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Abstract—In this work we propose a set of new wavelet-
domain based color-texture features for the classification of zoom-
endoscopy images in the field of medical imaging. We extend the
concept of classic co-occurrence matrices to capture informa-
tion between detail-subband pairs of different color channels.
Our results show, that the proposed features outperform other
wavelet-domain based color-texture features in terms of leave-
one-out cross-validation accuracy.

I. INTRODUCTION

Recent statistics of the American Cancer Society1 reveal

that colorectal cancer is the third most common cancer in men

and women and the third most common cause of US cancer

deaths. Since most colorectal cancers develop from polyps,

a regular inspection of the colon is recommended in order

to detect lesions with a malignant potential or early cancer.

A common medical procedure to examine the inside of the

colon is colonoscopy, which is usually carried out with a

conventional video-endoscope. A diagnostic benefit can be

achieved by employing so called zoom-endoscopes, which

achieve a magnification factor of up to 150 by means of an

individually adjustable lens. In combination with dye-spraying

to enhance the visual appearance (chromo-endoscopy) of the

colon mucosa, zoom-endoscopy reveals characteristic surface

patterns, which can be interpreted by experienced physicians.

Commonly used dyes are either methylene-blue, or indigo-

carmine, which both lead to a plastic effect. In the research

work of Kudo [1], [2], the macroscopic appearance of colorec-

tal polyps is systematically described and is known as the so

called pit-pattern classification scheme.

To allow computer-assisted pit-pattern classification, we

search for a set of image descriptors, by means of which

we can discriminate the various pit types (see Section II).

Generally, commonly known texture descriptors are used to

serve this purpose. These include color histograms [3] or

first-order statistics from wavelet coefficients [4] of grayscale

images. Color information in the wavelet-domain is exploited

in [5] by means of classic co-occurrence matrices and second

order statistics. Other approaches in the field of color-texture

discrimination include wavelet energy correlation signatures

[6] or Gabor opponent features [7], which are basically the

1http://www.cancer.org

same, but reside in different transform domains. In this work,

we introduce a set of new color-texture descriptors, based on

second-order statistics from cross co-occurrence matrices [8],

[9], computed between wavelet subbands of different color

channels.

The remainder of the paper is structured as follows: Sec-

tion II briefly discusses the pit-pattern classification scheme

and introduces the corresponding classification problems. In

Section III, we review the concept of co-occurrence matrices

and introduce our proposed extension. Section IV presents

the experimental results of our work, including a comparative

study to similar approaches. Finally, Section V concludes

the paper with a short summary and an outlook on further

research.

II. PIT-PATTERN CLASSIFICATION

Polyps of the colon are a frequent finding and are usually

divided into metaplastic, adenomatous and malignant. Since

the resection of all polyps is rather time-consuming, it is

imperative that those polyps which warrant resection can

be distinguished. Furthermore, polypectomy2 of metaplastic

lesions is unnecessary and removal of invasive cancer may

be hazardous. The classification scheme of Kudo divides the

mucosal crypt patterns into five groups (pit-patterns I-V, see

Figure 1).

Fig. 1. Pit-Patterns I-V

While types I and II are characteristic of benign lesions and

represent normal colon mucosa or hyperplastic polyps, types

2the process of removing polyps



III-V represent neoplastic, adenomatous and carcinomatous

structures. Our classification problem can be stated as follows:

the problem to differentiate pit-types I and II from III-V will be

denoted as the two-class problem, whereas the more detailed

discrimination of pit-types I-V will be denoted as the six-class

problem. Note, that pit-type III is subdivided into types III-

S/III-L and thus accounts for two classes.

III. FEATURE EXTRACTION & CLASSIFICATION

Since our proposed feature extraction approach will be

based upon co-occurrence matrices, we briefly review this

concept here. Lets establish some notation first. We consider

our images as matrices, given by C0 = {c0
ik}0≤i,k≤n−1, with

c0
ik denoting the intensity of a pixel at location (i, k). For
simplicity, the location is often written as a lowercase, boldface

variable, such as x or y. All uppercase, boldface variables

will denote matrices. The superscript 0 signifies that we are
working with the original, unmodified image. In case of vector

images (e.g. color images), we extend this notation by another

superscript p or p′ to signify the image plane. If we work on

RGB images for instance, we have p, p′ ∈ {R,G,B}. Any
further notation will be introduced when necessary.

