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ABSTRACT

This paper presents a lightweight, asymptotically optimal
blind detector for additive spread-spectrum watermark de-
tection in the DWT domain. In our approach, the marginal
distributions of the DWT detail subband coefficients are
modeled by one-parameter Cauchy distributions and we as-
sume no knowledge of the watermark embedding power. We
derive a Rao hypothesis test to detect watermarks of un-
known amplitude in Cauchy noise and show that the pro-
posed detector is competitive with the Generalized Gaussian
detector, yet is more efficient in terms of required computa-
tions.
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Algorithms, Performance, Security

Keywords
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1. INTRODUCTION

Watermarking has been proposed as a technology to en-
sure copyright protection by embedding an imperceptible,
yet detectable signal in digital multimedia content such as
images or video. For blind watermarking, i.e. when detec-
tion is performed without reference to the unwatermarked
host signal, the host interferes with the watermark signal.
Hence, informed watermark embedding and modeling the
host signal is crucial for detection performance [18, 7].

Transform domains — such as the Discrete Cosine Trans-
formation (DCT) or the Discrete Wavelet Transformation
(DWT) domain — facilitate modeling human perception and
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permit selection of significant signal components for water-
mark embedding. The perceptual characteristics and dis-
tributions of transform domain coefficients has been exten-
sively studied for image compression [3].

Many approaches for optimal detection of additive water-
marks embedded in transform coefficients have been pro-
posed in literature so far [10, 21, 6, 19, 4]. For blind water-
marking, the host transform coefficients are considered as
noise from the viewpoint of signal detection. If we assume
Gaussian noise, it is known that the optimal detector is the
straightforward linear-correlation (LC) detector [13].

Unfortunately, DCT and DW'T coefficients do not obey a
Gaussian law in general, which renders the LC detector sub-
optimal in these situations. A first approach, exploiting the
fact that DCT or DWT coefficients do not follow a Gaussian
law is proposed in [10]. The authors derive an optimal de-
tector for an additive bipolar watermark sequence in DCT
transform coefficients following a Generalized Gaussian Dis-
tribution (GGD). In [4], it is shown that the low- to mid-
frequency DCT coefficients excluding the DC coefficient can
also be modeled by the family of symmetric alpha-stable dis-
tributions and a detector is derived for Cauchy distributed
DCT coefficients by following the same scheme as it is pre-
sented in [10]. However, both approaches are based on the
strong assumption that the watermark embedding power is
known to the detector. In [21], a new watermark detector
based on the Rao hypothesis test [22] is proposed for water-
mark detection in Generalized Gaussian distributed noise.
The detector is asymptotically optimal (e.g. for large data
records) and does not depend on knowledge about the em-
bedding power any more.

In this work we derive another form of the Rao detector
based on the assumption that DWT detail subband coef-
ficients approximately follow a one-parameter Cauchy dis-
tribution. Our approach is motivated by the fact that cur-
rent detectors which rely on the GGD are computationally
expensive and require a cumbersome parameter estimation
procedure. The Cauchy model however leads to a simple
detector, which is competitive with the state-of-the art de-
tectors in this field. Detection runtime requirements are
important to certain applications. While [5] aims to reduce
the length of the watermark sequence, we try to reduce the
computational effort per step. For our discussion on the
proposed detector, we go without any perceptual model-
ing, although our approach can be easily combined with the
framework of [16] for example.

The remainder of the paper is structured as follows: In
Section 2 we discuss the statistical model of our approach,



followed by the derivation of the detector in Section 3. In
Section 4, we present experimental detection results and
evaluate the performance of our detector under JPEG and
JPEG2000 attacks. Moreover, we discuss computational is-
sues related to our detector and current state-of-the-art de-
tectors. Finally, Section 5 concludes the paper with a discus-
sion on open problems and an outlook on further research.

