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Abstract

We conduct an ISO/IEC Standards 24745 and 30136
compliant assessment of block-based warping sample
transformation techniques aiming for template protection.
Particular focus is laid on the results’ evaluation consid-
ering the evolution of face recognition technology ranging
from more “historic” hand-crafted features to state-of-the-
art deep-learning (DL) based schemes. It turns out that the
high robustness of todays face recognition technology can
handle the geometrical distortions as introduced by warp-
ing as another form of variability like pose, illumination,
and expression variations, thereby disabling the intended
protection functionality of warping. Therefore, block-based
warping sample transformation must not be used as tem-
plate protection technique for todays state-of-the-art face
recognition schemes, while some settings could be identi-
fied providing template protection to some extent for less
recent face recognition technology.

1. Introduction
Face recognition is applied in many different scenarios

like forensics, surveillance or border control. In most cases
the used systems have to deal with natural but uncontrolled
environmental conditions including variations in pose, il-
lumination and facial expressions [6, 10, 18]. Recently,
face recognition techniques have evolved with the use of
DL techniques being able to deal with the appearance of
these natural variations, significantly boosting recognition
accuracy. However, it is not only the robustness against var-
ious variations that is important. The ability to protect the
acquired subject’s biometric information and thereby pre-
serving privacy is increasingly attracting attention. There
are various possibilities in face biometrics how the subject’s
privacy can be protected, e.g. [12, 13]. All these – so called
template protection schemes – can be categorized into sev-
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eral classes [27]. One important class is based on non-
invertible transformations and is termed cancelable biomet-
rics. This class of template protection schemes has been in-
troduced in a seminal paper by Ratha et al. [29] focusing on
block re-mapping for fingerprints (in the minutiae domain)
and warping for facial data (in the image domain). These
techniques have also been proposed and thoroughly evalu-
ated later on iris biometrics [17, 23], finger vein [21, 28]
databases, and face images in video surveillance data [22],
respectively.
In the current study, we re-visit the application of image do-
main block-based warping [31] to protect facial images in
the context of face recognition for the following reasons:

(i) Since the introduction of the approach in [29] 18 years
back, no systematic assessment according to ISO/IEC
Standards 24745 and 30136 [1, 2] requirements has
been conducted, at least not in the context of face
recognition. In the context of iris recognition an re-
lated security analysis was presented on Bloom Fil-
ters [5], while security aspects of cancelable iriscodes
based on a secret permutation were discussed in [4].

(ii) Deep-learning based face recognition systems have
significantly improved robustness against various vari-
ations in acquisition conditions as mentioned above.
Therefore, we suspect that geometrical variations as
introduced by block-based warping might be treated
by this more recent class of recognition schemes as
just another acquisition condition variation, thereby
disabling the protection aim due to increased robust-
ness.

(iii) The application of warping-based non-invertible trans-
formations is computationally efficient (which is of
course desirable to keep the computational costs low).

(iv) The application in the image domain (as opposed to
using template protection techniques in the feature /
template domain) is an elegant and highly flexible so-
lution to the template protection problem. On the one



hand, the ”original (real) template” is never generated
and thus cannot be compromised in any stage of the
recognition scheme’s operation. On the other hand,
this approach can be applied to almost any recogni-
tion scheme including template-less systems, where
enrollment and authentication sample data similarity is
learned in pairs (or triplets) without explicitly storing
templates.

To address these issues, we conduct an experimental study
focusing on ISO/IEC Standard 24745/30136 compliant se-
curity evaluation, in particular relating results of several re-
cent deep neural network-based face recognition systems
[7, 8, 24] to more traditional and well-established ones.
The rest of this paper is organized as follows: In Section
2 we present a compact literature review on the applied
template protection technique including several properties
which need to be fulfilled according to ISO/IEC Standard
24745/30136 and are evaluated in the experimental Section
4. Subsequently, the used face recognition schemes, the
dataset and the experimental set-up are explained (see Sec-
tion 3). The experimental evaluation regarding recognition
performance and unlinkability aspects is presented in Sec-
tion 4. Finally, Section 5 concludes this paper along with an
outlook on future work.

