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Abstract

In this paper, we propose a set of new image features for

the classification of zoom-endoscopy images. The feature

extraction step is based on fitting a two-parameter Weibull

distribution to the wavelet coefficient magnitudes of sub-

bands obtained from a complex wavelet transform variant.

We show, that the shape and scale parameter possess more

discriminative power than the classic mean and standard

deviation based features for complex subband coefficient

magnitudes. Furthermore, we discuss why the commonly

used Rayleigh distribution model is suboptimal in our case.

1. Introduction

Recent statistics of the American Cancer Society reveal

that colorectal cancer is the third most common cancer in

men and women and the second most common cause of

US cancer deaths. Since most colorectal cancers develop

from polyps, a regular inspection of the colon is recom-

mended, in order to detect lesions with a malignant potential

or early cancer. A common medical procedure to examine

the inside of the colon is colonoscopy, which is usually car-

ried out with a conventional video-endoscope. A diagnos-

tic benefit can be achieved by employing so called zoom-

endoscopes, which achieve a magnification factor of up to

150 by means of an individually adjustable lens. In combi-

nation with dye-spraying to enhance the visual appearance

(chromo-endoscopy) of the colon mucosa, zoom-endoscopy

can reveal characteristic surface patterns, which can be in-

terpreted by experienced physicians. Commonly used dyes

are either methylene-blue, or indigo-carmine, which both

lead to a plastic effect. In the research work of Kudo et al.

[12, 13], the macroscopic appearance of colorectal polyps

is systematically described and results in the so called pit-

pattern classification scheme.

In this work, we examine the marginal distributions of

the complex wavelet coefficient magnitudes of each sub-

band of Kingsbury’s Dual-Tree Complex Wavelet Trans-

form (DT-CWT) [9, 18, 10] for image feature extraction, to

allow computer-assisted pit-pattern classification. Existing

approaches in this research area include histogram- and 2-D

DWT-based methods for pit-pattern classification [4, 5] or

classic video-endoscopy image classification by statistical

second-order measures [15, 7].

The outline of this paper is as follows. In Section 2,

we briefly introduce the pit-pattern classification scheme.

Section 3 discusses the principles of the DT-CWT, together

with the proposed feature extraction process and provides

the statistical background of our work. In Section 4, we

briefly depict the classification step and Section 5 presents

experimental results. Section 6 concludes the paper with a

summary of our work and an outlook on further research.

2. Pit-Pattern Classification

Polyps of the colon are a frequent finding and are usu-

ally divided into metaplastic, adenomatous and malignant.

Since the resection of all polyps is rather time-consuming, it

is imperative that those polyps which warrant resection can

be distinguished. Furthermore, polypectomy1 of metaplas-

tic lesions is unnecessary and removal of invasive cancer

may be hazardous. The classification scheme of Kudo et

al. divides the mucosal crypt patterns into five groups (pit-

patterns I-V, see Figures 1,2).

While types I and II are characteristic of benign lesions

and represent normal colon mucosa or hyperplastic polyps,

types III-V represent neoplastic, adenomatous and carci-

nomatous structures. Our classification problem can be

stated as follows: the problem to differentiate pit-types I

and II from III-V will be denoted as the two-class problem,

whereas the more detailed discrimination of pit-types I-V

1the process of removing polyps
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Figure 1. Pit-Patterns I-V

Figure 2. Endoscopy Images for pit-patterns I-V (left to right)

will be denoted as the six-class problem. Note, that pit-type

III is subdivided into types III-S/III-L and thus accounts for

two classes.

3. Feature Extraction

The process of feature extraction for pattern classifica-

tion aims at characterizing an object by a set of measure-

ments whose values are very similar to objects in the same

class, and different for objects in different classes [2]. With-

out any feature extraction, we could directly consider the

values of all N ×N pixels as features for the classification
process. However, this would immediately lead to the so

called curse of dimensionality [1], which denotes the prob-

lem, that the number of needed training samples grows ex-

ponentially with the number of feature vector dimensions.