2. STATISTICAL MODEL

In this section we briefly review some results on model-
ing the marginal distributions of DWT detail subband co-
efficients by univariate probability distributions. It is com-
monly accepted that the marginal distributions of the sub-
band coefficients of natural images are highly non-Gaussian
but can be well modeled by the GGD (see [17, 23, 3]). The
probability density function (PDF) of the GGD is given by

), (1)

with —oco < & < oo and b,c¢ > 0, where we have used the
general parametrization of [20]. In contrast to the Gaus-
sian distribution (which arises as a special case of the GGD
for ¢ = 2), the GGD is a leptokurtic distribution which al-
lows heavy-tails. Although the GGD is generally the best
known model for the DWT detail subband coefficients, the
computational cost for estimating the two distribution pa-
rameters, shape ¢ and scale b, is rather high. For example,
maximum-likelihood estimation (MLE) requires to find the
root of a highly non-linear equation [9] (see Section 4.2).
To avoid this computationally intensive procedure in water-
marking applications, the shape parameter is often set to a
fixed value (e.g. ¢ = 0.5 [10]) and the same parameter set-
ting is used for all subbands [2]. However, it is obvious that
this reduces the flexibility of the GGD, which can result in
a loss of detection performance. In this work, we propose to
use the Cauchy distribution, which is a member of the family
of symmetric alpha-stable (SaS) distributions, as an alter-
native distribution to model the DWT detail subband coeffi-
cients. In case of low- to mid-frequency DCT coefficients the
Cauchy distribution has already been successfully employed
for blind DCT-domain spread-spectrum watermarking [4].
The PDF of the Cauchy distribution with location param-
eter —oo < § < oo and shape parameter v > 0 is given by
[15]

p(zlb,c) =

261 ( 1/ (
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with —oco < & < co. The Cauchy distribution with § = 0
(which is symmetric around zero) will be abbreviated by
p(z]vy) := p(x|v,0). In contrast to the Gaussian distribution,
the tails of the Cauchy distribution decay at a rate slower
than exponential, hence we observe heavy-tails in the PDF.
Figure 1 shows the PDFs of two Cauchy distributions with
different shape parameters and § = 0. Regarding the esti-
mation of the distribution parameter v, maximum-likelihood
estimation is straightforward. Given that z[1],...,z[N] de-
note realizations of N i.i.d. random variables following a
Cauchy distribution with 6 = 0, the estimate of v (denoted
by 4), is given as the solution to (see [15])
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Figure 1: Two exemplary PDF's of the Cauchy dis-
tribution with § = 0.

which has to be solved numerically using some root-finding
algorithm (see Section 4.2). The motivation for preferring
the Cauchy distribution over the GGD as an underlying
model for the DWT coefficients has two particular reasons:
First, the simple nature of the Cauchy PDF leads to a sim-
ple detection statistic on the one hand (see Section 3) and
parameter estimation of 7 is less complex than parameter
estimation for the GGD on the other hand.

To exemplify that it is reasonable to model the DWT coef-
ficients by a Cauchy distribution, we show Quantile-Quantile
plots (Q-Q Plots) for the second-scale horizontal detail sub-
band coefficients in Figure 2 (®(-) denotes the sample quan-
tile function and F'(-) denotes the CDF of the Cauchy distri-
bution). In case of a good fit, the data points should follow
the straight line, since the empirical and theoretical quan-
tiles would coincide. As we can see from Figure 2, the fit is
actually pretty good, especially in the middle regions. How-
ever, we notice slight deviations in the tail regions, since the
Cauchy distribution is too heavy-tailed.

3. THE DETECTION PROBLEM

In this section, we derive a new, asymptotically optimal
detector for additive spread-spectrum watermarking in the
DWT domain. We assume that a bipolar watermark se-
quence is embedded in the transform coefficients and that
the watermark embedding power is unknown at the detec-
tion stage.

Before we go on, we introduce some notation and de-
fine our signal detection problem. For a J-scale pyramidal
DWT we obtain three detail subbands per decomposition
level j < J, denoted by H; (horizontal detail subband),
V; (vertical detail subband) and D, (diagonal detail sub-
band). The detail subbands are given in matrix notation.
The transform coefficients for the horizontal detail subband
H; for example will be denoted by A/[l, k],1 < I,k < M;,
where Mf denotes the number of coefficients for a subband
on decomposition level j (without loss of generality we as-
sume square images). When it is not necessary to speak of
a specific subband, N is the number of subband coefficients
and the coefficients are given by z[1],...,z[N] (vector no-
tation). This vector arises by simple concatenation of the
row vectors of the appropriate subband coefficient matrix.
By adhering to this convention, the elements of the bipolar
watermark sequence used for marking an arbitrary subband
are denoted by w[t],1 <t < N with w[t] € {+1,—1}. For
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Figure 2: Cauchy Q-Q plots of Hs subband coefficients

