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Abstract—The availability of biometric data (here fingerprint
samples) is a crucial requirement in all areas of biometrics. Due
to recent changes in cross-border regulations (GDPR) sharing
and accessing biometric sample data has become more difficult.
An alternative way to facilitate a sufficient amount of test data
is to synthetically generate biometric samples, which has its
limitations. One of them is the generated data being not realistic
enough and a more common one is that most free solutions are not
able to generate mated samples, especially for fingerprints. In this
work we propose a multi-level methodology to assess synthetically
generated fingerprint data in terms of their similarity to real
fingerprint samples. Furthermore, we present a generic approach
to extend an existing synthetic fingerprint generator to be able to
produce mated samples on the basis of single instances of non-
mated ones which is then evaluated using the aforementioned
multi-level methodology.

Index Terms—fingerprint, synthetic sample generation, mated
samples, performance evaluation

I. INTRODUCTION

Fingerprint (FP) recognition can be considered as mature
biometric solution with many different application areas in
our modern world. Nevertheless, there is always a need to
improve existing algorithms and to come up with novel, better
performing (nowadays often CNN-based) ones, especially for
particular use cases like contact-less acquisition and latent/low
quality FPs. Hence, one major requirement for the develop-
ment of new algorithms or the adaption of existing ones is the
availability of training/test data, in this case FP samples.
The main sources of test data are either collected real FP
samples from various subjects or synthetically generated FP
samples. Real captured samples are preferable, as they are as
close as possible to the data the system is going to process
after deployment. However, acquiring a sufficient amount of
FP samples, especially for training a CNN-based solution, is a
time and labour intense work. Another problem that has been
recently arisen are cross-border regulations on security of pri-
vate data (GDPR), imposing severe restrictions on preserving,
sharing and processing of person related data. Since biometric
data like face, iris and FP images are considered to be a
special category of private data, sharing databases of biometric
samples has become very difficult, leading to an insufficient
number of available datasets and thus, preventing further scien-
tific research and industrial development of reliable biometric
access control systems and forensic investigation tools.
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If synthetically generated FP samples are used instead, the
aforementioned issues can be resolved as the sample gen-
eration does not involve any data subjects. These synthetic
samples do not contain any sensible private information.
Hence, sharing synthetically generated datasets is not affected
by cross-border privacy regulations. However, synthetically
generated samples are no real samples and can only resemble
the properties of real samples to a certain extent. The higher
this extent, the better the “utility” of the synthetically gener-
ated samples. The goal is to produce synthetic FP samples that
are indistinguishable from their real counterparts in terms of
their main biometric characteristics.
An important question is how to assess the “utility” of the
synthetic data, i.e. to assess the similarity of the synthetic
and real samples (are the synthetic samples indistinguishable
from real ones). In this work, we introduce a systematic, step-
wise methodology to assess the synthetic data’s utility by
measuring the comparison scores’ similarity behaviour instead
of performing investigations regarding quality aspects or FP
sample appearance variations. Hence, we suggest four levels
of similarity:

• Level 1: The most coarse one is a similarity in terms
of recognition performance only (e.g. by evaluating the
equal error rate or other performance measures).

• Level 2: The next level is a visual evaluation based on
the comparison score histograms and their corresponding
score distributions.

• Level 3: This third analysis part is a refinement of the
second level employing different histogram comparison
metrics.

• Level 4: The last level is the most fine grained one which
is the application of a statistical test on the comparison
scores.

If samples pass the last one, the are highly likely to pass the
other three as well and thus, to achieve a high similarity to real
fingerprint samples. However, generating samples exhibiting
this high level of similarity is difficult and might not be
needed depending on the use case. For example if the use
case is a performance evaluation only, the similarity based on
a recognition performance or histogram comparison level is
sufficient. On the other hand if a deep learning network for
feature extraction should be trained, the maximum possible
level of similarity has to be achieved, otherwise if the network
is trained on synthetic samples it might fail for real ones.