A. Co-Occurrence Matrices

The co-occurrence matrix M
p
d(i, j) at position (i, j) cap-

tures the joint occurrence of intensity values i and j separated

by the displacement vector d ∈ N
2. The displacement vector

thus implicitly defines the orientation and the distance of

considered pixel pairs. Formally, M
p
d is defined as

M
p
d(i, j) = P

(

c0
x = i ∧ c0

y = j|x − y = d
)

(1)

This classic formulation of the co-occurrence matrix captures

information of intensity images only and is usually used in

combination with grayscale images. Depending on the type of

texture in an image, we can observe characteristic patterns in

the shape ofM
p
d. A first extension of the classic co-occurrence

matrix is, to capture the joint occurrence of intensity values

between different image planes p and p′ [10]. Formally, this

can be written as

M
p,p′

d (i, j) = P

(

c0,p
x = i ∧ c0,p′

y = j|x − y = d
)

(2)

According to the terminology in [10], co-occurrence matrices

as defined by (1) will be denoted as within co-occurrence

matrices and co-occurrence matrices as defined by (2) will be

denoted as cross co-occurrence matrices. However, the latter

concept can be generally applied to all kinds of vector images,

including multiscale images. In [8] for example, images are

analyzed on different scales, whereby the scale space is

generated by repeatedly applying Gaussian filters with varying

variance σ2.

In our work, we leave the spatial domain and extend

the concept of cross co-occurrence matrices to the wavelet-

domain. We choose the maximally decimated, discrete wavelet

transform (DWT) [11] in 2-D as our basic transformation

(implemented by the Mallat algorithm). For convenience, we

briefly summarize the computational steps: let l2(Z) be the

space of square-summable sequences, then we first define the

decomposition operatorsH and G on the sequence c = {cl|l ∈
Z} as

H : l2(Z) → l2(Z) (3)

c 7→ Hc =

{

(Hc)k =
∑

l∈Z

hl−2kcl

}

G : l2(Z) → l2(Z) (4)

c 7→ Gc =

{

(Gc)k =
∑

l∈Z

gl−2kcl

}

In the terminology of signal processing, {hk|k ∈ Z} and
{gk|k ∈ Z} denote the filter coefficients of a low- and high-
pass filter in a two-channel perfect-reconstruction filterbank.

Since we work on images, we additionally define H := HcHr,

Hv := HcGr, Hh := GcHr and Hd := GcGr, where

Hc, Gc,Hr, Gr operate on the column (c) or row (r) indices.

In a J-scale 2-D DWT decomposition, our two-dimensional

signal C0 is now be decomposed into a series of lower-

dimensional signals CJ ,DJ
h ,DJ

v ,DJ
d , . . . ,D1

h,D1
v,D1

d. The

so called approximation subband is obtained by Cj+1 = HCj

and the detail subbands are computed by

D
j+1

k = HkC
j , k ∈ {h, v, d} (5)

for j = 0, . . . , J − 1. The 2-D DWT is thus obtained by
recursively applying convolution-decimation operations to the

approximation subband. Now, that we can decompose an

image into a set of detail subbands at each scale, we can go

on to define our proposed color wavelet cross co-occurrence

(CWCC) matrices, which aim at capturing joint occurrences

of wavelet coefficients at equal subbands but different color

channels (or image planes in general). The color wavelet cross

co-occurrence matrixM
p,p′

d,s,k,k′(i, j) at position (i, j) between

two arbitrary subbands D
s,p
k ,D

s,p′

k′ at scale s is now defined

as

M
p,p′

d,s,k,k′(i, j) =

P

(

cs,k,p
x = i ∧ cs,k′,p′

y = j|x − y = d
)

(6)

The additional superscripts for the transform coefficients are

necessary to completely specify their position in the decom-

position structure. For our experiments, we will make the

restriction k = k′, which means that only pairs of subbands at

equal positions in the decomposition are considered. To make

(6) computationally feasible, it is further necessary that the

transform coefficients are quantized. Therefore we use three

common quantization factors, set to 64, 128 and 256. We point
out, that when using (2) and (6) it is now possible to have a

zero-displacement vector d = 0 = (0, 0)T , which bears a

relation to two-dimensional histograms [9].

