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Summary. In this paper, we evaluate the discriminative power of image features, ex-
tracted from subbands of the Gabor Wavelet Transform and the Dual-Tree Complex
Wavelet Transform for the classification of zoom-endoscopy images. Further, we incor-
porate color channel information into the classification process and show, that this leads
to superior classification results, compared to luminance-channel based image processing.

1 Introduction

Recent statistics of the American Cancer Society reveal that colorectal cancer is
the third most common cancer in men and women and the second most common
cause of US cancer deaths. Since most colorectal cancers develop from polyps, a
regular inspection of the colon is recommended, in order to detect lesions with a
malignant potential or early cancer. A common medical procedure to examine the
inside of the colon is colonoscopy, which is usually carried out with a conventional
video-endoscope. A diagnostic benefit can be achieved by employing so called zoom-
endoscopes, which achieve a magnification factor of up to 150 by means of an
individually adjustable lens. In combination with dye-spraying to enhance the visual
appearance (chromo-endoscopy) of the colon mucosa, zoom-endoscopy can reveal
characteristic surface patterns, which can be interpreted by experienced physicians.
Commonly used dyes are either methylene-blue, or indigo-carmine, which both lead
to a plastic effect. In the research work of Kudo et al. [9], the macroscopic appearance
of colorectal polyps is systematically described and results in the so called pit-pattern

classification scheme.
In this work, we evaluate the discriminative power of features extracted from

subbands of the Gabor Wavelet Transform and Kingsbury’s Dual-Tree Complex
Wavelet Transform, to allow computer-assisted pit-pattern classification. Existing
approaches in this research area include histogram- and 2-D DWT-based methods
for pit-pattern classification [2, 3] or classic video-endoscopy image classification by
statistical second-order measures [10, 5].

The paper is structured as follows: in Section 2 we briefly illustrate the pit-
pattern classification scheme. Section 3 outlines the proposed feature extraction
step and the classification process. Finally, Section 4 presents our experimental
results and Section 5 concludes the paper with an summary of our work.
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2 Pit-Pattern Classification

Polyps of the colon are a frequent finding and are usually divided into metaplas-
tic, adenomatous and malignant. Since the resection of all polyps is rather time-
consuming, it is imperative that those polyps which warrant resection can be dis-
tinguished. Furthermore, polypectomy3 of metaplastic lesions is unnecessary and
removal of invasive cancer may be hazardous. The classification scheme of Kudo et
al. divides the mucosal crypt patterns into five groups (pit-patterns I-V, see Figure
1). While types I and II are characteristic of benign lesions and represent normal
colon mucosa or hyperplastic polyps, types III-V represent neoplastic, adenomatous
and carcinomatous structures. Our classification problem can be stated as follows:
the problem to differentiate pit-types I and II from III-V will be denoted as the
two-class problem, whereas the more detailed discrimination of pit-types I-V will
be denoted as the six-class problem.

(a) Pit-Types (b) Pit-Types I-V (left to right)

Fig. 1. Pit-Pattern classification according to Kudo et al. [9]

By comparing the prediction of dignity with the histological findings, recent
studies [8] have shown, that zoom-endoscopy performs significantly better than the
conventional video-endoscopy method, at least in the two-class problem. Although
the classification based on Kudo’s results seems to be straightforward at first glance,
the interpretation of the specific pit-patterns can be challenging [4]. Furthermore,
a high-degree of inter-observer variability, which has been reported at least for
diagnosing specialized intestinal metaplasia in Barret’s esophagus [11], can be a
disturbing factor. Therefore, our work intends to find a set of image features with
enough discriminative power to enable computer-assisted pit-pattern classification.