Since we have a rather limited training sample size (see Sec-

tion 5) compared to the dimensionality of the input space

X ⊆ R
N×N , this would lead to very poor classification re-

sults.

In this work, the feature extraction step is based on the

assumption that the zoom-endoscopy images can be dis-

tinguished by textural measures. These measures are cal-

culated from the subbands of a wavelet transform variant,

known as the Dual-Tree Complex Wavelet Transform.

3.1. The Dual-Tree Complex Wavelet Transform

To obtain a multi-directional multi-resolution image rep-

resentation for each image of our database, we employ

Kingsbury’s Dual-Tree ComplexWavelet Transform, which

is an efficient realization of a complex wavelet transform

and allows perfect reconstruction.

We have chosen the DT-CWT, since it is designed to

overcome two commonly known shortcomings of the real,

separable 2-D DWT, which are lack of shift-invariance and

poor directional selectivity. In addition to that, the DT-CWT

is nearly rotationally invariant in 2-D as well. These proper-

ties, which come at the expense of a limited redundancy of

2m inm dimensions, are important due to the following rea-
sons. First, our images exhibit structures, orientated along

orientations other than horizontal, vertical or diagonal (see

Figure 2), which are emphasized by the classic 2-D DWT.

Second, the image acquisition process during colonoscopy

is subject to several physical influences, which often cause

image rotations and shifts. This fact highlights the afore-

mentioned approximate rotation- and shift-invariance prop-

erty of the DT-CWT.

Now that we justified our decision for the used image

decomposition, we briefly motivate Kingsbury’s dual-tree

approach. First, we note that shift-invariance in 1-D can ap-

proximately be achieved with a real 1-D DWT by doubling

the sampling rate at each level of the decomposition. How-

ever, this is equivalent to using two parallel, fully-decimated

real DWTs (two trees), where the delay of the lowpass fil-

ters in the first stage of one tree is one sample offset from the

delay of the filters in the other tree. For subsequent stages,

the filters in the two trees must satisfy the requirement that

the delays are half a sample different, which is also known

as the half-sample delay condition [18]. If this condition is

satisfied, the corresponding wavelets in each tree form a so

called Hilbert-transform pair.

In our work, we use filters obtained from Kingsbury’s Q-

shift filter design procedure [8], which results in filters hav-

ing a group delay of one-quarter. To fulfill the half-sample

delay condition, the time-reverse of the filters in one tree are

used in the opposite tree. The rather practicable property of

the DT-CWT now is, that the outputs of the two trees can

be interpreted as the real and imaginary part of a complex

process. The resulting complex wavelet is an approximately

analytic function, supported on only the positive half of the

frequency axis. The indices h and g denote the filter sets
{h0, h1}, {g0, g1}, which are used to implement the trans-
form at levels≥ 2. At the first level, any perfect reconstruc-
tion filters can be used, if they are offset from each other

by one sample. In both 1-D and 2-D, the magnitudes of

the complex wavelet coefficients are approximately shift-
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Figure 3. Orientations and subband numbering of the DT-CWT

subbands

invariant, although the phase varies rapidly.

The extension of the DT-CWT to 2-D is straightfor-

ward by using two-trees for the rows and two trees for the

columns, which results in a quad-tree structure. The great

advantage of the DT-CWT in 2-D is its true directional se-

lectivity, which results from the fact, that the spectrum of an

approximately analytic wavelet is supported on the positive

frequency axis only. Suppose, we have a complex scaling

function φ(x) = φh(x) + jφg(x) and a complex (approx.
analytic) wavelet ψ(x) = ψh(x) + jψg(x). Then, by tak-

ing the real and imaginary parts of ψ(x)ψ(y), ψ(x)ψ(y),
ψ(x)φ(y), φ(x)ψ(y) and ψ(x)φ(y), we obtain a total of
twelve real-valued wavelets or six complex wavelets, ori-

ented along six different directions. Figure 3 shows a

schematic frequency partitioning of the DT-CWT, together

with the orientations and the subband numbering, we use

throughout our work.