the rest of the paper, small boldface letters denote vectors,
big boldface vectors denote matrices. The rule for additive
embedding of the watermark sequence in the transform co-
efficients is given by

ylt] = z[t] + awlt], tel,...,N (4)

where o € R denotes the watermark embedding power, y|t]
denotes a watermarked transform coefficient and z[t] de-
notes a host image transform coefficient. Now, given that
the original DW'T subband coefficients are considered as a
realization of i.i.d. random variables following a Cauchy dis-
tribution with parameter v and § = 0, our signal detection
problem can be formulated as the detection of a determin-
istic signal of unknown amplitude (i.e. our watermark) in
Cauchy distributed noise (i.e. the subband coefficients) with
unknown shape parameter +. This is actually a composite
hypothesis testing problem, which can be formulated as a
two-sided parameter test. The null- (Ho) and alternative
hypothesis (H1) of this parameter test are given by

Ho :oc = 0,7 (no/other watermark)

5
Hi o # 0, (watermarked). (%)

Since this test is two-sided, we know that no uniformly most-
powerful (UMP) test exists here [14]. An approach to tackle
the problem of unknown amplitude is to construct a General-
ized Likelihood-Ratio Test (GLRT), where the unknown pa-
rameter is replaced by its MLE. However, deriving a GLRT
in our situation is tricky, since we would have to estimate
the watermark embedding power under H; using ML estima-
tion. In [10], knowledge of the watermark embedding power
is assumed and the Bayes decision rule is applied to derive
a statistic for the detection of a bipolar watermark sequence

of unknown amplitude in Generalized-Gaussian distributed
noise. In contrast to that, we do not assume knowledge of o
at the detector and follow the same approach as presented
in [21] or more generally in [11], which leads to a so called
Rao hypothesis test. Since we rely on the assumption that
the noise follows a Cauchy distribution, our detector will be
termed the Rao-Cauchy (RC) detector.

3.1 The Rao-Cauchy (RC) Detector

In case we have large data records (which we can safely
assume in image watermarking), two hypothesis tests exist,
namely the Wald and the Rao test, which show the same
asymptotic performance as the GLRT [13]. More precisely,
these tests are equivalent to the GLRT when N — oo (sam-
ple size). The Rao test has the advantage that it only re-
quires computation of the MLEs under the null-hypothesis,
whereas a GLRT would require computation of the MLEs
under both hypothesis. The Rao test thus simplifies our
problem considerably, since we do not have to find the MLE
of o under H; any more. However, we have to deal with
one additional parameter 7, which is of no direct concern,
but has an effect on the PDFs under Ho and H;. Such a
parameter is called a nuisance parameter. In our case, this
parameter is unknown and has to be estimated. With re-
gards to this setup, the Rao test statistic p is given by [22,
13]

oly) = Lozpyl6) ’ v (§) Qloer(y|0) (6)

)
dax 0=0 dox 0=0

with & = [a 4] and 6 denotes the MLE of 6 under H,.
Since we know that under the null-hypothesis the watermark
embedding power is & = 0, we have § = [0 4]. The term



V(d) is given by
V(0) =V(0,4) =

(Lo (0,3) = T2, (0. 9)T5 (0.9) Lo (0,7)]

where Ina(a,7) and Ia,(a,7) are partitions of the Fisher
information matrix. The general form of the Fisher infor-
mation matrix for a p-dimensional parameter vector 8 =
[61,...,6p] is given by [12]

1,(0) = -E (7‘9 lgegigg'”) , (8)

witht=1,...,pand j =1,...,p. In our setup, we we have
0 = [ 7], hence the parameter vector is two-dimensional. A
theorem, which is of fundamental importance for the deriva-
tion of our detector is presented in [11]. It states, that in case
the noise PDF is symmetric, the element I, of the Fisher
information matrix becomes zero. Due to the asymptotic
equivalence of the GLRT and Rao hypothesis test [22], this
further implies that the Rao detector has the same asymp-
totic performance as a clairvoyant GLRT (i.e. where v is
known). Since the PDF of a Cauchy distribution with § =0
is actually symmetric around zero, we can exploit this the-
orem and the term V(0,%) reduces to

By assuming that the transform coefficients are realizations

of N ii.d. random variables following a Cauchy distribution,
the Rao test of Eq. (6) can now be formulated as

-1 (7)

o) = {Z alogp@ma = awlt], )