2. Related Work
A well-defined biometric template protection scheme

needs to fulfil four requirements which are defined in
ISO/IEC Standard 24745 [1]: Non-invertibility or Irre-
versibility, Revocability or Renewability, Non-linkability or
Unlinkability and Performance preservation. Revocability
ensures that a compromised template can be revoked with-
out exposing biometric information, i.e. the original bio-
metric trait (template) remains unaltered and is not compro-
mised. In case of the applied warping technique this prop-
erty is given by the design of the method. A new protected
template can be generated by selecting a new key which de-
fines the block size of the regular input grid and further con-
trols the amount of distortion introduced to the unprotected
biometric information. Thus, after removing the compro-
mised data, a new protected template representing the same
biometric instance can be generated easily. The aspect of
performance preservation shall ensure that applying a cer-
tain protection scheme does not lead to a significant recog-
nition performance degradation of the used recognition sys-
tem. This latter aspect is experimentally evaluated and the
corresponding results will be presented in Section 4.

Irreversibility Irreversibility as defined in ISO/IEC Stan-
dard 24745 [1] shall ensure that it is not possible to extract
the original biometric information from the protected bio-
metric template, even in case the key to produce the pro-

tected template is available. In [16] the authors describe
brute force attacks, reconstruction attacks and Hamming
weights attacks as potential threats that can break the irre-
versibility of a protected biometric template. Furthermore,
they postulate that it is necessary to be aware that a suc-
cessful attack breaking the irreversibility also breaks the
unlinkability. The application of warping to protect a bio-
metric face trait fulfils the irreversibility property by design
depending on the selected parameters. If the chosen warp-
ing parameters introduce a high amount of distortions, as
visible in Figure 1 e), the resulting interpolation effects are
assumed to result in high irreversibility. However, we do
not conduct explicit experiments on this issue as explained
when introducing the evaluation protocol (Section 3.3) and
discussing the results of the other experiments (Section 4).

Unlinkability The property of unlinkability is meant
to guarantee that protected biometric templates can not
be linked across various applications or databases. The
ISO/IEC Standard 24745 [1] defines templates to be fully
linkable if a method exists which is able to decide if two
templates protected using a different key were extracted
from the same biometric sample with a certainty of 100%.
The degree of linkability depends on the certainty of the
method which decides if two protected templates originate
from the same capture subject. Unfortunately, the standard
only defines what the unlinkability property shall ensure but
gives no generic way of quantifying it. Gomez et al. [15]
introduced a framework to evaluate the unlinkability of a
biometric template protection system based on the compar-
ison scores which we adopt also for this work. The authors
proposed a global measure as evaluation method - the so
called Dsys measurement. This Dsys measure originally
ranges from 0 to 1. We have transformed the range [0, 1] to
[0, 100] for readability reasons. Thus, 0 represents the best
achievable unlinkability score (fully unlinkability), while a
Dsys value of 100 indicates full linkability. Furthermore,
it was stipulated in the same work [15] that at least 10 dif-
ferent keys should be considered during the unlinkability
analysis. Thus, we have also selected 10 different keys for
our performance and unlinkability analysis (Section 4).

Key-Selection: System vs. Subject-Specific Finally, it is
necessary to discuss another important aspect which is not
covered in the ISO/IEC Standard 24745 [1]: What is bet-
ter? Selecting a subject-specific or a system key? In the
subject-specific key approach, the template of each subject
is generated by a key which is distinct for each subject while
for a system key, the templates of all subjects are generated
by the same key.
Subject-specific keys have advantages in terms of preserv-
ing the subjects’ privacy compared to system keys. As-
signing an individual key to each subject ensures that if



an adversary gets to know the key of one of the subjects,
the entire database can not be compromised as each key is
individual. A subject key further ensures that insider at-
tacks performed by legitimate registered subjects can not be
done that easily. This potential attack involves a registered
subject, who has access to the system and to the template
database. This adversary subject wants to be legitimated as
one of the other subjects of the same biometric system by
copying one of the own templates over templates belonging
to another capture subject. Thus, an adversary can claim
this identity as well and might be authenticated as a gen-
uine subject. In case subject keys are used, such a copy-
ing process is not straight forward and costly as each of the
templates stored in the database has been generated using
an individual key. Thus, it might be easier for an advisory
to create a new genuine subject exhibiting the wanted bio-
metric information protected by a new key which is set in
order to get the legitimation as wanted. Another advantage
of subject keys is that it is likely that the system’s recog-
nition performance is enhanced as more inter-subject vari-
ability is introduced. The additional variability in combina-
tion with the variations between different biometric subjects
could enable a better separation of genuines and impostors
enhancing the overall system’s performance. Advantages of
the system-specific key approach include the easier revoca-
tion of compromised templates as the generation of a new
version of all templates only includes a single key and the
much simpler key-management requirements.