B. Image Features

Until now, we have only concentrated on how to com-

pute co-occurrence matrices. Unfortunately, the elements of

these matrices cannot be directly used as input features to a



classifier. Even with a quantization factor of 64, we would
end up with 642-dimensional feature vectors. According to

[12], the number of samples needed to train a classifier grows

exponentially with the number of input dimensions (known

as the curse of dimensionality). To remedy this problem,

we compute a subset of the popular Haralick [13] second-

order statistics from our co-occurrence matrices, which are

then assembled into feature vectors. Given that Q denotes the

quantization factor used to compute M
p,p′

d,s,k,k′ , the features

Contrast, Correlation, Homogeneity and Energy are defined

by

Contrast

F1 =

Q−1
∑

i=0

Q−1
∑

j=0

|i − j|2Mp,p′

d,s,k,k′(i, j) (7)

Correlation

F2 =

∑Q−1

i=0

∑Q−1

j=0
(i − µi)(j − µj)M

p,p′

d,s,k,k′(i, j)

σiσj

(8)

Homogeneity

F3 =

Q−1
∑

i=0

Q−1
∑

j=0

M
p,p′

d,s,k,k′(i, j)

1 + |i − j|
(9)

Energy

F4 =

Q−1
∑

i=0

Q−1
∑

j=0

(

M
p,p′

d,s,k,k′(i, j)
)2

(10)

where µi, σi denote the horizontal mean and variance and

µj , σj denote the vertical mean and variance. We will use the

notation Fi(·) (e.g. F1(M
p
d)) in order to signify that a feature

is computed from a specific kind of co-occurrence matrix.

Since we evaluate the discriminative power of all features

separately, a J-scale 2-D DWT decomposition produces a

J×3-dimensional feature vector vp,p′

for a given combination

p, p′. The final feature vector v for an image is a concatenation

of all possible combinations. For a concrete example, consider

the case of RGB images. We have vR,G,vR,B and vB,G,

which leads to the final J × 9-dimensional feature vector

v = [vR,G,vR,B ,vB,G] (11)

C. Classification & Feature Selection

To compare the discriminative power of our features, we

employ a simple k-Nearest Neighbor (k-NN) classifier [12]

using the euclidian formula as a distance metric. Each element

of a feature vector is first normalized by subtracting the mean

and dividing by the standard deviation. This ensures equal

weights when calculating the euclidian distance. We further

use sequential forward feature selection (SFFS) [12] to select

a feature subset using a 1-NN classifier as a criterion function.

The method of leave-one-out cross-validation (LOOCV) [12]

is used to estimate the classification error.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our

work. Our image database consists of 484 images, acquired
in 2005/2006 at the Department of Gastroenterology and

Hepatology (Medical University of Vienna) using a zoom-

endoscope (Olympus Evis Exera CF-Q160ZI/L) with a mag-

nification factor of 150. To enhance visual appearance, dye-

spraying with indigo-carmine was applied and biopsies or

mucosal resections were taken to obtain a histopathological

diagnosis (our ground truth). For pit-pattern types I,II and V,

biopsies were taken, since these types need not be removed.

Lesions of pit-pattern types III-S/III-L and IV have been

removed endoscopically. Table I lists the number of image

samples per class. For all experiments, we use the RGB color

TABLE I

NUMBER OF IMAGES PER PIT-PATTERN CLASS (GROUND TRUTH)

I II III-L III-S IV V

126 72 62 18 146 60

model and a 4-scale 2-D DWT with symlets of 4-th order. The

extend, to which the decomposition depth and the choice of

filter affect the classification results, will have to be studied

in the future. Two preprocessing steps are implemented before

the feature extraction. First, we employ histogram equalization

on each color channel using the CLAHE [14] (contrast limited

adaptive histogram equalization) algorithm with 8×8 tiles and
an uniform distribution for constructing the contrast transfer

function. Second, we blur the images using a Gaussian 3 × 3
mask with standard deviation σ = 0.5. Regarding our proposed
approach, the displacement vector setup is as follows: d0 =
(0, 0) (zero-displacement), d1,i = (0, i),d2,i = (−i, i),d3,i =
(−i, 0) and d4,i = (−i,−i) for i = 1, . . . , 10 (denoted as
the standard displacement vectors). Table II lists the best