] I.a(0,9). (10)

i=t a=0
Depending on whether the null- or alternative-hypothesis is

actually true, the detection statistic p follows [11]

2
a | X1, under Ho

P ; (11)
X1, under Hi

where x7 denotes the Chi-Square distribution with one de-
gree of freedom and xi y denotes a non-central Chi-Square
distribution with one degree of freedom and non-centrality
parameter X\. The ~ denotes that this is the asymptotic dis-
tribution of p. Next, we derive the Rao test statistic for the
Cauchy distribution and later return to the computation of
the non-centrality parameter A. In the first step we calculate
the numerator of Eq. (10) as
2
} @
a=0

ldul] | _, [~ il
=1 7?2 (1 + %42]2) =1 A2 + y[t]?

Next, we derive Inq (e, y) and evaluate it at I(0,%). Accord-
ing to [11, 13] we have

N dlo t] — awlt]|H
{Z gp(y[ga [t]1%)

t=1

N , (12

La(0,7) = i() Zw[t]"’ (13)

i=1

with i(a) (termed the intrinsic accuracy [8]) given by

ie) = /:; p(yllv) (dpg;h))Q - (1

Inserting the PDF of the Cauchy distribution (see Eq. (2))
and solving the integral yields

i(a) = # (15)

Since we embed a bipolar watermark sequence, i.e. Vi :
wlt] € {+1, —1}, the final detection statistic of the Rao de-
tector becomes

2
87

N
p(y) (20209 [ y[twlt] i (16)

22 2
— 4%+ yt]
In order to study the theoretical performance of the detec-
tor, it is further necessary to derive a closed form solution

for the non-centrality parameter A which is required for the
computation of x7 y. From [13] we know that

A= 02 [Laa(0,9) = T, (0, )15 (0,11 (0,)] . (17)

Again, using the fact that I (a, ) = 0, we finally obtain

9 (13) Na?

A=a"Taa(0,7) = 57 (18)
This result can now be used to obtain theoretical Receiver-
Operating Characteristic (ROC) curves, where we plot the
probability of false alarm (Py) against the probability of
missing the watermark (P, ). Py is defined as the probability
that p(y) is greater than a given threshold 7', although Hy is
actually true and P, is defined as the probability that p(y)
is smaller than 7' although H; is true. Obviously, Py and
P, can be calculated on the basis of Eq. (11). For example,
Py follows from

Pr=P{p>THo} = Q,2(T), (19)

where Qx%(') denotes the Q-function to compute right-tail
probability (i.e. the probability of exceeding a given value)
for a Chi-Square random variable. However, from [1] we
know that this right-tail probability can also be expressed
in terms of the Q-function to express right-tail probabilities
of the Gaussian distribution using the identity Q.2 (z) =

2Q(y/x). Hence, we can express Py as
Py =2Q(VT). (20)

The Q-function and its relation to the complementary error
function erfc(-) is given by

Q(a) = ﬁ /:O exp (fx2) dx = %erfc (%) , (21

which is quite useful for implementation purposes. Accord-
ingly, if a random variable follows a non-central Chi-Square
distribution with one-degree of freedom and parameter A,
this is equivalent to the square of a Gaussian random vari-
able with mean \/X and variance o2 = 1. The probability of
missing the watermark can again be expressed in terms of
the Q-function as

Pyn=1—P;=1-P(p>T|H1)
=1-QWT - VXN + QT + V),

where P; denotes the probability of detection. We can now
substitute vT' = Q~'(Py/2) into Eq. (22) and establish the
connection between Py and P, as

P =1-Q(Q7(P1/2) =V2) = Q(Q™'(Pr/2) + V). (23)

(22)



In order to compute a threshold for the proposed detector,
we simply have to manipulate Eq. (20) to obtain an explicit
expression for T as

@l

and decide in favor of H; if p > T for a given probability of
false-alarm Py.

