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ABSTRACT

In this work, we present a texture-image retrieval approach, which

is based on the idea of measuring the Kullback-Leibler divergence

between the marginal distributions of complex wavelet coefficient

magnitudes. We employ Kingsbury’s Dual-Tree Complex Wavelet

Transform for image decomposition and propose to model the detail

subband coefficient magnitudes by either two-parameter Weibull or

Gamma distributions for which we provide closed-form solutions to

the Kullback-Leibler divergence. The experimental results indicate

that our approach can achieve higher retrieval rates than the clas-

sical approach of using the pyramidal Discrete Wavelet Transform

together with the Generalized Gaussian model for detail subband

coefficients.

Index Terms— Image texture analysis, Wavelet transforms,

Statistics, Texture Retrieval

1. INTRODUCTION

A reasonable similarity measure between images is one of the essen-

tial parts of every image retrieval and image classification system.

We focus on the problem of texture-image retrieval, where we have

an arbitrary query image and we want to obtain the K most similar
images from a given image database, according to some similar-

ity criterion. Considering the fact that the database can contain a

large number of images, we favor a computationally inexpensive

way to measure similarity. Many classical approaches in the field

of texture-image retrieval leave the spatial domain and work in a

transform domain instead. Commonly used image transformations

include the Gabor Wavelet Transform or the classical pyramidal

Discrete Wavelet Transform (DWT). Our work is based on the

contributions of [1], where the authors propose a statistical frame-

work in which the feature extraction and similarity measurement

step are closely related to each other. They propose to measure

image similarity by computing the Kullback-Leibler divergence

(KL-divergence) between the marginal distributions of DWT detail

subband coefficients. In our approach, we work with the Dual-Tree

Complex Wavelet Transform (DT-CWT), originally proposed by

Kingsbury [2], which eliminates the DWT disadvantages of shift-

dependency and lack of directional selectivity at the cost of very

limited redundancy. We note, that the DT-CWT has already been

successfully used in the context of image retrieval [3], however by

using the traditional mean and standard deviation features of [4].

Our contribution is to propose a reasonable model for the marginal

distributions of DT-CWT detail subband coefficients and to integrate

these models into the statistical texture image retrieval framework

of [1].
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The remainder of this paper is structured as follows: in Section

2 we briefly review the connection between the KL-divergence

and the principle of maximum-likelihood selection. Section 3

then introduces the distributional models for the marginal distri-

butions and provides closed-form solutions for the corresponding

KL-divergences. Finally, Section 4 presents a comparison of the

experimental retrieval results and Section 5 concludes the paper

with a brief summary and an outlook on further research.

2. PROBABILISTIC IMAGE RETRIEVAL

First of all, we establish the formal framework of probabilistic im-

age retrieval by merging the illustrations of [1] and [5]. Lets assume

that we have N images Ii, 1 ≤ i ≤ N in our database. Each image
is represented by a data vector xi = {xi1, . . . , xin}, which is an
element of some feature space X ⊂ R

n and is obtained by feature

extraction (FE). The retrieval task is to search the K most similar
images to a given query image Iq , according to some similarity cri-

terion. We further assume that all images have equal prior probabil-

ity and the query image is represented by data vector xq . From the

probabilistic point of view, each data vector contains n realizations
of i.i.d. random variables X1, . . . , Xn, which follow a parametric

distribution with probability density function (PDF) p(x|θ), θ ∈ R
d.