For a concrete implementation of the DT-CWT, the

aforementioned wavelet construction implies that the detail

coefficients of each of the four trees have to be combined

(sum and difference) to form the complex subbands [18].

To illustrate the real frequency partitioning of the DT-CWT,

Figure 4 shows the 70% peak magnitude of a selection of

filter responses in the frequency domain at levels ≥ 2. Re-
garding the choice of filters, all results in this paper were

obtained by using near-symmetric (13,19)-tap filters at level

1 and Q-Shift (14,14)-tap filters at levels ≥ 2 [10].

3.2. Modeling the Marginal Distributions

Before decomposing the grayscale images with the DT-

CWT, we conduct two preprocessing steps, to enhance vi-

sual quality. First, we employ adaptive histogram equal-

ization using the CLAHE [20] (contrast limited adaptive

histogram equalization) algorithm with 8 × 8 tiles and an
uniform distribution for constructing the contrast transfer

function. Second, we blur the images with a Gaussian 3×3
mask and σ = 0.5.
In the remainder of the paper, we will adhere to the fol-

lowing notation. The complex wavelet coefficients of sub-
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Figure 4. Frequency partitioning of the 2-D DT-CWT [16]

band k will be denoted by xkn ∈ C, 1 ≤ n ≤ Nk, with

Nk denoting the total number of coefficients at subband

k. The real and imaginary part of xkn will be denoted by

ℜ(xkn) =: xr,kn and ℑ(xkn) =: xi,kn respectively.

Probably the most commonly used statistic for the

marginal wavelet coefficient magnitude distributions in tex-

ture retrieval [16] or texture classification [6] problems is

the empirical mean and the empirical standard deviation,

which are given by

mk =
1

Nk

Nk
∑

j=1

|xkj | (1)

and

sk =
1

Nk





Nk
∑

j=1

(|xkj | −mk)2





1

2

, (2)

with |xkn| =
(

x2

r,kn + x2

i,kn

)1/2

. Given, that the coef-

ficient magnitudes at subband k follow a normal distribu-
tion with mean µk and standard deviation σk, equations (1)

and (2) give the maximum likelihood estimates (MLE) for

these parameters. Other commonly measures to character-

ize the marginal distributions are the information entropy or

the subband energy for example.

However, we propose that modeling the marginal dis-

tributions of the wavelet coefficient magnitudes provides a

good basis for feature extraction and implicitly improves

classification accuracy for our classification problem. In

[17], the complex coefficients are considered to be two-

dimensional random vectors, where the random variables

are statistically uncorrelated. This is justified by the Hilbert

transform pair property we mentioned in Section 3.1. If we

further follow the assumptions of [19], where the real and

imaginary parts of the complex wavelet coefficient mag-

nitudes are modeled by zero-mean Gaussian random vari-

ables X,Y with equal variances, then the random variable
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Figure 5. Histograms of the magnitude and real/imaginary part of

the complex wavelet coefficients on level 2 of a DT-CWT decom-

position together with fitted Gaussians (top) and a fitted Rayleigh

distribution (bottom)

Z =
√
X2 + Y 2 follows a Rayleigh distribution [11] with

parameter b (denoted by Z ∼ R(b)). Formally, we have the
well known relationship

X ∼ N (0, b), Y ∼ N (0, b) ⇒ Z ∼ R(b), (3)

which can easily be proven by first transforming the vari-

ables X,Y to polar coordinates (r, φ) and integrating over
the angle φ of the joint distribution of r and φ. To see, if
the Rayleigh distribution, given by the probability density

function

p(x; b) =
x

b2
exp

(

− x2

2b2

)

, x > 0, b > 0 (4)

is a suitable model for the subband coefficient magni-

tudes, we have to check whether the assumptions of normal-

ity, zero-mean and homogeneity of variances are satisfied.

