

HH , σ1

LH , σ1

HL, σ1

HH , . . . ,

λJ
LH , λJ

HL, λJ
HH , σJ

LH , σJ
HL, σJ

HH ].
(3.3)

Hence, a J-scale DWT/SWT leads to J ·6 dimensional feature vectors, whereas
a J-scale DT-CWT (using µm

k instead of λm
k ) leads to J ·12 dimensional feature

vectors since the number of subbands is doubled. In the next section, we will
see how to incorporate color information into the feature extraction process.

3.3 Incorporation of Color-Channel Information

We will introduce two combining methods in this section, which we call com-
bining by concatenation and combining by using cross-cooccurrence matrices.
Both approaches are different in the way color information is incorporated.
The first approach is non-integrative, while the latter is integrative in the
sense that color information is incorporated directly in the feature extraction
step.

3.3.1 Feature Vector Concatenation

We have chosen the very simple way of feature vector concatenation of the
color-channel feature vectors to include color information. Without loss of gen-
erality, we assume to work with RGB images for a moment and we introduce
a superscript p to signify the image plane (i.e. p ∈ {R, G, B} for example).
Given a color-channel specific feature vector v

p
i of image i, we construct a final

feature vector from

vi = [vR
i ,vG

i ,vB
i ]. (3.4)

Since each color-channel is transformed separately without incorporating de-
pendencies, this approach is called non-integrative. Although it is true that
we might lose information by neglecting color-channel dependencies, we will
see in Section 4 that concatenation is a quite good combining scheme for our
problem. Another representative of non-integrative approaches is presented in
(Kwitt et al., 2008), where a parallel multi-classifier is used to incorporate
color information. However, the results presented there show that concatena-
tion is superior to the parallel multi-classifier in almost all cases.
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3.3.2 Color Wavelet Cross-Cooccurrence (CWCC) Matrices

The second combining scheme we propose does not fall into the category
of non-integrative approaches. It is based on the extension of classical co-
occurrence matrices to cross-cooccurrence matrices (Palm, 2004). Since the
cross-cooccurrence matrices were originally defined in the spatial domain, we
extend them to the wavelet-domain in order to work with our detail subband
images. In contrast to the concatenation scheme, this approach leads to dif-
ferent feature vectors and does not rely on the computation of Eqs. (3.1) and
(3.2).

Nevertheless, before we can explain how to compute cross-cooccurrence ma-
trices between wavelet detail subbands, we have to recapitulate the definition
of the classical cooccurrence matrix. The cooccurrence matrix M

p
d
(i, j) at po-

sition (i, j) of image plane p captures the joint occurrence of intensity values
i and j separated by a given displacement vector d ∈ N2. This displacement
vector implicitly defines the orientation and the distance of considered pixel
pairs (i.e. d = (0, 1)T ). Usually, the matrix ML

d
is computed on the luminance

(L) channel of the LUV color model.

The extension to vector images is straightforward. The aim is to capture the
joint occurrence of intensity values between different image planes p and p′.
This leads to the definition of a matrix M

p,p′

d
(i, j), which is equivalent to

the formulation of M
p
d

with the only difference that the considered pixel pairs
now reside in two different planes. This concept can be easily extended to work
with detail subband images in the wavelet domain. We want to capture the
joint occurrences of the wavelet detail coefficients of two different image planes
(subbands). From that point, these kind of cross-cooccurrence matrices will be
denoted as Wavelet Cross-Cooccurrence (WCC) matrices. In the most general

setting, the matrix M
p,p′

d,m,k,k′(i, j) between two arbitrary detail subbands D
m,p
k

and D
m,p′

k′ at decomposition depth m is defined as

M
p,p′

d,m,k,k′(i, j) = P(dm,p
k (x) = i ∧ d

m,p′

k′ (y) = j|x − y = d). (3.5)

Note, that we have used the abbreviation x = (x, y) to denote the position of
the matrix elements. Eq. (3.5) is the general form of the WCC matrix, since it
allows to consider arbitrary subband pairs at scale m. However, in this work
we will only consider cases where k = k′, which means that we consider those
subbands at equal positions in the decomposition structure but in different
color channels. Hence we denote this kind of WCC matrices as Color Wavelet
Cross-Cooccurrence (CWCC) matrices.