Given that we have a consistent estimator θ̂ for the parameter vec-

tor θ, we can use θ̂ without limitations. Under these premises, it is
natural to select the most similar image Ir to Iq as the one, whose

parameter vector θr leads to a maximization of the likelihood/log-

likelihood function, i.e.

r = argmax
j

1

n

n
X

i=1

log (p(xji|θj)) . (1)

Note, that the additional factor 1/n does not affect the maximization
result. By applying the weak law of large numbers to Eq. (1) as

n→∞ (asymptotic case), we obtain

r
n→∞
= argmax

i

Ep(x|θq)(log(p(x|θi))) (2)

= argmax
i

Z

D

p(x|θq) log(p(x|θp))dx, (3)

where the term Ep(x|θq)(·) denotes the expectation with respect to
p(x|θq) and D denotes the domain of p(x|·). By observing that
p(x|θq) is an independent term for maximization, we can rewrite
Eq. (3) as the following minimization problem:

r = argmin
i



−
Z

D

p(x|θq) log(p(x|θi))dx

ff

(4)

≡ argmin
i

Z

D

p(x|θq) log

„

p(x|θq)

p(x|θi)

«

dx (5)
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Fig. 1. Example texture and two histograms for the DT-CWT detail

subbands B12 and B25 (The notation Bsk denotes the subband at

scale s and orientation k ∈ {1, . . . , 6}).

However, the last term in Eq. (5) is the KL-divergence between

p(x|θq) and p(x|θi), which we will denote as KL(pq||pi) using the
abbreviation pi := p(x|θi). Hence, we have established the con-
nection, that in the asymptotic case (n → ∞) maximum-likelihood
selection is equivalent to minimization of the KL-divergence. To

obtain the second most-similar image to Iq , we simply repeat the

selection procedure on the N − 1 remaining image samples. After
N iterations we have an ordering of the image database induced by
the KL-divergence, with the order-relation defined as Ii ≤ Ij :⇔
KL(pq||pi) ≤ KL(pq||pj) w.r.t. the query image Iq .

3. COMPUTING IMAGE FEATURES

We employ Kingsbury’s Dual-Tree Complex Wavelet Transform

(DT-CWT) [2] to compute a redundant image representation with

six oriented complex detail subbands at each decomposition level.

The advantages of this complex wavelet transform variant are its

approximate shift-invariance, its directional selectivity and the very

efficient implementation scheme by four parallel 2-D DWTs. All of

these properties come at the very low cost of four-times redundancy

in 2-D.

To model the marginal density of the complex coefficient mag-

nitudes of the detail subbands we consider three distributional mod-

els: the Rayleigh distribution, the two-parameter Weibull distribu-

tion and the two-parameter Gamma distribution. In Section 5 we

will use a chi-square goodness-of-fit (GoF) test to quantify the suit-

ability of these models. We like to remind that a visual comparison

based on histogram fits alone can be elusive due to the dependency

on histogram binning. To get a first impression of the principal shape

of the marginal coefficient distributions, Figures 1(b) and 1(c) show

two histograms of coefficient magnitudes from two detail subbands

obtained by decomposing the example texture in Figure 1(a) by a

three-scale DT-CWT.

Since the frequency responses of the DT-CWT closely resem-

ble frequency responses of the Gabor wavelet transform [3], we first

consider the Rayleigh distribution as a reasonable model [6]. The

PDF of the Rayleigh distribution is given by

p(x|b) =
x

b2
exp

„

− x2

2b2

«

, x > 0, (6)

with scale-parameter b > 0. By inserting Eq. (6) into Eq. (5) we can
derive a closed-form solution for the KL-divergence between two

Rayleigh distributions with parameters bi and bj as

KL
Rayleigh

(pi||pj) =
b2i
b2j
− 2 log (bi) + 2 log (bj)− 1. (7)

The expression in Eq. (7) only involves the distribution parame-

ters, which allows a fast computation in case we have estimators for

bi and bj . Throughout this work, we will use maximum-likelihood
estimators (MLE) for the distribution parameters. The MLE of b can
be found in [7] for instance. In the absence of a solution like Eq. (7),

we would have to resort to the discrete version of the KL-divergence,

which can be quite problematic to compute in view of the already-

mentioned problem of histogram binning. Interestingly, assuming

a Rayleigh distribution has some theoretical background too. If we

assume that the real and imaginary part of the complex coefficients

are just realizations of two random variables A and B following a
normal distribution with zero mean and equal variance σ2, then the

magnitude C =
p

(A2 +B2) follows a Rayleigh distribution with
parameter σ. However, in the context of a medical image classi-
fication problem, it was shown in [8] that the assumptions of the