3.2 Some Notes on Multichannel Detection

So far, we have only addressed the detection problem when
just one detail-subband is used for embedding the watermark
sequence. However, in case we want to mark more than one
subband we have to discuss how to combine the detector
responses and how to determine a suitable global detection
threshold. We will consider the straightforward approach of
simply summing up the detector responses of each channel
(i.e. subband). In order to derive a model for the global
detection statistic, we assume that the detector responses of
each channel are independent. This is reasonable in a sense,
since the DWT detail coefficients of each subband are ac-
tually expansion coefficients of a projection of the original
signal onto orthogonal subspaces of L*(R). Further, the wa-
termark sequences are independent. This assumption allows
to exploit the reproductivity property of the Chi-Square dis-
tribution, namely that the sum of Chi-Square random vari-
ables is again Chi-Square distributed. Formally, if we have
N random variables p1, ..., pn, which all follow Chi-Square
distributions x? with one degree of freedom, we have

N
> pi~x, (25)
i=1

with v = N. We can now determine a threshold for the
summed up detector responses using the inverse of the Chi-

Square CDF. For the other detectors studied (linear-correlation,

Generalized Gaussian, Cauchy), multichannel detection can
be accomplished accordingly, since we know that the de-
tection statistics are asymptotically Gaussian and a sum of
Gaussian random variables is again Gaussian.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed Rao-Cauchy (RC) detector and compare it to the tra-
ditional LC detector, the Generalized Gaussian (GG) de-
tector of [10] and the Cauchy detector derived in [4]. The
implementation® of the detectors and all experiments were
conducted in MATLAB. In order to determine experimental
ROC curves we use Monte-Carlo simulation with 10* ran-
domly generated watermarks to obtain the detection statis-
tics under Ho (no watermark) and Hi1 (watermarked). For
all detectors we use a Chi-Square Goodness-of-Fit (GoF)
test at the 5% significance level to verify that the detection
statistic distributions under Ho are either Gaussian (in case
of the LC, GG and Cauchy detector) or Chi-Square with one
degree of freedom (in case of the RC detector). Further, we
estimate the distribution parameters of the detection statis-
tics and check if they conform to the theoretical values. This
is especially important under Ho, since a strong deviation
between the theoretical and experimental values won’t allow

tSoftware will be available under: http://www.wavelab.at/
sources

(d) Elaine

Figure 3: Test images

to set the probability of false-alarm. After this check, we de-
termine the threshold T for the RC detector according to Eq.
(24) and estimate A from the detector responses under H;.
We can then determine the experimental probability of miss
P, from Eq. (23). Plotting Py against P, results in the
desired experimental ROC curves. The detection thresholds
for the other detector are chosen according to [2, 4, 10] and
the probability of miss is calculated in the same way.

Regarding the choice of DWT wavelet filter, decomposi-
tion depth and embedding subband, we employ the biortho-
gonal CDF 9/7 filter and embed the watermark sequence
in the horizontal detail subband on level two (H2). The
embedding power « of the watermark is chosen so that a
Document-to-Watermark Ratio (DWR) of 20dB, 23dB or
25dB is obtained. The resulting image PSNRs vary from
~47dB to ~54dB as we can read off Table 4. Due to this high
PSNR values no visual artifacts can be noticed in the wa-
termarked images. The bipolar pseudo-random watermark
sequence is generated using the Mersenne twister random
number generator. We use six 128 x 128 pixel grayscale test
images for our experiments, which are shown in Figure 3.

Regarding the GoF test results for the detection statistics,
the null-hypothesis of the GoF test (either Gaussian or Chi-
Square with one degree of freedom) could not be rejected for
the majority of all cases. Table 2 lists the GoF test results of
the RC detector statistics when no watermark is present (Ho
of the detector). Since we determine the experimental detec-
tion statistics when no watermark is present by embedding
a randomly generated watermark sequence and then try to
detect 10* different watermark sequences, the test outcomes
can vary for different DWRs. A “reject” signifies that the
GoF test null-hypothesis was rejected and a “—” signifies no
rejection. As we can see, the null-hypothesis cannot be re-
jected in all cases. We do not list the test outcomes for the
other detectors, since these check results have already been
reported in the literature.

The experimental ROC curves of all six test images are
shown in Figure 4 for a DWR of 25dB. Following the analysis
in [21], the watermark power was set to « = 1 for the Cauchy
and GG detector to simulate the situation that nothing is
known about the embedding strength at the detector. With-



PSNR [dB]
DWR [dB] Lena | Barbara | Peppers | Boat | Bridge | Elaine
20 48.41 47.95 47.88 50.40 | 49.51 49.28
23 50.93 50.65 50.59 51.92 | 51.44 | 51.32
25 51.82 51.59 51.55 53.79 | 52.67 | 52.40