In order to make Eq. (3.5) computationally feasible, it is necessary that the
coefficients are quantized to integer values q ∈ {1, . . . , Q}, with Q denoting the
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quantization factor. Additionally, we point out that we will be using a zero-
displacement vector d = 0 = (0, 0)T , which is equivalent to the computation
of a two-dimensional histogram (Palm, 2004). In case of classic cooccurrence
matrices (defined in the spatial domain) a zero displacement vector for the
computation of M

p
d

is equivalent to computing an intensity histogram. Us-
ing zero-displacement in our setting allows to capture information about the
impact of the filtering procedure on different image planes at several scales.

Since the CWCC matrices contain too many elements (at least for reasonable
values of Q) to work with them directly as input features, we have to compute
a set of features first. We decided to use a selection of the well-known (Har-
alick, 1973), which were originally proposed in combination with the classical
formulation of the cooccurrence matrix. To keep consistency with our notation
of the CWCC matrices, we reformulate the four Haralick features we use as
follows:

Contrast

F1(D
m,p
k ,D

m,p′

k ) = −
Q−1
∑

i=0

Q−1
∑

j=0

(i − j)2M
p,p′

d,m,k(i, j) (3.6)

Correlation

F2(D
m,p
k ,D

m,p′

k ) =
1

σiσj

Q−1
∑

i=0

Q−1
∑

j=0

(i − µi)(j − µj)M
p,p′

d,m,k(i, j) (3.7)

Homogeneity

F3(D
m,p
k ,D

m,p′

k ) =
Q−1
∑

i=0

Q−1
∑

j=0

M
p,p′

d,m,k(i, j)

1 + (i − j)2
(3.8)

Energy

F4(D
m,p
k ,D

m,p′

k ) =
Q−1
∑

i=0

Q−1
∑

j=0

(

M
p,p′

d,m,k(i, j)
)2

(3.9)

In Eq. (3.7) µi and σi denote the horizontal mean and standard deviation of
the quantized detail subbands, whereas µj and σj denote the vertical mean and
standard deviation. Based on these features we can construct feature vectors
for each image. However, we make the restriction that our feature vectors will
be homogeneous in the sense that they do not contain a mixture of different
Haralick features. To give an example, assume that we are working with RGB
images and the DWT. The feature vector for image i using Haralick feature
Fj is given by

vi = [Fj(D
1,R
LH ,D

1,G
LH), Fj(D

1,B
LH ,D

1,G
LH), Fj(D

1,R
lh ,D

1,B
lh ),

. . . , Fj(D
J,R
HH ,D

J,G
HH), Fj(D

J,B
HH ,D

J,G
HH), Fj(D

J,R
HH ,D

J,B
HH)].

(3.10)
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In case of a J-scale DWT/SWT this feature vector construction approach
leads to J · 9 dimensional vectors, whereas in case of the DT-CWT we obtain
J · 18 dimensional feature vectors. Note, that the final feature vector is still
constructed by concatenation, but in contrast to the concatenation scheme of
Section 3.3.1 each element of vi now incorporates information between two
image planes.

3.4 Classification and Feature Selection

In this section we discuss the classification and feature selection step of our pro-
posed approach. The basic building elements are a k-NN classifier (Fukunaga,
1990) using the Euclidean formula as a distance function between feature vec-
tors and the procedure of Forward Feature Selection (FFS) (Fukunaga, 1990)
to select a subset of features.

Given a set of training examples from K classes {xi, yi} ⊂ Rd × {1, . . . , K}
with i = 1, . . . , L, a new sample x ∈ Rd is classified into class c ∈ {1, . . . , K}
according to the majority of the labels among its k-nearest neighbors. Since the
Euclidean distance is very sensitive to different ranges in the input features, we
normalize each feature vector dimension first by using the standard approach
of subtracting the mean and dividing by the standard deviation. For simplicity
we decided to use a 1-NN classifier for all experiments. On the basis of different
feature sets, other work (Häfner et al., 2007a,b; Kwitt and Uhl, 2007; Kwitt
et al., 2008) has shown that 1-NN lead to very good results. Since the scope
of this paper is on the feature computation side and not on testing classifiers,
we limit our discussions to the 1-NN case.