There are several free of charge [1], [2] as well as commercial
approaches [3] to generate synthetic FP samples. The free
approaches are limited in that they are either not able to
produce mated samples at all or that the produced mated
samples are far from resembling the properties of real mated
samples. Only the commercial solutions [3] are available to
produce realistic mated as well as non-mated samples. For
further details on other synthetic fingerprint generators, the
interested reader is referred to [4].
This work contains two main contributions: First, an approach
to generate mated samples based on a synthetic FP generator
which is originally not capable of producing mated samples
in combination with several image manipulation techniques
originally used in image watermark benchmarking [5], [6]. A
generated sample is distorted/manipulated in various ways to
derive the mated samples from the output by the synthetic FP
generator.
Second, a multi-level methodology to assess synthetically
generated fingerprint samples, based on the above mentioned
four levels of similarity, recognition performance based, com-
parison score distribution based, histogram comparison based
and the statistical test. This methodology is then utilised to
verify the effectiveness of the above mentioned mated sample
generation approach, i.e. to assess the “utility” of the generated
mated samples. Starting from a real dataset, one sample
per finger is used and several synthetic, mated samples are
generated. These synthetic samples are then compared against
the remaining real ones in terms of different strategies/levels.
The paper is organized as follows: A detailed description of the
proposed approach is given in Section II. Section III explains
the experimental set-up to assess the similarity of the generated
mated samples and real fingerprint samples. The experimental
results are presented and discussed in Section IV. Finally,
Section V concludes this paper and gives an outlook on future
work.

Fig. 1. Generated synthetic mated FP samples from top left beginning:
original, aff, affglobal, afflocal, afftrans, globalnoise, rotation, single, smooth,
mix1, mix2, mix3

II. SYNTHETIC MATED FP SAMPLE GENERATION

To be able to generate synthetic mated FP samples it is
necessary to apply methods which are capable of manipu-
lating the content of an imprint in a realistic manner. This

methodology is provided by a model-based FP manipulation
software (using similar methods as StirMark [5] and StirTrace
[6]). The proposed method is a general purpose data generation
one (not only for augmentation) using basic image operations
to model intra-class variability. It can be extended/adapted to
better reflect fingerprint distortions caused by unfavourable
acquisition conditions. The following methods are available:
translation: allows to shift the FP image along x- and/or y-
axis, with the shifting parameters - pixel range: [0, 150].
affine transformations: including FP rotation (range: [-15°,
15°]), x- and y-axis stretching as well as compression (pa-
rameter range for both types: [-25°, 25°]). Translation and
this method simulates different positional finger placement
variations relatively to the capturing device.
smoothing: The imprint is partitioned into non-overlapping
blocks (block size range in pixel: [1, 32]) and an average,
median or Gaussian Filter is applied to a randomly selected
number of blocks. The latter one is controlled by a sigma
ranging from 0 till 1.5 while the other two can be adjusted by
the filter kernel size. The ratio of blocks that are smoothed
can be set from 0 to 100%. Thus, it is also possible to
apply the filtering to the entire imprint. Global Gaussian-based
smoothing was applied only in two cases while average and
median smoothing did not result in any realistic FP samples
(wet fingertips or the use of hand lotions should be simulated).
noising: It is possible to apply global as well as local noising.
Two different noising methods have been implemented. Gaus-
sian noising and Speckle noising. The first method exhibits
the same parameters as described in the smoothing case, while
the latter one adds multiplicative noise to the FP image which
can be controlled by different variances (range: [0.00, 0.25]),
allowing to simulate dirt or damage on the sensor plate.
In the following different combinations of the before men-
tioned methods are applied to generate realistic synthetic
mated FP samples. The best performing settings are described
in Table I. The proposed software and the corresponding
setting files can be downloaded from the webpage: www.http:
//wavelab.at/sources/Kirchgasser21b/. Figure 1 shows several
mated examples using some of the named methods.