Table 1: Document-to-Watermark Ratio (DWR) and resulting PSNR for the test images
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Figure 4: Experimental ROC curves at DWR 25dB
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Table 2: Chi-Square GoF test results at the 5% sig-
nificance level

out any attacks, the Cauchy and GG detector show the best
performance for our test images. The proposed Rao detector
shows competitive performance in all cases and is even bet-
ter than the GG detector for Lena and Elaine. In Section 4.2
we will further see that the Rao detector requires less com-
putational effort than both the GG and Cauchy detector.
We point out, that the quite good results for the Cauchy
detector are caused by the fact that a DWR of 25dB leads
to a true embedding power close to 1. This additionally con-
firms that the Cauchy distribution is a good model for the
detail-subband coefficients as we have already seen in the
Q-Q plots of Figure 2.

4.1 Performance Under Attacks

To study the performance of the RC detector under at-
tacks, we simulate two attack scenarios: first, JPEG com-
pression with quality factors ranging from @ = 50 to Q = 90
and second, JPEG2000 compression using Jasper (default
settings) with compression ratios varying from 0.8bpp (rate
0.1) to 2.4bpp (rate 0.3). Again, we run Monte-Carlo sim-
ulations with 10* randomly generated watermarks to deter-
mine the detection statistics under the null- and alternative-
hypothesis. First, we take a look at the JPEG compression
results with a quality factor of @ = 50, which are shown
in Figure 5 for the six test images at a DWR of 20dB. The
resulting PSNRs of the compressed images are given on top
of each figure. In this setting with a rather low quality
value, the proposed RC detector outperforms the GG de-
tector in all cases and is competitive to the Cauchy detec-
tor. Generally, we observe the behavior that as we increase
the quality factor @ and choose a lower embedding strength
(i.e. a higher DWR), the results became more similar to
Figure 4, which is obvious since the impact of the attack is
reduced. Due to space limitations, we cannot present the
corresponding ROC plots here. The reason why the Cauchy
distribution related detectors show such a good performance
in this attack scenario is probably related to the fact that
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Figure 5: Performance under a JPEG compression attack with Q =50 and DWR 20dB
the JPEG attack alters the embedding strength of the wa- e Linear-Correlation (LC) Detector
termark as well as the subband statistics, which results in a
N
performance loss for the GG detector. () = 1 twl] (26)
Next, we study the performance under JPEG2000 attacks. Py N Z Y

The ROC curves for a compression rate of 2.4bpp at a DWR =t

of 23dB are shown in Figure 6. In contrast to the JPEG com- o Ceneralized Gaussian (GG) Detector

pression attacks, we notice that the average PSNR is higher

here, ranging from 36dB to 42dB. When the compression 1

rate is increased so that the average PSNR goes down to = Z ylt] — awlt]|%) (27)
the PSNR after JPEG compression, the detection results be- t=1

come almost unacceptable. This behavior can be attributed
to the fact that JPEG2000 operates in the wavelet domain
and possibly has a stronger influence on the detail subband

e Cauchy Detector

statistics than traditional JPEG compression. In addition Zl og ( 7 +y[t)? ) (28)
to that, we are marking just one detail subband here. Never- =1 72+ (y[t] — awlt])?

theless, the RC detector shows good performance even under

the JPEG2000 attack and again outperforms the GG and of In Table 3 we provide the number of operations as a function
course the LC detector. of the input vector length N. From these numbers it is ob-

vious that the LC detector is by far the simplest in terms of
arithmetic operations, since it involves only summations and

4.2 ComPUtatlonal Analys1s multiplications of floating point numbers. Only the water-
In order to justify the term lightweight detector, we take a marked coefficients and the watermark sequence itself are
look at the computational effort which is required to employ involved. However, the RC detector is only slightly more
the RC detector and compare it to the effort required for the expensive, since the exponentiations in Eq. (16) merely in-
other detectors. This includes a discussion of the number volve integer exponents and additions as well as multiplica-
of required arithmetic operations to calculate the detection tions which can be very efficiently performed with few CPU
statistics, parameter estimation issues and the determina- cycles. In contrast to that, the Cauchy detector requires
tion of detection thresholds. By arithmetic operations we 2N + 1 computations of the logarithm and the GG detector
understand the number of additions & subtractions (+, —), even requires exponentiations with floating point numbers,
multiplications & divisions (x,~+) and logarithms & expo- which is very expensive in terms of CPU cycles.
nentiations (log, pow). For the sake of completeness the de- Regarding parameter estimation issues, the LC detector
tection statistics of the LC, GG and Cauchy detector are is again the simplest one, since it requires no parameter esti-

listed below: mation at all (see Eq. (26)), followed by the RC and Cauchy
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Figure 6: Performance under a JPEG2000 compression attack with 2.4bpp and a DWR  of 23dB