Regarding the total number of computed features, it is questionable that all
features contribute discriminative information. Hence, we additionally con-
duct a feature subset selection step. Since exhaustive search is computation-
ally impossible w.r.t. the dimensionality of our feature space, we use forward
feature selection (FFS) as the method of choice. This procedure searches for
a (sub)optimal feature subset among all available features using a defined cri-
terion of class separability. Lazy formulated, forward selection starts with the
evaluation of all features separately and then successively adds one feature to
the best subset in every iteration. As a criterion function for class separability
it is perfectly obvious to use a 1-NN classifier together with LOOCV. The
LOOCV accuracy (number of correctly classified samples divided by the total
sample size) is then used as a quality measure for the feature subsets in every
FFS iteration. Since we do not set an upper bound on the number of selected
features, we store the LOOCV accuracy for the best subset of an iteration
and finally select the very subset, which led to the best result. The number
of selected features will be provided for all experiments (see Section 4). Using
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this setup, we do not have to evaluate the final 1-NN classifier in a separate
step anymore, since both the criterion function of the FFS procedure and the
final classifier are the same.

4 Experimental Results

In this section, we present the experimental results of our work. Our image
database consists of 484 images, acquired in 2005/2006 at the Department
of Gastroenterology and Hepatology (Medical University of Vienna) using
a zoom-endoscope (Olympus Evis Exera CF-Q160ZI/L) with a magnifica-
tion factor of 150. All images were selected by the physician conducting the
colonoscopy with the objective to provide images with equal lightning con-
ditions and at approximately the same camera angle. To enhance the visual
appearance, dye-spraying with indigo-carmine was applied and biopsies or mu-
cosal resections were taken to obtain a histopathological diagnosis (our ground
truth). For pit-pattern types I,II and V, biopsies were taken, since these types
need not be removed. Lesions of pit-pattern types III-S/III-L and IV have
been removed endoscopically. Table 1 lists the number of image samples per
class.

I II III-L III-S IV V

126 72 62 18 146 60

Table 1
Number of images per pit-pattern class (ground truth).

4.1 Experimental Setup

For all three wavelet transformations we vary the maximum decomposition
depth from four to six and evaluate the impact of the decomposition depth
on the LOOCV results. When using the DWT or SWT we further vary the
wavelet filters to study the effect on the LOOCV rates. In particular, we
vary between four Daubechies filters with two to eight taps (abbreviated by
db2, db4, db6 and db8). Concerning the choice of wavelet filters for the DT-
CWT, we use Kingsbury’s (14,14)-tap Q-Shift filters (Kingsbury, 2001) for
decomposition levels j ≥ 2 and the near-symmetric (13,19)-tap filters for the
first level. The technical reason for working different filter sets on the first
level of the DT-CWT is explained in Selesnick et al. (2005).

In order to have a reference for evaluating the quality of the color-information
combining schemes, we first conduct our experiments on the luminance (L)
channel of the LUV color model, which is commonly used for grayscale-only
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image processing. The feature vectors we compute for this channel are con-
structed according to Eq. (3.3), since no color-information is available. For
the two combining schemes, we decided to evaluate whether different color
models lead to different classification results as well. In particular, we com-
pare the RGB to the 1976 CIE L*a*b* (1976) color model (abbreviated by
LAB) (Gonzalez and Woods, 2002; Lukac and Plataniotis, 2006). In the RGB
model we have one component for each primary color, whereas the LAB color
model splits color information into the three components lightness (L) and
color-information on a red/green (A component) and yellow-blue (B compo-
nent) axis. Another interesting difference between RGB and LAB is, that
distances (in the Euclidean sense) measured in the LAB coordinate system
approximately match distances perceived by the human visual system.

Since we will often obtain very similar LOOCV accuracies for different feature
sets, we use McNemar’s test (Everitt, 1992) to check if the LOOCV differences
obtained on different feature sets are statistically significant at a given signif-
icance level α. However, our setup for the McNemar test is slightly different
to the standard one (Dietterich, 1998; Zamolotskikh et al., 2006), since we
do not want to check for significant differences between two classifiers, but
between two feature sets S1,S2. Now, let n10 denote the number of correctly
classified samples during LOOCV from feature set S1, which are in turn falsely
classified when using S2. Accordingly, let n01 denote the number of samples,
correctly classified by using S2 but wrongly classified on the basis of S1. Then,
the McNemar test statistic T , which is approximately χ2

1
distributed with 1

degree of freedom is defined as

T :=
(|n01 − n10| − 1)2

n01 + n10

(4.1)

The null-hypothesis H0 of the McNemar test is that both feature sets lead to
equal error rates. At a given significance level (we use α = 0.05), we can reject
the null-hypothesis if our test statistic (4.1) is greater than χ2

1,1−α.