3 Feature Extraction and Classification

Each image of our database is decomposed by the Gabor Wavelet Transform [1] and
Kingsbury’s Dual-Tree Complex Wavelet Transform (DT-CWT) [6]. Both trans-
forms aim to remedy one commonly known shortcoming of the maximally decimated
2-D tensor-product DWT: the inability to capture directional information, which
results from the fact that the wavelet filters are separable and real. With respect to
our colonoscopy images, this particular shortcoming is important, since the images
exhibit structures that are directed at various orientations (see Figure 1(b)). The
mother wavelet in the Gabor Wavelet transform is defined by

3 the process of removing polyps
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The Gabor wavelets for a given number of orientations N and decomposition
scales S are obtained through the generating function

ψmn(x, y) = a−mψ(x̂, ŷ), a > 1,m, n ∈ N (2)

with m = 1, . . . , S − 1 and scale factor a. The coordinates x̂, ŷ are given by

x̂ = a−m(x cos θ + y sin θ) and ŷ = a−m(−x sin θ + y cos θ). (3)

Here, θ = nπ/N (n = 1, . . . , N) denotes the rotation angle. To obtain a frequency
partitioning, where the half-peak magnitudes of the filters touch each other (see
Figure 3), the filter parameters σu = 1/2πσx, σv = 1/2πσy in the frequency domain
are related to each other according to [1]. The final decision is, how to choose the
upper Uu and lower Ul center frequencies of the filters, which, together with the
number of decomposition scales S, determine the scaling factor a.

The second transformation we employ here, the DT-CWT, provides an efficient
realization of a complex wavelet transform, which is approximately shift-invariant
and produces approximately analytic wavelets, oriented at a fixed number of six
directions (≈ 15◦, 45◦, 75◦, 105◦, 135◦, 165◦). Furthermore, the DT-CWT is only
four-times redundant in 2-D and allows an efficient implementation based on parallel
filter bank trees. The key concept is, that the filters in each tree are designed
so that the real wavelets they generate from an approximate Hilbert transform
pair and the resulting complex wavelet is thus approximately analytic. The basic
structure of the DT-CWT in 1-D is shown in Figure 2, where a different set of low-
(h0(n), g0(n)) and high-pass (h1(n), g1(n)) filters is used in the first stage. This is
a crucial requirement of the DT-CWT, because otherwise the first stages would
not be approximately analytic [13]. One tree of the DT-CWT gives the real part
of the complex wavelet coefficients, while the other gives the imaginary part. The
extension to two dimensions is straightforward and requires four separable wavelet
transforms in parallel.
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Fig. 2. DT-CWT analysis FB (1-D)

Our feature extraction step is based on the assumption, that the marginal distri-
butions of the transform coefficients {xin}1≤n≤Li

, xin ∈ C of subband i characterize
the various pit-types. Here, Li denotes the number of coefficients of subband i. We
use the classic mean µi and standard deviation σi of the magnitude of the transform
coefficients, given by
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to constitute a general feature vector v = [µ1, σ1, . . . , µB , σB ]T for a given image,
with B denoting the total number of subbands. The same image features have
already been successfully used in [1, 12] for texture image retrieval.

To incorporate color information into the classification process, we first decom-
pose each image into its red (R), green (G) and blue (B) color channel and transform
each channel separately. Thus, we obtain three features vectors vR,vG and vB for
each image of our database. To show, that color channel information can improve
classification results, we also compute a feature vector vL for the luminance (L)
channel.

A question, that has not been answered yet is, how to choose the parameters of
the Gabor Wavelet Transform and the DT-CWT. Regarding the Gabor Wavelets,
we have to choose Ul and Uu, as well as the number of decomposition scales S
and orientations N . In [1], the authors found that four scales and six orientations,
with (Ul, Uu) = (0.05, 0.4) was optimal for their problem. This led to a scaling
factor of a = 2, where the center frequencies are one octave apart. In our studies,
we adopt the number of orientations and scales, but we vary the upper and lower
center frequencies between 0.02 ≤ Ul ≤ 0.08 and 0.1 ≤ Uu ≤ 0.4 for each color
channel. Our results show, that this is a reasonable step, since it is doubtful that
the same parameter setting is optimal for all channels. In case of the DT-CWT the
number of orientations is fixed to six and we choose a decomposition depth of four
scales. Thus, we obtain a total of B = 24 subbands for each color channel for both
transforms. For that reason, the dimensionality of the resulting feature vectors is
|vR| = |vG| = |vB | = 48.