Note, that the following statements are based on our image

database, which will be introduced in Section 5.

A simple visual inspection of the histograms of the real

and imaginary part together with fitted normal distributions,

can lead to the elusive conclusion, that the model require-

ments are satisfied (see Figure 5).

However, the requirements imposed on the random vari-

ables are quite rigorous and we will show that they cannot

be satisfied for every subband. Deviations from the fun-

damental assumptions of normality, zero-mean and homo-

geneity of variances will lead to other distributional models

fitting better to the wavelet coefficient magnitudes than the

Rayleigh distribution. Since we will not rely on visual in-

spections alone, we conduct several statistical tests to verify

the model requirements. We perform a Lilliefors [14] test

on the real and imaginary part of the complex subband coef-

ficients to check whether the null-hypothesis for normality

cannot be rejected at 1% significance. If this is the case,

we further perform a F-test to check for homogeneity of

variances and a T-test to test against the null-hypothesis of

zero-mean, both times at 1% significance.

To show, that visual inspection of the histograms alone

can actually be quite elusive, we take a look at Figure 5.

Here, the null-hypothesis of normality would be rejected at

1% significance level for the imaginary part. However, it is

virtually impossible to capture that visually. A total listing

of the percentage of all subbands, where the null-hypothesis

of normality could not be rejected is given in Table 1. The

column labels O1, . . . , O6 denote the six subband orienta-

tions, whereas the row labels S1, . . . , S4 denote the four de-

composition scales we used.

O1 O2 O3 O4 O5 O6

S1 0 0 0 0 0 0.21

S2 50.00 78.72 57.44 52.69 76.65 46.49

S3 38.22 70.04 33.47 36.16 67.77 38.43

S4 63.43 65.29 67.98 67.56 73.97 62.60

Table 1. Percentage of all subbands, where the null-hypotheses

(normality) of the Lilliefors tests could not be rejected at the 1%

significance level

The percentage of all subbands, where the null-

hypotheses for all three tests could not be rejected, is listed

in Table 2 for all orientations and scales.

O1 O2 O3 O4 O5 O6

S1 0 0 0 0 0 0

S2 0 0 0 0 0 0

S3 0.41 0.41 1.86 1.65 0 0.21

S4 47.52 49.38 53.51 53.72 59.50 48.97

Table 2. Percentage of subbands, where the null-hypotheses for all

three tests (normality, zero-mean, homogeneity of variance) can-

not be rejected at the 1% significance level

We point out, that at the first scale (denoted by S1), the

null-hypothesis for normality is rejected for almost all ori-

entation subbands. A possible reason for that is, that the

frequency response of the first stage is far from being ana-

lytic, since a different set of filters is used. In combination

with the numbers in Table 2, where the total rates are even

lower, the test results indicate, that a Rayleigh distribution

is not the best model for our subband coefficient magnitudes

as far as the model assumptions are concerned. We there-

fore consider theWeibull distribution [11, 3] as a reasonable

alternative. The probability density function of a Weibull

distribution with shape parameter c and scale parameter b is
given by



p(x; c, b) =
c

b

(x

b

)c−1

exp
{

−
(x

b

)c}

, b > 0, c > 0.

(5)

A comparison of the probability density functions in

equations (4) and (5) reveals, that the Rayleigh distribu-

tion is just a special case of the Weibull distribution with

b =
√

2b and fixed shape parameter c = 2. In order to
justify, that the Weibull distribution is a better model for

our subband coefficients, we check the probability plots for

both distributions (see Figure 6), which constitute a reliable

visual tool to assess which distribution fits best to our data.

The probability plots for both Weibull and Rayleigh dis-

tributions, can easily be constructed from the inverse cu-

mulative distribution functions (ICDF), which can be given

explicitly [11]. Based on the ICDFs, a so called probability

paper can then be constructed, where the data points should

follow a straight line, given that the assumed distribution

constitutes a good model. Any deviation from a straight line

is an evidence that the data does not stem from the assumed

distributional model.