III. EVALUATION PROTOCOL

The evaluation is done on the basis of four assessment
levels which are applied in a top-down manner to exploit
several levels of similarity in terms of granularity based
on EER, mated score distributions, histogram comparison
metrics and statistical analysis. The first level based on the
EER represents the most general part of the analysis. The
real datasets’ EERs are compared to the ones calculated
for datasets including synthetically generated mated samples.
Subsequently, the knowledge gained from the first analysis
step is refined by using the mated score distributions. The his-
tograms based on the mated comparison scores are generated
and score density distributions are fitted using a uni-variate
kernel density estimate based fitting. This allows to illustrate
similarities and differences from a visual point of view. The
third level utilises three standard histogram metrics: Histogram



TABLE I
SETTINGS USED TO GENERATE REAL-SYNTHETIC/SYNTHETIC FP SAMPLES

setting name setting description
aff several affine transformations (transf.) are applied (excluding rotation)

affglobal affine transf. either combined with 1 of 4 global smoothing (Gauss) options or 1 of 3 global noising (Speckle) options
(each combination generating one mated sample)

afflocal affine transf. combined with either 1 of 4 local smoothing (Gauss) options or 1 of 3 local noising (Speckle) options
(each combination generating one mated sample)

afftrans affine and translation transformations
globalnoise global noising based on different levels of Speckle noise

rotation image rotation in the range of -10 till 25°
single one setting each which applies either affine transformation, global noising, local noising (Speckle),

local noising (Gauss), rotation, local smoothing (Gauss) or translation
smooth local smoothing (Gauss) with varying smoothing ratio and Gauss Sigma

mix1 affine transformations, translation and local Speckle based noising combinations
mix2 affine transformations, translation and local Gauss based smoothing combinations
mix3 affine transformations, translation and global Speckle based noising combinations

TABLE II
EER RESULTS (IN %) FOR DIFFERENT DATASETS USING INNOVATRICS ANSI: ORIGINAL EER (SECOND COLUMN) AND EER OBTAINED ON DATASETS

CONTAINING SYNTHETIC MATED SAMPLES (THIRD TILL LAST).
dataset original aff affglobal afflocal afftrans globalnoise rot smooth single mix1 mix2 mix3

FVC2002 Db1a 0.336 0.683 0.269 0.000 0.327 0.413 0.369 0.071 0.273 0.000 0.066 0.000
FVC2004 DB1A 1.969 5.278 2.899 1.151 8.044 1.657 0.655 0.562 1.479 1.900 4.506 0.172

CASIA T2 1.712 1.876 8.898 1.071 1.624 11.179 2.061 1.0231 6.122 1.463 0.963 2.742
CASIA uru4500-1 1.943 3.272 2.143 1.773 3.408 1.911 2.065 1.527 2.933 1.106 1.705 1.143
PLUS IBColumbo 0.097 45.908 46.013 45.824 46.128 43.498 46.426 44.448 46.083 47.182 45.504 45.398

PLUS NB3010 3.615 43.656 44.537 43.361 45.023 44.532 42.789 43.865 43.363 43.033 43.750 43.329
PLUS V311 0.836 45.326 47.228 45.996 45.137 44.932 44.957 45.869 46.683 47.107 45.385 46.893

FVC2002 Db4a 0.683 4.132 5.580 2.008 2.194 6.415 1.562 3.074 3.871 0.9235 1.669 0.627
FVC2004 DB4A 1.140 2.619 3.873 1.043 1.893 4.303 1.718 1.529 2.734 0.492 0.477 0.657

CNN - 0.850 0.000 0.000 0.336 0.000 1.205 0.000 0.002 0.000 0.000 0.000
Anguli Basic - 0.851 0.000 0.000 0.336 0.000 1.205 0.000 0.002 0.000 0.000 0.000

Anguli Moisture - 0.957 2.873 0.000 0.480 2.239 1.599 0.036 0.769 0.035 0.009 0.000
Anguli Frag - 1.029 0.000 0.000 0.301 0.000 1.266 0.103 0.000 0.000 0.000 0.000

Anguli Intens - 0.851 0.000 0.000 0.336 0.000 1.205 0.000 0.037 0.000 0.000 0.000
Anguli Noise - 0.765 0.000 0.000 0.361 0.000 1.305 0.000 0.003 0.000 0.000 0.000