Regarding the notation of the test results, we follow the convention that a ’+’
sign denotes a significant difference (T > χ2

1,1−α), whereas a ’−’ sign denotes
no significant difference. Since we have two classification problems, almost all
McNemar test results will be of the form ’±±’, where the first ± sign signifies
the McNemar test result for the two-class problem and the second ± sign
represents the result for the six-class problem.

14



4.2 Luminance (L) Channel Results

First of all, we evaluate the impact of the wavelet filters on the LOOCV ac-
curacies for DWT and the SWT case. It turns out, that for all possible

(

4

2

)

filter-pairings we cannot reject the the null-hypothesis of equal error rates.
This means that the differences in the results obtained on the filter-specific
feature sets for each transform and decomposition depth are not statistically
significant. Hence, we will omit the filter-specific results in the following ex-
planations and provide per-scale results only for each transformation. These
results are the maximum LOOCV accuracies over all wavelet filters. Table 2
displays the LOOCV accuracies for varying decomposition depths. In addi-
tion, the numbers in braces show the number of total features selected by FFS
procedure.

Problem Scales DWT SWT DT-CWT

2-class

4 84.92 (19) 89.05 (10) 93.60 (41)

5 84.92 (16) 89.46 (24) 94.63 (21)

6 84.50 (22) 89.46 (14) 94.83 (24)

6-class

4 70.45 (19) 76.65 (10) 81.40 (27)

5 71.69 (16) 77.69 (14) 83.47 (29)

6 71.90 (16) 77.69 (29) 83.88 (65)

Table 2
LOOCV accuracies (%) for the luminance-channel together with the number of
selected features in braces. The best results for both classification problems are
marked bold.

Since the intra-transform results for different decomposition depths are very
similar (especially in the 2-class problem), we use the McNemar test to check
for significant differences. As expected, there is no evidence against the null-
hypothesis for almost all

(

3

2

)

considered scale combinations in the two-class
case. We observe almost the same situation in the the six-class case, however
with the exception that the differences between scales 4 and 6 are significant
in some cases.

The next question is, whether we can make a general statement about the im-
pact of the wavelet transformations on the LOOCV rates? From the output of
the McNemar test for the inter-transform accuracies (see Table 3) we see, that
at least all the differences are statistically significant for every decomposition
depth. A look at Figure 2 reveals that the DT-CWT outperforms both other
transformations. We can see an almost linear increase in LOOCV accuracy
as we switch from DWT to SWT and DT-CWT. This allows the conclusion
that the stepwise addition of the properties shift-invariance (added by the
SWT) and directional selectivity (added by the DT-CWT) leads to a direct
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Scales DWT vs. SWT DWT vs. DT-CWT SWT vs. DT-DWT

4 ++ ++ ++

5 ++ ++ ++

6 ++ ++ ++

Table 3
McNemar test results for the (L)uminance channel feature vectors.

increase in LOOCV accuracy for both classification problems. We summarize,
that for grayscale-only image analysis it is obvious that the DT-CWT is the
best choice with regards to our classification problem and setup.
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Fig. 2. Visualization of differences in the LOOCV accuracies for the three wavelet
transforms over three different decomposition scales.

Concerning the number of selected features, we see that although the search
space of the FFS procedure in case of the DT-CWT features is two-times
larger than the search space in case of the SWT/DWT features, only 24 are
actually selected for the two-class problem. In the six-class problem however,
65 features are selected at six scales for the DT-CWT. This might lead to
overtraining issues. In this particular case we would choose in favour of five
decomposition scales, since the second-best rate of 83.47% is only slightly
worse and the number of features reduces to 29.

The luminance-channel results of this section will serve as reference results
for following sections, where we evaluate the quality of the color-information
combining schemes. The presented results clearly show that choosing the right
image representation for feature computation in grayscale-only image-analysis
can lead to an improvement in classification accuracy by ≈ 10%.
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4.3 Feature Vector Concatenation Results

First, we again check whether the wavelet filters have a significant impact
on the LOCCV results. In accordance with the outputs of the McNemar test
for the luminance-channel, there is no evidence against the null-hypothesis of
equal error rates. However, concerning the impact of the decomposition depth,
some differences between depth 4 and 6 are again significant. Table 4 shows
the LOOCV results for both the color models and Table 5 provides the number
of selected features from FFS.