As we can see from probability plots in Figure 6 (ran-

domly chosen subbands), the data points depart signifi-

cantly from a straight line (dashed) in case of the Rayleigh

probability plots. Compared to the Weibull probability

plots, where the data points actually do form a straight line

(at least approximately), this is a clear indication that the

Weibull model provides a better fit to our data.

At the beginning of this section, we stated, that com-

monly used features computed from the wavelet coefficient

magnitudes, are the empirical mean and the empirical stan-

dard deviation (see equations (1) and (2)). We further noted,

that by using these statistical measures as features for clas-

sification purposes, we implicitly use the maximum likeli-

hood estimates of a normal distribution. We propose, that an

improvement in classification accuracy can be achieved by

using the shape and scale parameter of fitted Weibull distri-

butions as features for the classification process. However,

before we can go further to explain the classification proce-

dure, we have to take a closer look at parameter estimation,

since the parameters constitute our feature vectors.

Regarding the estimation of shape and scale for the two-

parameter Weibull distribution, the MLEs have to be de-

termined numerically, since they cannot be given explic-

itly. Let yki := |xki|, i = 1, . . . , Nk be our sample ob-

servations drawn from a Weibull distribution and let zki =
log(yki), i = 1, . . . , Nk. Then, the maximum likelihood es-

timate ĉk of the shape parameter at subband k is given by
the solution to equation [11]

ĉk =

[

Nk
∑

i=1

yĉk

ki zki/

Nk
∑

i=1

yĉk

ki − yk

]−1

, (6)

with

yk =
1

Nk

Nk
∑

i=1

yki. (7)

The scale parameter b̂k at subband k then follows from

b̂k =

(

1

Nk

Nk
∑

i=1

yĉk

ki

)1/ĉk

. (8)

In our implementation, we have used MATLAB’s opti-

mization toolbox for the numerical calculations. Since we

need a starting value for the calculation of ĉk, we exploit
the fact, that the cumulative distribution function (CDF) of

the Weibull distribution, given by

F (x) := F (x; b, c) = 1− exp
{

−
(x

b

)c}

, b > 0, c > 0

(9)

can easily be transformed into a Weibull identification

plot by taking advantage of the following property:

log(− log(1− F (x))) = c(log(x)− log(b)) (10)

Now, let F̂k(x) be the empirical CDF of the wavelet
coefficient magnitudes of subband k, then, by plotting
log(− log(1 − F̂k(x))) against log(x) we can fit a straight

line α̂kx+ β̂k to the data points and obtain estimates b̂k, ĉk
through

ĉk = α̂k, b̂k = exp

(

α̂k

ĉk

)

. (11)

The numerical value of ĉk in (11), obtained by a least-
squares fit, can now be used as a starting point to solve (6).

Since we will also evaluate the discriminative power of the

Rayleigh distribution parameter b, we need its maximum
likelihood estimate b̂ as well. Assuming that our sample
yki, i = 1, . . . , Nk is drawn from a Rayleigh distribution

with parameter b, the explicit solution for the MLE b̂k is
given by [11]

b̂k =

(

1

2Nk

Nk
∑

i=1

y2

ki

)1/2

. (12)

By now, we can calculate all necessary estimates for the

parameters of our distributional models and are ready to dis-

cuss the classification process. In a formal context, we have

three different mappings ωi : X → Fi, i = 1, 2, 3, from our
input space X ⊆ R

N×N into three lower dimensional fea-

ture spaces Fi ⊆ R
d, i = 1, 2, 3, with either d = 48 in case

of the Weibull or classic features and d = 24 in case of the
Rayleigh-based features. An exemplary feature vector for

image j, composed by the MLEs of the Weibull distribution
parameters has the form
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Figure 6. Rayleigh (top) and Weibull (bottom) probability-probability plots for a selection of subband coefficient magnitudes

vj = (vj1, . . . , vjd) (13)

with

(vj1, . . . , vjd) := (b̂j1, ĉj1, . . . , b̂jd/2, ĉjd/2). (14)