3. Methodology

3.1. Block-Based Warping

”Block-based Warping” (originally termed mesh warp-
ing [31] or shortly ”warping”) applies a function to each
pixel in the given image which maps the pixel of the input
at a given position to a certain position in the output. Thus,
a pixel can also remain at its original position. The applied
mapping defines a new image or template (depending on
the domain where the mapping function is applied to) con-
taining the same information as the original input but in a
distorted representation. The warping approach employed
in this study is a combination of using a regular grid (de-
fined by non-overlapping blocks) and a distortion function
based on spline interpolation which results in a geometri-
cal deformation (variation) of the input image. The regular
grid is deformed per each block and adjusted to the warped
output grid. The number of blocks in the output is the same
as in the input, but the content of each individual block is
distorted in the warped output.
The distortion is introduced by randomly altering the edge
positions of the regular grid, leading to a non-predictable
deformation of this grid, the warped output grid. Spline
based interpolation of the input information is applied to

adopt the area of each block with respect to the smaller or
larger block area obtained after the deformation application.
Thus, warping might either stretch or shrink the area of the
block depending on the varied edge positions. The intro-
duced distortion is key dependent and the key defines the
seed value for the random generator responsible for the re-
placement of the grid edges (maximum pixel offset parame-
ter). The key further contains the size of each block given in
the regular grid. Examples face images depicting different
amounts of distortions (ensuring the described properties)
are shown in Figure 1. The first number in the naming of
the given example image (b) - (e) presents the used block
size while the second number defines the maximal used
pixel offset (further information on the chosen parameters
is given in Section 3.3). For more details about different
warping approaches the interested reader is referred to [14].

(a) original (b) warp 8 4 (c) warp 16 6 (d) warp 20 9 (e) warp 20 25

Figure 1: Example images displaying various distortions in-
troduced to an original image by using the warping scheme.

3.2. Face Recognition and Dataset Description

Several techniques exist in face biometrics to perform
verification or identification tasks which have been evalu-
ated thoroughly in various studies, e.g. [20]. Thus, we
only briefly describe methods including well-established
traditional approaches and more recent ones which we se-
lected as face recognition schemes. First, we consider meth-
ods based on traditional handcrafted local descriptors such
as Local Binary Patterns (LBP) [3] and Multi-Block LBP
(MBLBP) [32]. Both selected descriptors were extracted by
using cells regions of size 14×14. The final feature vector,
representing the face images, is a histogram containing all
single histograms of each cell region extracted before. Sec-
ondly, we evaluated two learning-based local descriptors
based on the Fisher Vector representation. Specifically, we
tested the Video Fisher Vector Faces (VF2) descriptor [26]
that encodes SIFT features and the Logistic Binary Video
Fisher Vector Faces (LBinVF2) [25], which efficiently en-
codes so called BRIEF descriptors. Finally, we applied
three recent deep convolutional neural networks including
ResNet-ArcFace (ArcFace) [8], MobileFaceNet (Mobile-
Face) [7] and ShuffleFaceNet (ShuffleFace) [24] as all three
methods resulted in good performance values, which have
been presented in previous studies. In order to compute the



comparison scores (done by the usage of a support vector
machine), once the features are extracted, we use the cosine
distance as the similarity measure for the DL networks and
the Fisher Vector approaches. In case of the handcrafted de-
scriptor based methods a chi-squared distance measure was
selected.
The Labeled Faces in the Wild (LFW) database [19] is well
known as a public benchmark for unconstrained face verifi-
cation. It contains 13, 233 web-collected face images from
5, 749 different identities, with large variations in pose, ex-
pression and illuminations. 6, 000 face pairs are divided
into 10 non-repeating subsets of images pairs. Thus, each
subset includes 300 positive pairs (images from the same
person) and 300 negative pairs (images from different peo-
ple). In the following we will name the positive pairs ’gen-
uine’ and the negative pairs ’impostor’. All face images
were aligned and cropped to the size of 112×112 by using
the RetinaFace detector [9] before subsequently applying
template protection (warping) followed by one of the de-
scribed recognition schemes.