Since we either get three feature vectors for the RGB image or one feature vector
for the luminance channel, the question arises, how to combine the color information
to obtain the best classification results. A first intuitive approach is to concatenate

the feature vectors of the color channels for each image into one big feature vector
v = [vRvGvB ]T with 3 · 48 = 144 dimensions.

Another approach to tackle this problem is, to use a so called multi-classifier,
with three single classifiers operating on the distinct feature sets. The outputs of
the classifiers are then combined by using the common combining rules, introduced
by Kittler et al.[7]. In multi-classifier terminology, the resulting classifier is a so
called parallel multi-classifier. We will use k-NN classifiers as building blocks for
our experiments. To obtain a reasonable error prediction, we employ leave-one-out
cross-validation (LOO-CV). The LOO-CV results will be given by the classifica-
tion accuracy, which is defined as the number of correctly classified samples (true
positives) divided by the total sample size.

4 Experimental Results

In this section, we present the experimental results of our work. Our image database
consists of 484 images acquired in 2005/2006 at the Department of Gastroenterology
and Hepatology (Medical University of Vienna) using a zoom-endoscope (Olympus
Evis Exera CF-Q160ZI/L) with a magnification factor of 150. To enhance visual
appearance, dye-spraying with indigo-carmine was applied and biopsies or mucosal
resections were taken to obtain a histopathological diagnosis. For pit-pattern types
I,II and V, biopsies were taken, since these types need not be removed. Lesions of
pit-pattern types III(S/L) and IV have been removed endoscopically. Table 1 lists
the number of image samples per class.



Feature Extraction from Multi-Directional Multi-Resolution Transforms 5

I II III-L III-S IV V

126 72 62 18 146 60

Table 1. Number of image samples per pit-pattern class (ground truth)

Before actually transforming the images, we perform two image-quality enhanc-
ing preprocessing steps: histogram equalization using the CLAHE [14] (contrast
limited histogram equalization) algorithm and blurring with a 3× 3 Gaussian ker-
nel (σ = 0.5). The LOO-CV results for the red, green and blue color channel are
given in Table 2. The numbers represent the classification accuracy of the LOO-CV.

Pit-Type I II III-L III-S IV V Total

Gabor Wavelet Transform

2-cls., red 85.86 90.21 88.43

2-cls., blue 85.35 88.81 87.40

2-cls., green 83.33 89.86 87.19

6-cls., red 73.81 61.11 61.29 38.89 69.18 63.33 66.32

6-cls., blue 73.02 61.11 61.29 38.89 68.49 60.00 65.50

6-cls., green 65.08 58.33 79.03 50.00 72.60 60.00 66.94

Dual-Tree Complex Wavelet Transform

2-cls., red 90.91 95.10 93.39

2-cls., blue 84.34 87.76 86.36

2-cls., green 86.87 89.51 88.43

6-cls., red 80.95 73.61 70.97 72.22 79.45 75.00 77.07

6-cls., blue 74.60 63.89 69.35 44.44 69.86 71.67 69.42

6-cls., green 65.87 62.50 61.29 55.56 65.07 63.33 63.84

Table 2. Comparison of the two- and six-class LOO-CV results for both transforms, using
a k-NN classifier with k = 1. The top results for each color channel are marked bold.

We can see, that for both transforms the features obtained from the red color
channel lead to the best results in the two-class problem, whereas the features from
the green color channel are most discriminative in the six-class problem. Regarding
the parameter k for the k-NN classifier, we ran several tests with 1 ≤ k ≤ 20, with
k = 1 leading to the best results in almost all cases. Table 3 lists the best parameter
settings (Ul, Uu) for the Gabor Wavelet transform, together with the resulting scale
factor a. We point out, that the optimal parameters for the color channels are in
no case equal to the parameters in [1] (Ul, Uu) = (0.05, 0.4) and additionally differ
for the two classification problems.