Intersection (HI), which measures similarity in a range of [0,
1], where 0 corresponds to no similarity and 1 to a perfect one.
Chi-Squared distance (Chi) and Kullback-Leibler divergence
(KL) [7] measure divergence in a range of [0, unbounded],
where 0 corresponds to perfect similarity and the higher the
values the less similarity.
The metric values are calculated for three different scenarios:
real/real, where all pairs of the real FP sample datasets are
compared to each other in order to establish a baseline to
compare the following two cases to. The second case is the
real/real-synthetic one, where real-synthetic refers to mated
samples generated on the basis of real samples (FVC2002
Db1a, FVC2004 DB1A, CASIA T2, CASIA uru4500-1, PLUS
IBColumbo, PLUS NB3010 and PLUS V311), whereas in the
third case, real/synthetic, mated samples have been generated
on the basis of synthetically generated samples (FVC2002
Db4a, FVC2004 DB4A, CNN, Anguli Basic, Anguli Moisture,
Anguli Frag, Anguli Intens, Anguli Noise). If the metric values
for the second and third case report less similarity than for
case one, the synthetic samples can be clearly distinguished
from the real ones. The real datasets have been captured
utilising different capturing devices (different characteristics
limiting their metric based similarity), while all the involved
samples in the second and third case originate from the same
capturing device, exhibiting similar characteristics. The results

are presented as averaged values over the included datasets in
Table VI as well as for the second case per dataset in Table
V.
Finally, the most fine-grained part (assessment level 4) of
the top-down evaluation is a statistical analysis based on the
Mann-Whitney-U test [8] which is applied to prove if the score
distributions of the synthetically generated mated samples
exhibit a similar statistical behaviour as the real mated samples
do. This test is a non-parametric test for two independent
sample sets and allows a t-test identical interpretation of the
results. However, the Mann-Whitney-U test is computed based
on rank sums rather than means as it is done using a t-test.
Several real and synthetic FP datasets are evaluated: The real
FP datasets were collected by the use of several capturing de-
vices including thermal, capacitive and (multispectral) optical
ones, while the synthetic samples were generated by traditional
[3] or deep-learning methods [2].
FVC 2002/2004 Db1/DB1 are subsets of the databases es-
tablished for the second/third Fingerprint Verification Contest
[9] and have been collected by optical capturing devices. All
samples exhibit a resolution of at least 500dpi and each subset
contains 800 imprints from 100 fingers.
The CASIA Fingerprint Subject Ageing Version 1.0 [10] was
collected using one capacitive and two optical scanners which
results in a total of six subsets (2009, 2013). Five imprints



of both index and middle fingers have been acquired from 49
capturing subjects. Thus, each subset contains 980 images with
a resolution of 500 dpi. In the current study only the subset
acquired by the capacitive sensor (T2) and one acquired by
the optical capturing device (uru4500-1) are considered.
The third real FP database is the PLUS Multi-Sensor and
Longitudinal Fingerprint Dataset (PLUS MSL), containing
108106 FP samples collected by 10 different capturing de-
vices. In this work only the samples acquired by the thermal
device (NB3010), one capacitive device (IBColumbo) and one
multispectral one (V311) are utilised.

The utilised synthetic datasets include FVC 2002 Db4a and
FVC 2004 DB4A [3] and generated synthetic samples using
the ANGULI generator [1] as well as a CNN method [2], each
one containing samples of 100 different fingers, exhibiting the
same resolution of 500 dpi. The ANGULI ones have been gen-
erated by varying parameters controlling e.g. core type, mois-
ture type, ridge fragmentation, ridge intensity, and ridge noise.
To assess the recognition performance of the FP samples two
commercial state-of-the-art minutiae-based approaches have
been applied: ANSI SDK developed by Innovatrics (https:
//www.innovatrics.com) and VeriFinger SDK 11.0 developed
by Neurotechnology (https://www.neurotechnology.com).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Initially, the different settings for generating the synthetic
mated samples were optimised based on the FVC2002 Db1a
using Innovatrics ANSI until the samples passed all four as-
sessment levels (cf. first row of Table III). Subsequently, these
settings were applied to generate synthetic mated samples for
all remaining experiments.
The first assessment level, depicted in Table II shows the
EER result for Innovatrics ANSI. The results for VeriFinger
highly differ from these in most cases. They are in general
similar to the worst EER results obtained on the PLUS MSL
dataset. Thus, the synthetic mated sample generation was not
successful for VeriFinger and therefore no detailed results are
included. This indicates that the synthetic generation process
can have a high impact on the general performance and
this impact does not need to be the same across different
recognition systems. However, in most cases the EER obtained
on datasets using real FP samples as original input is mostly
comparable to the EER observed on the original datasets
without synthetic mated samples. The PLUS MSL datasets are
an exception as the EER in these cases is inferior to all others.
Furthermore, some of the settings seem to generate highly
similar mated FP samples leading to a perfect EER of 0% in
several cases, which is not a desirable result. For the synthetic
datasets generated by [1] and [2] a direct comparison between
original EER and the EER values of the newly generated
subsets/settings is not possible as these methods are not able
to produce mated FP samples. Thus, these datasets are not
included in the subsequent evaluation.