DWT SWT DT-CWT

Problem Scales RGB LAB RGB LAB RGB LAB

2-cls.

4 95.66 96.07 97.52 98.55 98.55 97.52

5 96.28 96.07 96.90 97.93 99.38 97.93

6 96.69 96.49 98.14 98.55 99.38 99.38

6-cls.

4 84.92 88.02 89.05 89.67 90.08 89.26

5 85.74 87.81 88.64 90.50 91.74 91.94

6 85.33 87.40 89.46 90.70 93.18 91.94

Table 4
LOOCV accuracies of the feature vector concatenation approach for the RGB and
LAB color model. The best results for both classification problems are marked bold.

DWT SWT DT-CWT

Problem Scales RGB LAB RGB LAB RGB LAB

2-cls.

4 30 25 19 31 22 44

5 45 25 42 26 48 17

6 36 29 25 31 48 70

6-cls.

4 45 26 31 25 62 47

5 47 45 26 44 84 47

6 60 28 36 41 61 71

Table 5
Number of selected features for the feature vector concatenation approach.

From the LOOCV results of Table 4 we notice that, in contrast to Table 2, the
inter-transform results become more similar, especially in the two-class prob-
lem. However, a minimum LOOCV accuracy of ≈ 96% lets very little room
for any transformation to produce significantly better rates. The similarity of
the results is reflected in the outcomes of the inter-transform McNemar tests
(see Table 6) as well. As the LOOCV accuracies are lifted to a higher level, we
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have no evidence against equal error rates for the majority of the transform
combinations any longer. The only consistently significant differences for the
two-class problem remain between the DWT and DT-CWT results for RGB.

DWT vs. SWT DWT vs. DT-CWT SWT vs. DT-DWT

Scales RGB LAB RGB LAB RGB LAB

4 −+ +− ++ −− −− −−

5 −− −− ++ −+ ++ −−

6 −+ ++ ++ ++ −+ +−

Table 6
Inter-Transform McNemar test results for the feature vector concatenation ap-
proach.

The situation is slightly different when considering the six-class problem.
When using the highest decomposition depth, most of the differences are sig-
nificant. We infer, that the additional properties of the SWT and DT-CWT
become particularly important for the more complex classification task. The
fact that the results move together in general is evident when comparing Figure
2 to Figure 3 as well. Although the trend towards higher LOOCV accuracies
persists as we switch from DWT to SWT and DT-CWT, the slope of the graph
is less steep than the slope we observed for the luminance-channel results.

By taking a closer look at Table 5, we observe a situation similar to the
luminance-channel results. Although the feature space dimensionality is quite
high (three times the dimensionality of the luminance-channel feature vectors),
only small feature subsets produce the best LOOCV rates. Nevertheless, the
good DT-CWT results can be attributed to the fact that the starting set of
available features for FFS is bigger than the starting set of the DWT/SWT
features and apparently contains more discriminative information.

A question we have not answered at this point is, whether one of the color
models leads to better/worse results than the other. From Table 4 we see
that the LOOCV rates are actually very similar. Therefore, we conduct an
additional McNemar test on the color model specific results. The test outputs
given in Table 7 confirm the assumption that neither RGB nor LAB lead to
significantly different results, no matter which decomposition depth we choose.
We conclude, that the feature-vector concatenation approach is robust against
changes in the color model with regards to our experimental setup.
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Fig. 3. Visualization the LOOCV accuracies for the feature vector concatenation
combining scheme.

Scales DWT SWT DT-CWT

4 −− −− −−

5 −− −− −−

6 −− −− −−

Table 7
McNemar test results between RGB and LAB for the concatenation scheme.

4.4 Color Wavelet Cross-Cooccurrence (CWCC) Results

For the CWCC matrix combining scheme, we fixed the the quantization factor
to Q = 256. All results presented in this section were obtained by using the
Correlation feature from Eq. (3.7), which outperformed all other Haralick
features in terms of LOOCV accuracy throughout all experiments. Due to
space limitations, we omit the other, feature-specific results here.