2-class 6-class

Gray Red Blue Green Gray Red Blue Green

Ul 0.05 0.05 0.07 0.08 0.05 0.06 0.07 0.05

Uu 0.40 0.50 0.30 0.40 0.30 0.40 0.20 0.30

→ a 2.00 2.15 1.62 1.71 1.81 1.88 1.42 1.81

Table 3. Optimal parameter settings for the Gabor Wavelet Transform

.

To illustrate the difference between the Gabor Wavelet Transform and the DT-
CWT regarding the frequency partitioning, Fig. 3 shows the half-peak (Gabor
Wavelets) and 70% peak magnitude (DT-CWT) of the filter responses in the fre-



6 Roland Kwitt and Andreas Uhl

quency domain for a selection of filters from both transforms. The parameters of
the Gabor Wavelet Transform are the optimal parameters for the red color channel
in the two-class problem.
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Fig. 3. Frequency partitioning for the Gabor Wavelet Transform and the DT-CWT

Regarding the combination of the information from the different color channels
of the RGB color model, Table 4 lists the LOO-CV results for both transforms
and combination methods, together with the LOO-CV results of the luminance
(gray) channel features. The concatenation scheme is abbreviated by concat. and
the multi-classifier is abbreviated by MC.

Pit-Type I II III-L III-S IV V Total

Gabor Wavelet Transform

2-cls., gray 87.37 89.86 88.44

2-cls., concat. 88.89 92.66 91.12

2-cls., MC 89.90 95.45 93.18

6-cls., gray 73.63 63.89 62.90 66.67 74.66 56.67 69.98

6-cls., concat. 77.78 66.67 74.19 50.00 71.23 66.67 71.28

6-cls., MC 82.54 68.06 75.81 38.89 84.93 63.33 76.26

Dual-Tree Complex Wavelet Transform

2-cls., gray 87.88 91.61 90.08

2-cls., concat. 92.63 98.60 96.28

2-cls., MC 93.43 97.90 96.07

6-cls., gray 73.02 68.06 66.13 55.56 69.86 70.00 69.42

6-cls., concat. 85.71 69.44 88.71 83.33 82.88 78.33 81.82

6-cls., MC 84.92 68.06 82.26 66.67 84.25 76.67 80.17

Table 4. Comparison of the LOO-CV results for the luminance channel and the combined
color channel information, using simple concatenation and a 1-NN multi-classifier with the
product combining rule. The top results for both classification problems are marked bold.

For both transforms, the so called product rule [7] performs best for the two-
and six-class problem using the multi-classifier. Although, the overall best LOO-
CV results are obtained from the DT-CWT features using the simple concatenation
scheme. Due to the fact, that no combination scheme is optimal in all cases, we
follow that there is no common rule for combining color channel information for
our classification problem. However, both combining schemes are at least superior
to the luminance channel features alone.
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5 Conclusion

In this work, we presented an approach to computer-assisted pit-pattern classifica-
tion by means of two multi-directional multi-resolution transforms. Compared to
the top results in [3] (75% in the two-class problem and 57% in the six-class prob-
lem), which are based on the same image database, we have come to the conclusion
that the directional selectivity of both transforms leads to improved classification
results and outperforms feature extraction based on the maximally decimated 2-D
DWT. In addition, color channel information leads to even better results and is
superior to luminance-channel based image processing, at least for our two classifi-
cation problems. This is consistent with the results in [2], where information from
three-dimensional color histograms led to the top classification results. Regarding
the choice, which transform to choose, we favour the DT-CWT, since it is less
computationally expansive than the Gabor Wavelet transform and leads to slightly
better classification results.
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