TABLE V
HISTOGRAM METRICS AVERAGED OVER ALL GENERATED

SUBSETS/SETTINGS USING INNOVATRICS ANSI AND VERIFINGER
(INCLUDING STANDARD DEVIATION IN CASE OF HI).

dataset CHI HI KL

In
no

va
tr

ic
s

A
N

SI

FVC2002 Db1a 299909 0.6742 ± 0.0891 1372057
FVC2004 DB1A 173330 0.7816 ± 0.0531 893702

CASIA T2 152240 0.8627 ± 0.1042 767728
CASIA uru4500-1 339924 0.6494 ± 0.1237 1484145
PLUS IBColumbo 579940 0.6615 ± 0.2136 2383041

PLUS NB3010 258919 0.6545 ± 0.2059 1025624
PLUS V311 578892 0.6484 ± 0.2144 1644704

FVC2002 Db4a 199635 0.6408 ± 0.1545 857437
FVC2004 DB4A 172528 0.7823 ± 0.0539 890059

V
er

iF
in

ge
r

FVC2002 Db1a 115812 0.7812 ± 0.0919 661224
FVC2004 DB1A 145732 0.7467 ± 0.1323 806668

CASIA T2 180800 0.6594 ± 0.3044 1139679
CASIA uru4500-1 204364 0.7509 ± 0.0892 1106211

FVC2002 Db4a 117647 0.7222 ± 0.0905 612534
FVC2004 DB4A 115897 0.7284 ± 0.0788 606479

TABLE VI
AVERAGE VALUES (AND STANDARD DEVIATION IN CASE OF HI) FOR
HISTOGRAM METRICS APPLIED ON DISTRIBUTIONS OF REAL/REAL,
REAL/REAL-SYNTHETIC AND REAL/SYNTHETIC MATED SAMPLES.

CHI HI KL
In

no
-

va
tr

ic
s

A
N

SI real/real 298060 0.6447 ± 0.1589 1267500
real/real-synth. 340450 0.7046 ± 0.1434 1367285

real/synth. 327880 0.8178 ± 0.1680 919090

V
er

i-
Fi

-
ng

er

real/real 230940 0.6619 ± 0.1485 1017700
real/real-synth. 161677 0.7345 ± 0.1544 928446

real/synth. 311970 0.8259 ± 0.1670 872020

All in all, the EER is too vague to reliably judge if synthetic
samples show a similar behaviour as real FP samples. Not only
the recognition system is influencing the evaluation but also
the input data and the selected settings. Hence, a more detailed
analysis is beneficial.
Continuing with the second assessment level, the comparison
score histograms depicted in Figure 2 underpin that on the
FVC2002 Db1a, which was used for optimisation, a high sim-
ilarity between the original and the newly generated synthetic
samples is present. For all other combinations of selected
settings and datasets the similarity is acceptable, as shown in
the second example using the synthetic FVC2002 Db4a. On
the other hand, as depicted in the third and fourth histogram,
the differences are higher compared to the first two.
To further refine the top-down analysis, especially for the cases
where the EER and the score distribution based evaluation re-
sulted in contrary findings, the next step is to apply assessment
level three, the histogram metrics to the score distributions.
Their results are listed in Tables V and VI. The results for the
PLUS MSL using VeriFinger are omitted as they follow the
same trend as using Innovatrics ANSI. The results given in
Table V reveal two distinct cases: most of the metric results
confirm the preceding evaluation but some are contrary. In case
of PLUS NB3010, CHI and KL indicate a higher similarity
compared to the other two PLUS MSL subsets, while HI
indicates the same extent of similarity. Contrasting to this
the EER values of all three PLUS MSL datasets indicating
a low similarity of the synthetic vs the real samples. Hence,
the evaluation using the histogram metrics is still ambiguous.