Again, the filter-specific McNemar tests showed no statistical evidence that a
particular filter leads to higher LOOCV accuracies, no matter which classifi-
cation problem we consider. Furthermore, the outputs of the decomposition
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depth specific McNemar tests perfectly fit among the results of the previous
sections, since the only significant differences occur between depths 4 and 6.
Table 8 shows the LOOCV accuracies for the CWCC matrix approach.

DWT SWT DT-CWT

Problem Scales RGB LAB RGB LAB RGB LAB

2-cls.

4 93.18 95.25 92.98 96.28 96.90 95.66

5 94.63 95.87 94.21 97.31 97.11 96.90

6 94.63 96.49 95.87 97.52 97.11 96.90

6-cls.

4 79.96 83.88 79.34 85.74 83.06 83.05

5 80.58 85.54 84.50 88.02 84.50 85.33

6 81.82 86.57 85.95 88.84 85.95 85.74

Table 8
Maximum LOOCV accuracies of the CWCC matrix approach for the RGB and
LAB color model.

DWT SWT DT-CWT

Problem Scales RGB LAB RGB LAB RGB LAB

2-cls.

4 19 24 20 22 54 45

5 24 36 18 24 41 33

6 24 30 36 25 41 33

6-cls.

4 18 19 15 19 42 38

5 34 27 21 24 49 65

6 38 21 23 29 67 76

Table 9
Number of selected features for the CWCC matrix approach.

Analog to the concatenation scheme results of the last section, we observe very
similar inter-transform accuracies here. For both color models, the results in
Table 10 confirm that there is almost no significant difference between the
three transforms using RGB and no difference at all using LAB.

A visual examination of the classification results in Figure 4 shows a slight
trend towards higher LOOCV accuracies as we switch from DWT to SWT or
DT-CWT in the two-class problem. However, the SWT features now produce
the best LOOCV rates using the LAB color space. The slopes of the curves
are again less steep compared to luminance-channel results. Similar to the
concatenation approach, the CWCC matrix scheme somehow compensates
the lack of shift-invariance of the DWT and the lack of directional-selectivity
of the SWT. Furthermore, the LOOCV rates drop slightly in the six-class
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DWT vs. SWT DWT vs. DT-CWT SWT vs. DT-DWT

Scales RGB LAB RGB LAB RGB LAB

4 −− −− +− −− +− −−

5 −+ −− −+ −− +− −−

6 −+ −− −+ −− −− −−

Table 10
McNemar test results for the CWCC matrices for RGB and LAB.

problem using the DT-CWT features. This is interesting, since the number
of features selected from the SWT feature set is lower than the number of
features selected by the DT-CWT feature set (see Table 9).
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Fig. 4. Visualization of differences in the LOOCV accuracies for the three wavelet
transforms over three different decomposition scales for the CWCC matrix combin-
ing scheme.

The last question we try to answer is, whether the choice of color model ef-
fects the classification results. Table 11 presents the outputs of the color model
specific McNemar test, which indicate almost no evidence against equal error
rates for the two-class problem, no matter which transformation or decom-
position depth we choose. The only exception occurs at decomposition depth
four using the SWT features. In the six-class problem, we observe slightly
more significant differences in case of the DWT and SWT features. In case
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of the DT-CWT features, the situation remains the same as in the two-class
case. However, the results are different to the concatenation approach, where
we did not observe any effect at all.

Scales DWT SWT DT-CWT

4 −− ++ −−

5 −+ −− −−

6 −+ −− −−

Table 11
McNemar test results for the CWCC matrices for RGB and LAB

Taking into account the McNemar test results of Table 11, a comparison of
the LOOCV rates for both color models allows the conclusion that LAB is
presumably the better choice for the CWCC matrix approach. Furthermore,
by referring to Table 10 we emphasize, that the choice of wavelet transform
and decomposition depth does not seem to affect the classification rates when
using LAB.

4.5 Comparing the Combining Schemes to the Grayscale Results

In this last section we make two special comparisons: First, we compare the re-
sults of the two combining schemes to the luminance-channel results of Section
4.2. Second, we compare the combining schemes to each other.