Detector Oper:ations

+,— | X,+ | pow,log
LC N N
RC 2N | N+1 2
GG [10] 2N 1 2N +1
Cauchy [4] || 3N N 2N +1

Table 3: Number of arithmetic operations

detector, which both require to estimate the shape parame-
ter v of the Cauchy distribution. The MLE of v can be nu-
merically computed by solving Eq. (3). For our experiments,
we implemented ML estimation using the Newton-Raphson
root finding procedure. For that purpose, define the left
hand side of (3) as a function of 4, denoted by g(%). The
estimate of v in the k-th iteration of the Newton-Raphson
algorithm is computed by

g(vx)
g'(v)’

Vet1 = Yr — (29)

Here, g'(-) denotes the first derivative of g w.r.t. 7, given by
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where the z[t] denote N realizations of i.i.d. Cauchy random
variables. As starting value 41 for the numerical calculation,
we used estimation values based on sample quantiles [15] to
obtain a first estimate of v as

z1-p) tan(w (1 - p)),

with 0.5 < p < 1 and xp, z1—, denoting the sample quantiles.

I

, 30
ERRRTEE (30)

4 = 0.5(zp — (31)

Moment estimation is not possible in case of the Cauchy
distribution, since the moments do not exist. In case of the
GGD, ML estimation of the shape ¢ and scale parameter b
requires to find the roots of the transcendental equation [9]

$(1/8) + log (& T, aldl”)
S e lt]| log(lelt]]) _
S el

where the z[t] now denote N realizations of i.i.d. GGD ran-
dom variables and ¥(-) denotes the digamma function [1],
i.e. the logarithmic derivative of the gamma function. In-
serting the MLE of ¢ into

then gives the MLE of b. Good starting values are usually
obtained from moment estimates [20]. For our experiments,
we used the Newton-Raphson algorithm proposed in [9] to
solve the ML equation for c. Taking into account that this
includes a numerical computation of the first polygamma
function and exponentiations by floating point number, it
is obvious that finding the solution to Eq. (32) requires
more computational effort than solving Eq. (3). Our estima-
tion experiments confirm that the Cauchy MLE procedure
is faster by a factor of four.

Finally, we cover the effort for the determination of detec-
tion thresholds. In case of the LC, GG and Cauchy detector,
we have to compute the mean and variance of the normally
distributed detection statistic under Ho to determine a suit-

1+

(32)

I

o=

N

Z [41°

(33)



able threshold (see [2] for example). In contrast to that, the
RC detector does not require to compute detection statistic
parameters, since under Ho we know that p ~ x7 and the
threshold can easily be calculated from Eq. (24).

S. CONCLUSION

In this paper we presented a new, asymptotically optimal
blind detector for additive spread-spectrum watermarking
in the DWT domain. We showed that DW'T detail subband
coefficients can be modeled reasonably by a one-parameter
Cauchy distribution and derived a watermark detector on
the basis of the Rao hypothesis test without depending on
knowledge of the watermark embedding strength. Estima-
tion of the shape parameter of the Cauchy distribution is
simple and computationally less expensive than estimation
of the shape and scale parameter of the GGD. The compu-
tation of the detection statistic further requires fewer arith-
metic operations than the GG detector and even the de-
termination of detection thresholds is more straightforward.
Our experimental results without any attacks indicate supe-
rior performance over the LC detector in all test scenarios
and at least competitive performance compared to the GG
and Cauchy detector. However, under JPEG and JPEG2000
compression attacks, the RC detector shows robust behav-
ior and even better detection results than the GG detector,
especially at high compression rates. Nevertheless, we have
to point out that the reduced flexibility of the Cauchy distri-
bution in relation to the GGD can result in lower detection
performance in cases where the subband coefficient statis-
tics strongly deviate from the Cauchy model. But setting
the shape parameter of the GGD to a fixed value would
equally lead to reduced flexibility. Further work on this
topic includes the incorporation of a perceptual model, a
more comprehensive performance evaluation under more at-
tack scenarios and a thorough discussion on multichannel
detection issues.
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