Fig. 2. Mated score distributions plots (Innovatrics ANSI first four examples and VeriFinger last two ones), showing for several datasets and settings the
differences between original mated sample scores and synthetic ones.

TABLE III
P-VALUES FOR DIFFERENT DATASETS USING INNOVATRICS ANSI. FOR THE APPLIED MANN-WHITNEY-U TEST AN SIGNIFICANCE NIVEAU OF 0.01 WAS

CHOSEN, HENCE ALL P-VALUES EQUAL OR GREATER THAN 0.01 INDICATE THAT THE COMPARISON SCORES OF THE ORIGINAL MATED SAMPLES AND THE
SYNTHETICALLY GENERATED ONES HAVE BEEN SELECTED FROM SAME DISTRIBUTIONS.

dataset aff affglobal afflocal afftrans globalnoise rot smooth single mix1 mix2 mix3
FVC2002 Db1a 0.55 0.79 0.18 0.07 0.01 0.56 0.02 0.46 0.30 0.01 0.06
FVC2004 DB1A 0.36 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00

CASIA T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CASIA uru4500-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
PLUS IBColumbo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PLUS NB3010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PLUS V311 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FVC2002 Db4a 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.02
FVC2004 DB4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE IV
P-VALUES FOR DIFFERENT DATASETS USING VERIFINGER (CF. TABLE III).

dataset aff affglobal afflocal afftrans globalnoise rot smooth single mix1 mix2 mix3
FVC2002 Db1a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FVC2004 DB1A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CASIA T2 0.00 0.15 0.00 0.88 0.00 0.00 0.65 0.00 0.00 0.00 0.00
CASIA uru4500-1 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FVC2002 Db4a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00
FVC2004 DB4A 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.65 0.00 0.00 0.00

Table VI enables a more high level view by averaging over
all datasets for the three cases real/real, real/real-synthetic and
real/synthetic. There is obviously a high dissimilarity in the
real/real case, indicating that the involved real FP samples
are highly distinct. The metrics indicate that for real/synthetic
compared to real/real-synthetic the generated samples are more
similar, suggesting that the generated mated samples appear to
be more realistic if synthetic samples are used as source. In
both cases, HI and KL confirm that the synthetically generated
mated FP samples are more similar to the real ones than
the real ones originating from different datasets (different
capturing devices), while CHI shows contrary results.
Based on the first three evaluation levels is not possible to
obtain decisive results. Hence, the final part of the analysis is
the fourth assessment level, which focusses on the application

of the Mann-Whitney-U test (using a significance value of
0.01) and describes the similarities and differences of the
computed comparison scores from a statistical point of view.
The corresponding results are presented in Table III and
Table IV, utilising the Innovatrics ANSI and the VeriFinger
recognition system, respectively. With the EER, the visual
density distribution and the histogram metrics based analysis
being limited in their significance especially in several cases
(PLUS MSL datasets), the statistical test application allows
a reliable statement. Except for the FVC2002 Db1a and a
few other single datasets containing synthetically generated
mated samples a clear difference between the synthetic and
real mated sample comparison scores is observable. As shown
in Table III and Table IV most p-values are 0, which, according
to the statistical test, indicates that the synthetic generated



mated samples can be distinguished from the real ones and
are thus, not realistic enough.
The results confirmed that the proposed approach is able to
generate mated FP samples of sufficient quality to pass levels
1-3 of the assessment methodology for several cases if the
single parameters of the involved image manipulation methods
are optimised with respect to 1) a particular dataset or 2)
a particular FP recognition system. On the other hand, the
generated mated samples failed level 4, the statistical test,
indicating that they do not exhibit the necessary utility on
a fine grained level. Currently, the approach needs to be
optimised for each of the involved datasets and recognition
systems, i.e. the settings do not generalise to arbitrary datasets
and recognition systems. However, if the generated FP samples
only have to satisfy an EER based performance requirement
(similar recognition performance to real FP samples) or exhibit
a similar mated score distribution, the proposed methodology
is sufficient (cf. Table II, Figure 2).