Rayleigh model are very strong and are often violated. The authors

propose the two-parameter Weibull distribution as a reasonable al-

ternative, since it includes the Rayleigh distribution as a special case

and allows for more freedom in shape, due to one additional param-

eter. The Weibull PDF is given by

p(x|c, b) =
c

b

“x

b

”c−1

exp
n

−
“x

b

”co

, x > 0, (8)

with shape parameter c > 0 and scale parameter b > 0. For c = 2
and b =

√
2b it is trivial to see that Eq. (8) reduces to the Rayleigh

distribution. Solutions for the MLEs of b and c are again given in
[7]. Unfortunately, the MLE for c has no explicit form and can only
be computed as the solution to a non-linear equation. By inserting

Eq. (8) into Eq. (5), we can derive a closed-form solution for the

KL-divergence between two Weibull distributions with parameters

ci, bi and cj , bj as

KL
Weibull

(pi||pj) = Γ

„

cj
ci

+ 1

« „

bi
bj

«cj

+ log
`

b−ci

i ci
´

−

log
“

b
−cj

j cj
”

+ log (bi) ci − log (bi) cj +
γcj
ci

− γ − 1,

(9)

where γ denotes the negative of the digamma function ψ(x) =
Γ′(x)/Γ(x) at x = 1 (γ ≈ 0.577).
The third alternative model we consider is the Gamma distri-

bution, which has already been proposed as an alternative to the

Rayleigh distribution for modeling the magnitudes of Gabor filter

outputs [9]. By looking at Figures 1(b), 1(c) and recalling the princi-

pal shape of the Gamma distribution, we conjecture that this model

might also be suitable for the DT-CWT detail subband coefficient

magnitudes. The Gamma PDF is given by

p(x|a, b) =
b−axa−1

Γ(a)
exp

“

−x
b

”

(10)

According to [9], a closed-form solution for the KL-divergence be-

tween two Gamma distributions with parameters ai, bi and aj , bj
exists and can be computed by

KL
Gamma

(pi||pj) = ψ(ai)(ai − aj)− ai + log

„

Γ(aj)

Γ(ai)

«

+

aj log

„

bj
bi

«

+
aibi
bj

,

(11)

with ML-estimates for the shape and scale parameter given in [7].

Like in the Weibull case, ML parameter estimation involves finding

the root of a non-linear equation. Until now, we can only compute

a similarity measure between the marginal distributions of two sub-

bands. Assuming independency of the subband data allows to derive

a simple similarity measure between two images in this framework



[1]. Since the KL-divergence can be expressed in terms of entropy

and cross-entropy, we can apply the chain rule of entropy [10] and

obtain the result that the overall KL-divergence between all subbands

is simply the sum over the individual KL-divergences. Given that

p̂Isk := p(x|θ̂Isk) and p̂Jsk := p(x|θ̂Jsk) denote the fitted distribu-
tions for each DT-CWT detail subband of images I and J , the final
similarity measure can be written as

S(I,J ) =

J
X

s=1

6
X

k=1

KL(p̂Isk||p̂Jsk) (12)

where J denotes the decomposition depth of the DT-CWT. Eq.
(12) is actually very simple to compute, since our expressions for the

KL-divergences only involve the parameter estimates.

4. EXPERIMENTAL RESULTS

In order to compare our image retrieval approach to the one pre-

sented in [1], we use almost the same experimental setup. We work

with the same 40 texture images from the MIT Vision Texture (Vis-
TeX) database [11] (512 × 512 pixel) and split each image into 16
non-overlapping subimages (128 × 128 pixel). In addition to nor-
malizing the subimages by subtracting the mean and dividing by

the standard deviation, we conduct a contrast enhancement step us-

ing contrast-limited adaptive histogram equalization (CLAHE) [12].