Since all of the maximum LOOCV accuracies were obtained on the highest
decomposition depth (J = 6), we primarily focus on the results of this level to
keep a certain degree of clarity. In Table 12 we provide the LOOCV accuracies
for both the RGB and LAB color model. In the context of Table 12 the ’±’
signs next to the results of the combining schemes indicate, whether there is
a significant difference to the luminance-channel results or not.

As we can see, we have clear evidence against the null-hypothesis of equal
error rates in all cases. From the plots in Figure 5 we observe that the com-
bining schemes outperform the luminance-channel results by ≈ 5 − 10% in
the two-class case and ≈ 2 − 12% in the six-class case. Hence, we summarize
that, independet of the underlying color model, we obtain an improvement in
LOOCV accuracy by using the proposed combining schemes.

On the basis of Figure 5 we would further suggest that feature vector concate-
nation is superior to the CWCC matrix approach. However, since visual inspec-
tions can be elusive, we conduct another McNemar test. Table 13 shows the
corresponding outputs for both color models. The ’±’ signs indicate, whether
there is evidence against equal error rates when comparing the concatenation
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RGB

Problem Transform Lum. Concat. CWCC

2-cls.

DWT 84.50 96.69 + 94.63 +

SWT 89.46 98.14 + 95.87 +

DT-CWT 94.83 99.38 + 97.11 +

6-cls.

DWT 71.90 85.33 + 81.82 +

SWT 77.69 89.46 + 85.95 +

DT-CWT 83.88 93.18 + 85.95 +

LAB

Problem Transform Lum. Concat. CWCC

2-cls.

DWT 84.50 96.49 + 96.49 +

SWT 89.46 98.55 + 97.52 +

DT-CWT 94.83 99.38 + 96.90 +

6-cls.

DWT 71.90 87.40 + 86.57 +

SWT 77.69 90.70 + 88.84 +

DT-CWT 83.88 91.94 + 85.74 +

Table 12
Comparison between the luminance-channel results and the two combining schemes
for LAB and RGB.

to the CWCC matrix results.

DWT SWT DT-CWT

Scales RGB LAB RGB LAB RGB LAB

4 −+ −+ ++ ++ ++ −+

5 −+ −− −+ −− ++ −+

6 ++ −− −+ −− ++ ++

Table 13
McNemar test results for the CWCC matrices in comparision to feature vector
concatenation for RGB and LAB.

In the six-class problem the results are consistently different when using the
RGB color space. From Figure 5 we can thus safely conclude, that concatena-
tion is superior to the CWCC matrices in that particular case. However, this
statement is not true in general for LAB, where only the DT-CWT results are
significantly different over all decomposition depths. In the two-class problem
we are again in the difficult situation that there is no clear pattern in the
results, which would allow to make a general statement.
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Fig. 5. Visualization of differences in the LOOCV accuracies between the lumi-
nance-channel results and the results of both combining schemes for J = 6.

5 Conclusion

In this article we focused on computer-assisted pit-pattern classification to
support the dignity assessment of colonic polyps. For that purpose, we stud-
ied the applicability of texture-analysis methods in different wavelet domains.
Our results show that texture-descriptors work pretty well for this medical
image classification problem, although the ground truth of our work was ob-
tained by an histophatological analysis. We have particularly addressed to
main issues: First, we wanted to know whether different choices of the wavelet
transformation for feature computation affect the quality of the classification
results. Second, we have tried to incorporate color-channel information into
the feature extraction process in order to improve classification accuracy.

The first results based on the luminance-channel of the LUV color model
indicate that the lack of shift-invariance and directional selectivity make the
classical DWT less suitable for our classification task. We have argued that,
due to the varying physical conditions during colonoscopy, these properties
are of particular importance. We propose to use the DT-CWT for luminance-
channel only image analysis as the wavelet transformation of choice, since we
obtained the highest LOOCV accuracies for both classification problems.
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In the luminance-channel experiments, we further see two patterns, which
persists throughout all other experiments: First, the choice of wavelet filter
does not significantly affect the classification results, at least for the selection
of filters we presented. Second, in contrast to our expectations, the decom-
position depth only slightly affects the LOOCV rates. Significant differences
only occur between scales four and six. This can be attributed to an increase
in search space dimensionality. However, the number of features selected by
FFS does not necessarily increase in proportion to the increase in search space
dimensionality.