V. CONCLUSION AND FUTURE WORK

The first contribution of this work is a methodology to
assess the level of utility (in terms of realistic appearance of
the synthetic samples) of synthetic FP samples in comparison
to their real counterparts, based on a top-down approach.
This evaluation is based on the comparison of synthetically
generated mated samples (with real samples as a basis) against
real mated samples using the EER, score distribution plots,
histogram comparison metrics based on the comparison scores
as well as a statistical test. The comparison scores were
calculated using state of the art minutiae based fingerprint
recognition schemes.
The second contribution is a technique to generate mated
samples from (synthetically) generated single instances of non-
mated fingerprint samples. It is based on simple image manip-
ulation techniques (rotation, shearing, adding noise, warping)
which can be combined and parametrised in order to generate
different mated samples. This whole procedure can be used in
addition to any existing synthetic fingerprint generator (most
free available ones are not able to generate mated samples) in
order to obtain mated fingerprint samples. The proposed ap-
proach is available free of charge and can be downloaded from
our website: http://www.wavelab.at/sources/Kirchgasser21b.
The top-down evaluation results confirmed that the proposed
mated sample generation technique is able to satisfy the
requirements of realistic mated samples if only the recognition
performance or the shape of the comparison score distributions
are considered. Furthermore, for some combinations of match-
ers and datasets the generated mated samples achieve similar
properties to the real ones, i.e. they cannot be distinguished
from the real ones for the histogram based analysis. On
the other hand, the settings for one dataset and matcher
combination cannot be directly used for the other datasets and
matchers, i.e. the approach currently lacks on generalisability.
In the future work, more datasets as well as fingerprint
recognition schemes will be included in order to arrive a set
of “general best parameters” and subsequently, increase the

generalisability of the proposed approach. Moreover, further
image manipulation techniques will be included and tested to
enhance the properties of the synthetically generated samples
and improve their realistic appearance.

REFERENCES

[1] J. Haritsa, A. Ansari, K. Wadhwani, and S. Jadhav. Anguli:
synthetic fingerprint generator. [Online]. Available: http://dsl.cds.iisc.
ac.in/projects/Anguli

[2] M. Sadegh Riazi, S. M. Chavoshian, and F. Koushanfar. (2020)
Synfi: Automatic synthetic fingerprint generation. [Online]. Available:
https://github.com/MohammadChavosh/synthetic-fingerprint-generation

[3] R. Cappelli, A. Erol, D. Maio, and D. Maltoni, “Synthetic fingerprint-
image generation,” in Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, vol. 3. IEEE, 2000, pp. 471–474.

[4] A. Makrushin, C. Kauba, S. Kirchgasser, S. Seidlitz, C. Kraetzer,
A. Uhl, and J. Dittmann, “General requirements on synthetic fingerprint
images for biometric authentication and forensic investigations,” in
Proceedings of the 9th ACM Workshop on Information Hiding and
Multimedia Security (IH&MMSec’21), Brussels, Belgium (held Online
due to Covid), 2021, pp. 1–11, accepted.

[5] J. Hämmerle-Uhl, M. Pober, and A. Uhl, “Towards standardised fin-
gerprint matching robustness assessment: The stirmark toolkit – cross-
database comparisons with minutiae-based matching,” in Proceedings of
the 1st ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec’13), Montpellier, France, Jun. 2013, pp. 111–116.

[6] R. Merkel, M. Hildebrandt, and J. Dittmann, “Application of stirtrace
benchmarking for the evaluation of latent fingerprint age estimation
robustness,” in 3rd International Workshop on Biometrics and Forensics
(IWBF 2015). IEEE, 2015, pp. 1–6.
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