Regarding the filter sets for the wavelet transforms, we use 8-tap

Daubechies filters for the DWT and Kingsbury’s Q-Shift (14,14)-tap

filters (levels ≥ 2) in combination with (13,19)-tap near-orthogonal
filters (level 1) for the DT-CWT [13].
As we mentioned in Section 3, we check the suitability of our

distributional models by employing a chi-square GoF tests on the

coefficient data. The chi-square test is applied on all subbands of the

DT-CWT decomposed subimages (using a 3-scale DT-CWT). In all

tests, the null-hypothesis is that the subband coefficients follow the

assumed distribution and the significance level is set to α = 0.01
(i.e. the probability of falsely rejecting the null-hypothesis although

it is true, is less than 1%). The number of bins to compute the chi-
square statistic is set to 0.3σ, where σ denotes the sample standard
deviation (same setting as in DATAPLOT [14]). In case we observe

bins containing less than 5 observations in the tail regions, the cor-
responding adjacent bins are scaled to include these observations.

Table 1 lists the percentage of rejected null-hypothesis for our three

distributional assumptions per scale and on average.

Scale Rayleigh Gamma Weibull

1 93.98 64.79 69.17
2 76.02 39.12 33.48
3 44.64 12.63 9.51

Avg. 71.55 38.85 37.39

Table 1. Percentage of rejected null-hypothesis (α = 0.01) per scale
and on average.

As we can see, the Weibull and Gamma distribution are bet-

ter models than the Rayleigh distribution, which seems obvious due

to the higher degree of freedom in adapting to the underlying data.

We further observe that higher decomposition depths lead to smaller

numbers of rejected null-hypothesis. Even in case of the Rayleigh

assumption, the rejection rate drops to approximately 45% for level
three. For the purpose of comparision, the rejection rate in case of

assuming a Laplace distribution for the marginal detail subband co-

efficients of a three-scale DWT is 63% on average and 14.39%when
assuming a Generalized Gaussian distribution (GGD).

In order to evaluate the performance of the retrieval system, we

have to establish some evaluation criteria. First, we check the num-

ber of correctly retrieved images among the top K matches. By
correct we understand the correct texture class (the parent of the

subimage). For each query image (i.e. each subimage) we know the

correct membership index set Q = {r1, . . . , rB}, where B denotes
the number of subimages. Given that the index set for the top K
matches is denoted by {q1, . . . , qK}, we calculate

sk =
1

K

K
X

i=1

1Q(qi), 1Q(x) :=

(

1, if x ∈ Q,
0, else

(13)

which gives us the percentage of correctly retrieved images. Since

each image is split into 16 subimages, we setK = B = 16. Second,
we evaluate the retrieval performance according to the number of

considered retrieved images. This means, that we calculate Eq. (13)

for varying values ofK. This gives us some kind of operating char-
acteristic curve. Table 2 lists the percentage of correctly retrieved

images among the top K = 16 matches with decomposition depths
less than three.

Scale Laplace GGD Rayl. Wbl. Gamma Classic

1 41.00 64.35 63.52 71.81 71.17 68.12
2 52.07 70.91 69.57 76.81 76.06 72.06
3 57.27 74.24 75.07 81.58 80.86 77.23

Table 2. TopK = 16 retrieval results.

As we can see, the highest rates are obtained by relying on the

Weibull assumption, although the Gamma model performs at a com-

parable level. However, an interesting observation is that by using

the classical mean and standard deviation features of [4] (abbrevi-

ated by Classic) together with the unweighted Euclidean distance as

a similarity measure, we obtain even better retrieval rates than the

DWT & GGD (abbreviated by GGD) approach. Disregarding the

fact that the Weibull model leads to the highest rates, these results

are particularly noteworthy, since the computational effort to com-

pute the empirical mean and empirical standard deviation is by far

smaller than computing the MLEs of the GGD by finding the roots

of a transcendental equation [1]. In Figure 2 we show a comparison

of the retrieval performances for different DT-CWT detail subband

features in case of a 3-scale DT-CWT.
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Fig. 2. Comparison between various DT-CWT features.