4. Classification

In this work, we employ a simple k-Nearest Neighbor

(denoted by k-NN) classifier, which uses the euclidian for-

mula in d dimensions as a distance metric D : R
d × R

d →
R. Given two sample feature vectors vm,vn ∈ R

d, we thus

have

D(vm,vn) =

(

d
∑

i=1

(vmi − vni)
2

)1/2

(15)

Now let D = (vi, yi) ∈ X × Y := {1, . . . , L} be a
collection of N labeled feature vectors (our training set),
where Y denotes the set of possible class labels. Further,

let v be a new (unclassified) feature vector. According to

the k-NN classification rule, the new sample is classified

by assigning it the label most frequently represented among

the k nearest samples (calculated according to our distance
metric) [2].

To estimate the classification accuracy in our classifi-

cation problem, defined as the number of correctly clas-

sified samples divided by the total number of samples,

we employ the method of leave-one-out crossvalidation

(LOOCV). This method is defined as follows: training the

k-NN classifier is done N times, each time using D from
which a different single sample has been deleted [2]. The

classifier is then tested on the single left-out sample and the

overall classification accuracy is determined by averaging

the results of all N iterations.

However, we still have to remedy one more problem,

which is related to our metric. It is well known, that the

euclidian distance is very sensitive to large differences in

the numerical range of single features. This is especially

important in case of the Weibull parameters, since the range

of scale and shape differ significantly. In Figure 5 for exam-

ple, the MLEs would be (b̂, ĉ) = (0.074, 1.88), which differ
by several orders of magnitude. Since we do not want the

shape parameter ĉ to have a greater influence on the distance
metric, we apply a linear transformation on the features of

each feature vector. Given our d-dimensional training sam-
ples v1, . . . ,vN , the normalization formula (see [1]) for the

n-th element of the j-th feature vector is defined by

ṽjn =
vjn − vn

sn
, (16)

where vn, sn denote the sample mean and the sample

variance of the n-th feature. Thus, we obtain re-scaled fea-
tures with zero-mean and unit standard deviation. Now,

each feature contributes equally to the calculation of the

metric in (15). Of course, we must take care, that this

linear transform is repeated in every single iteration of the

LOOCV process to avoid taking too much information into

account. Practically, this means that at iteration j, vn and sn

are calculated on the basis of the N-1 training samples and

the elements of the left-out test sample are then normalized

by (16) using these values.

5. Experimental Results

Our image database consists of a total of 484 images,
acquired in 2005/2006 at the Department of Gastroenterol-

ogy and Hepatology (Medical University of Vienna) us-

ing a zoom-endoscope (Olympus Evis Exera CF-Q160ZI/L)

with a magnification factor of 150. To enhance visual ap-

pearance, dye-spraying with indigo-carmine was applied



I II III-L III-S IV V

126 72 62 18 146 60

Table 3. Number of images per pit-pattern class (ground truth)

Features 2-class 6-class

Classic 93.60 80.17

Weibull 95.87 81.61

Rayleigh 87.60 75.41

Table 4. LOOCV accuracy results for all three discussed feature

sets

and biopsies or mucosal resections were taken to obtain a

histopathological diagnosis. For pit-pattern types I,II and

V, biopsies were taken, since these types need not be re-

moved. Lesions of pit-pattern types III-S/III-L and IV have

been removed endoscopically. Table 3 lists the number of

image samples per class.