LOOCV results obtained over all displacement vectors and

quantization levels. We note, that throughout our experiments

TABLE II

COLOR WAVELET CROSS CO-OCCURRENCE LOOCV RESULTS

Problem F1 F2 F3 F4

d1,1, . . . ,d4,10

2-cls. 81.61 86.16 79.34 81.61

6-cls. 50.00 66.12 49.79 51.45

d0

2-cls. 75.00 90.91 73.55 77.27

6-cls. 49.17 77.69 45.25 50.21

it turned out, that the quantization factors only slightly affect

the classification results, which is why we omit quantization

level specific results here. From Table II we observe, that

the the setup (F2,d0) outperforms all other combinations

in terms of LOOCV accuracy. Another interesting fact is,

that for almost all 40 variations of the standard displacement



vectors, d1,1 always performed best. Furthermore, increasing

the distance i covered by d1,i lead to a decrease in LOOCV

accuracy for both classification problems, which is consistent

with the observations in [9].

For our comparative study, we choose three other feature ex-

traction approaches to which we compare our results. First, the

so called wavelet energy correlation signatures [6] (WECS)

between subbands of different color channels are computed.

Given that en(·) computes the energy of an arbitrary subband
with Ns ×Ns coefficients, the WECS γs

k(p, p′) between D
s,p
k

and D
s,p′

k is defined by

γs
k(p, p′) =

Ns−1
∑

i=0

Ns−1
∑

j=0

c
s,k,p
ij · cs,k,p′

ij

en(Ds,p′

k ) · en(Ds,p′

k )
(12)

for p 6= p′. Concatenation of the features from all possible

color channel combinations leads to a 36-dimensional feature
vector for our 4-scale 2-D DWT decomposition.

Second, we calculate the color wavelet covariance (CWC)

features, introduced in [5]. There, the classic co-occurrence

matrix defined in (1) is calculated over the second-scale detail

subbands of each color channel. Using four displacement vec-

tors covering directions 0◦, 45◦, 90◦, 135◦ leads to 36 features
per image for each Haralick measure. To incorporate infor-

mation between color channels into the final feature vector,

covariances between equal features are calculated according

to [5]. By extending (1) by another subscript q to denote an

arbitrary detail subband, the CWC features can be defined as

CWCi

(

M
p
d,q,M

p′

d,q

)

=

Cov
(

Fi

(

M
p
d,q

)

, Fi

(

M
p′

d,q

))

∀i = 1, . . . , 4
(13)

The scale index s is omitted here, since s = 2 like in the
original setup [5]. Hence, we obtain a final 18-dimensional
CWC feature vector per Haralick measure Fi.

Third, all images are converted to the LUV color model and

the luminance (L) channel is retained to obtain a grayscale

image. Then, the 2-D DWT is computed and the popular

statistics mean and standard deviation (see [15]) of the wavelet

coefficients of each detail subband are used to compose a 24-
dimensional feature vector (abbreviated by Classic).

To compare the discussed approaches, we select the best

results of Table II and compare them to the best results

obtained from the three aforementioned approaches. Table III

presents the corresponding LOOCV rates.

TABLE III

LOOCV-RATE COMPARISON TO OTHER APPROACHES

Problem CWCC WECS CWC Classic

2-cls. 90.91 90.50 72.73 86.78

6-cls. 77.69 75.83 44.12 70.66

As we can see, the CWCC features lead to superior results in

terms of LOOCV accuracy. Only the WECS features perform

at a comparable level for both problems.

V. CONCLUSION & FURTHER WORK

In this paper we proposed a new approach to capture color

channel information for texture discrimination in the field

of medical imaging. Our experimental results show, that the

presented features perform quite well with our dataset. We

conclude, that the results strongly confirm the presumption

(see [5], [6], [9], [10], etc.) that color channels are an important

source of discriminative information in the field of texture-

image classification. Future research will include an evaluation

on how a combination of the presented Haralick measures can

improve the LOOCV rates. In addition to that, the impact of

different color models has to be studied and further tests on

other texture databases have to be conducted.
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