Regarding the quality of the color-information combining approaches, our
experimental results document that both presented schemes are superior to
luminance-channel only feature extraction. Especially in the six-class problem
we achieve a considerable increase of ≈ 12% in LOOCV accuracy by incorpo-
rating color-information. Regarding the differences between the two combining
schemes, we summarize that the concatenation scheme performed best for the
six-class problem in combination with the DT-CWT. Although the difference
between the results of the DWT and DT-CWT are much smaller compared
to the luminance-channel experiments, the pattern of an increase in LOOCV
accuracy remains. Furthermore, we have seen that the choice of color model
does not have an impact on the the concatenation scheme at all with respect
to the the presented images features.

Unfortunately, we cannot make such a general statement for the two-class
problem. This is due to the already mentioned effect, that the additional color-
information somehow compensates the inter-transform differences. As a result,
we do not observe any evidence against the null-hypothesis of equal error rates
any longer. However, this might also be a side-effect of the already very high
LOOCV accuracies in the two-class case. Additionally, more color channel
information leads to more features and hence we obtain a higher-dimensional
search space for FFS.

Further research on this topic will include the evaluation of other color models
and the use of different features for the wavelet detail subbands. Although,
the proposed subband features show quite good performance, modeling the
marginal distributions of the subband coefficients seems to be promising as
well (Kwitt and Uhl, 2007). Furthermore, other classifiers and feature subset
selection algorithms might lead to even better results, since we have limited
our discussions to the simple 1-NN classifier.

25



Acknowledgments

This work is funded by the Austrian Science Fund (FWF) under Project No.
L366-N15. We would like to thank the referees for some very helpful comments
on the original version of the manuscript.

References

Bishop, C., 1995. Neural Networks for Pattern Recognition. Oxford University
Press.

Dietterich, T., Oct. 1998. Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation 10 (7), 1895–
1923.

Everitt, B., 1992. The Analysis of Contingency Tables, 2nd Edition. Vol. 45
of Monographs on Statistics and Applied Probability. Chapman and
Hall/CRC.

Fliege, N., 1994. Multirate Digital Signal Processing. Wiley.
Fu, K., Dec. 2004. Chromoendoscopy using Indigo Carmine Dye Spraying with

Magnifying Observation is the most Reliable Method for Differential Diag-
nosis between Non-Neoplastic and Neoplastic Colorectal Lesions. Endoscopy
36 (12), 1089–1093.

Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition. Morgan
Kaufmann.

Gonzalez, R., Woods, R., 2002. Digital Image Processing, 2nd Edition.
Prentice-Hall.
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Kwitt, R., Uhl, A., Häfner, M., Wrba, F., Gangl, A., Vécsei, A., 2008. Multi-
Directional Multi-Resolution Transforms for Zoom-Endoscopy Image Clas-

27



sification. Vol. 45 of Advances in Soft Computing. Springer.
Lukac, R., Plataniotis, K., 2006. Color Image Processing - Methods and Ap-

plications. CRC Press.
Mallat, S., Jul. 1989. A Theory for Multiresolution Signal Decomposition:

The Wavelet Representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 11 (7), 674–693.

Manjunath, B., Ma, W., Aug. 1996. Texture Features for Browsing and Re-
trieval of Image Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18 (8), 837–842.

Meining, A., Feb. 2004. Inter- and Intra-Observer Variability of Magnification
Chromoendoscopy for Detecting Specialized Intestinal Metaplasia at the
Gastroesophageal Junction. Endoscopy 36 (2), 160–164.

Nason, G., Silverman, B., 1995. The Stationary Wavelet Transform and some
Statistical Applications. Lecture Notes in Statistics 103, 281–300.

Palm, C., May 2004. Color Texture Classification by Integrative Cooccurrence
Matrices. Pattern Recognition 37 (5), 965–976.

Saito, N., Coifman, R., 1994. Local discriminant bases. Mathematical Imaging:
Wavelet Applications in Signal and Image Processing II 2303, 2–14.

Selesnick, I., Jun. 2001. The Design of Hilbert Transform Pairs of Wavelet
Bases. Signal Processing Letters 8 (6), 170–173.

Selesnick, I., Baraniuk, R., Kingsbury, N., 2005. The Dual-Tree Complex
Wavelet Transform. IEEE Signal Processing Magazine 22 (6), 123–151.

Shensa, M., Oct. 1992. The Discrete Wavelet Transform: Wedding the Á Trous
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