As we have noted in Section 3, a four level DT-CWT

leads to a total of 24 directional subbands. However, it is
questionable that all subbands contribute substantial infor-

mation to the classification process. It might as well be,

that a special combination of decomposition scales and sub-

bands leads to better classification rates than using all sub-

bands at each scale. For that reason, we vary the number of

decomposition scales from 1-4 and choose the very scale-

subband combination which leads to the highest LOOCV

accuracy. In other words, exhaustive search in the space of

all possible 224 scale-subband combinations would have to

be performed. However, this is hardly acceptable. To re-

duce computation time, we decided that the same subband

combination should be used at each scale. This intuitive

decision, which will need further investigation, is based on

the idea, that if a specific orientation contributes a lot of

information to the classification process, it should be used

throughout all scales. The number of possible combinations

for a four-scale decomposition thus reduces to

4
∑

k=1

(

4

k

) 6
∑

k=1

(

6

k

)

= (24 − 1)(26 − 1) (17)

which is feasible to calculate. Two possible scale-

subband combinations are illustrated in Figure 7. As we can

see, the same subbands are selected at each scale. For the

following results, we will use the same subband numbering

as in Figure 3.

Table 5 presents the results for the two-class and six-

class classification problem for all three discussed feature

sets. The results were obtained on the basis of a 1-NN clas-

sifier, since our experiments have shown, that k = 1 pro-
duced the best results when varying k between 1 and 20.
The best LOOCV results are marked bold.

Features 2-class.

Classic {S1, S3, S4} − {O2, O3, O6}
Weibull {S2, S4} − {O2, O3, O4, O6}
Rayleigh {S1, S2, S3, S4} − {O1, O3, O4, O5, O6}
Features 6-class.

Classic {S1, S2, S3, S4} − {O1, O2, O3, O4, O6}
Weibull {S1, S2, S3, S4} − {O1, O3, O4, O5, O6}
Rayleigh {S1, S2, S3, S4} − {O2, O3, O4, O5, O6}

Table 5. Optimal scale-orientation combinations for all three fea-

ture sets

Problem Proposed [4] [5]

2-class 95.87 85.6 67.3

6-class 81.61 75 57

Table 6. Comparison of our proposed approach to two other ap-

proaches in terms of LOOCV accuracies

The optimal scale-subband combinations for all three

feature sets with regards to our scale-subband selection

procedure are given in Table 5. We use the notation

{S1, . . . , S4} − {O1, . . . , O6}, where the variables in the
first curly brackets denote the scales 1-4, and the variables

in the second curly brackets denote the used subbands. For

example, the specification {S1, S2} − {O3, O4} signifies
that subbands 3 and 4 are used on scales 1 and 2.

The results clearly indicate, that the Weibull-based

features outperform classic mean/standard deviation and

Rayleigh-based features in terms of LOOCV accuracy. Es-

pecially in the two-class problem, the rate is more than two

percent higher than the rate obtained from the classic fea-

tures. We therefore conclude, that for our classification

problem, the shape and scale of the fitted Weibull distribu-

tions provide more discriminative power than the features

commonly used for texture discrimination or texture image

retrieval. Compared to the results in [4] and [5], which were

obtained on the same image database, the proposed Weibull

features lead to superior results by approximately 10% in
the two-class problem and 6% in the six-class problem, both
times referring to the highest k-NN LOOCV accuracies of

[4, 5]. The numbers are listed in Table 6.

6. Conclusion

In this paper, we have shown that the marginal distri-

butions of complex wavelet coefficient magnitudes from a

DT-CWT can be well modeled by a Weibull distribution.

By using the maximum likelihood estimates for shape and

scale as features for each subband, we could significantly

improve the LOOCV accuracy for two classification prob-

lems in medical imaging, compared to classic mean and

standard deviation based features. Future research on this



(a) {S1, S2} − {O1, O3, O4} (b) {S1, S2} − {O1, O5, O6}

Figure 7. Two possible scale-subband combinations (filled) for a schematic frequency partitioning of the DT-CWT

topic will include the incorporation of color information and

scale dependencies of wavelet coefficients across subbands

into the feature extraction process. Furthermore, the perfor-

mance of other classifiers, such as support vector machines

for example, will have to be evaluated.
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