The Weibull model leads to the consistently highest retrieval

rates and is slightly better than the Gamma model. Further, we see

the effect mentioned in [3], that as the number of considered images

grows, the slope of the graph becomes more shallow. This impli-

cates that in order to obtain retrieval rates equal to the Weibull ap-

proach, we need to consider many more images in the Classic and



Gamma case. In Figure 3 we compare the best results of the DWT

& GGD approach to DT-CWT & Classic and DT-CWT & Weibull

approaches.
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Fig. 3. Comparison between DWT and DT-CWT features.

On average, the combination DT-CWT & Weibull is superior to

the combination DWT & GGD by 2.8% for 15 ≤ K ≤ 100. In the
GGD vs. Classic case, the traditional approach of using mean and

standard deviation achieves better rates than the GGD approach for

K ≤ 80. To see the differences in retrieval rates for the 40 textures
of our experiments, we additionally provide the texture-specific rates

in Table 3. For 90% of the textures, the Weibull approach achieves

Texture GGD Wbl. Texture GGD Wbl.

Bark.00 64.45 70.70 Food.08 99.22 100.00
Bark.06 42.19 60.55 Grass.01 69.14 64.06
Bark.08 64.84 77.34 Leaves.08 63.28 71.48
Bark.09 51.17 77.34 Leaves.10 47.66 42.19
Brick.01 82.03 86.33 Leaves.11 72.66 88.28
Brick.04 61.33 76.95 Leaves.12 76.56 79.69
Brick.05 71.88 86.72 Leaves.16 74.22 80.08
Buildings.09 96.09 99.61 Metal.00 69.92 72.27
Fabric.00 80.47 91.41 Metal.02 100.00 100.00
Fabric.04 62.11 65.23 Misc.02 82.42 83.59
Fabric.07 96.88 100.00 Sand.00 76.17 92.19
Fabric.09 67.97 97.27 Stone.01 58.59 60.55
Fabric.11 55.86 76.17 Stone.04 69.14 73.05
Fabric.14 100.00 100.00 Terrain.10 39.84 51.17
Fabric.15 85.16 95.70 Tile.01 51.17 48.44
Fabric.17 94.53 100.00 Tile.04 96.48 99.22
Fabric.18 94.92 99.22 Tile.07 100.00 100.00
Flowers.05 70.31 81.64 Water.05 96.09 98.83
Food.00 75.39 90.63 Wood.01 31.64 31.25
Food.05 88.28 96.48 Wood.02 84.77 97.66

Table 3. Texture-specific retrieval results.

higher retrieval rates. In case of the Gamma assumption, the results

look similar, although we cannot provide a full listing of the results

here, due to space limitations.

5. CONCLUSION

In this work we have taken up the idea of measuring image similar-

ity by KL-divergences between the marginal distributions of wavelet

detail subband coefficients and extended it to the complex wavelet

domain. We have shown that the magnitudes of the complex coef-

ficients can be modeled by either two-parameter Gamma or Weibull

distributions. We have further validated the results of previous work

[8], that the Rayleigh distribution is not flexible enough to model

these subband coefficients. An interesting result of our experiments

is, that the mean and standard deviation based features from DT-

CWT detail subbands together with the Euclidean distance outper-

form the combination DWT & GGD. Especially, from the computa-

tional point of view, this result is actually very appealing. We con-

clude that the advantages of the DT-CWT over the classical DWT

are reflected in the good results. The additional computational load

that comes along with the DT-CWT is neglectable since the DT-

CWT allows a parallel implementation and is still of linear complex-

ity. Future work includes the evaluation of the Generalized Gamma

distribution as another alternative distribution, since it includes the

Rayleigh, Weibull and Gamma model as special cases, however at

the cost of complex parameter estimation.
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