3.3. Evaluation protocol

In the scope of this study several experiments (A, B, C,
D) have been conducted. For all these experiments the nec-
essary comparison scores have been obtained by using the
same protocol. The applied protocol was suggested to be
used for evaluations using the LFW database and has been
used in previous work, e.g. [19]. According to the dataset
structure (10 subsets containing 300 genuine pairs and 300
impostor pairs each) and the corresponding protocol a total
of 3000 genuine and 3000 impostor scores for each exper-
iment can be obtained. The performance is reported as 10-
fold cross validation by the mean accuracy (acc in percent)
of the Support Vector Machine classifier as it was suggested
in [19].

(A) Baseline: At first, all selected face recognition meth-
ods have been applied and assessed on the original face
images to achieve baseline recognition performance
results. These baseline results are presented in the sec-
ond column of Table 1 and Table 1 to allow a easier
comparison to the additional experiments (B) and (C).

After the baseline was established, the described warping
technique was applied to each face image using four differ-
ent parameter settings. Each setting consists of block size
and offset parameter, controlling the amount of distortion
introduced to the image. We have selected a block size of
8×8, 16×16 and 20×20 pixels, while maximal offset values
of 4, 6, 9 and 25 have been chosen. The settings are abbre-
viated by warp 8 4, warp 16 6, warp 20 9 and warp 20 25,
where the first value describes the block size and the sec-
ond number the offset. The first setting using an offset of 4
pixel is describing slight perturbation only, while an offset

of 6 and 9 leads to an average facial modification for the
LFW database. The final offset choice of 25 pixel results in
an extreme and strong face image distortion. Furthermore,
we have selected both subject-specific and system keys. We
have conducted two different types of experiments (B and
C) using the warped face images:

(B) Performance Preservation: The second experiment
compares warped facial images against warped facial
images with identical warping parameters. The results
should highlight the capability of how well the applied
face recognition systems can perform comparisons in
the warped image domain, thus performance preserva-
tion is assessed in this manner. The averaged results of
this experimental evaluation considering 10 repetitions
to allow unlinkability experiments (D) are presented in
Table 1.

(C) Protection Strength: The third experiment is defining
a kind of special case of unlinkability and irreversibil-
ity evaluation. On the one hand, if an attacker has
access to a biometric database of potential candi-
dates, stored as unprotected samples, this allows the
opportunity to decide which sample corresponds to a
given protected sample, and thus it can be interpreted
as a partial irreversibility attack. On the other hand,
if the accuracy reported by the protection strength
experiments is high than a comparison algorithm
can be utilized as a method to distinguish mated and
non-mated samples as it is intended by the following
unlinkability experiments.
To perform this protection strength analysis ee com-
pare original undistorted samples against warped
ones to assess protection strength (using subject
and system-specific keys). This type of conducted
experiments aims at showing how good the privacy of
a subject is protected. The higher the resulting accu-
racy is, the worse is the protection. In case sensible
recognition results can be achieved in this setting,
protection strength is obviously low as subjects can
be recognized although we are comparing original
to protected data. Simultaneously, the robustness of
different face recognition types against the artificial
variations introduced is evaluated. Similar to the per-
formance preservation experiments (B) the averaged
acc. results (considering once more 10 repetitions)
including the standard deviation are shown in Table 2.

(D) Unlinkability: Finally, we also investigated the aspect
of unlinkability by comparing images which have been
warped by the use of different keys. Thus, to be in-
line with the protocol introduced by [15] it was neces-
sary to repeat the warping 10 times for each parameter



method baseline warp 8 4 warp 16 6 warp 20 9 warp 20 25
subject system subject system subject system subject system

ArcFace 99.87 ± 0.2 98.20 ± 0.2 94.35 ± 1.0 98.80 ± 0.1 94.87 ± 1.8 98.33 ± 0.2 93.00 ± 3.0 91.79 ± 0.7 79.93 ± 7.5
MobileFace 99.72 ± 0.3 98.09 ± 0.1 91.34 ± 1.3 98.49 ± 0.1 91.30 ± 2.7 97.91 ± 0.2 88.95 ± 4.0 93.85 ± 0.5 77.81 ± 5.5
ShuffleFace 99.62 ± 0.4 97.79 ± 0.2 90.98 ± 1.4 98.18 ± 0.2 90.17 ± 2.7 97.32 ± 0.2 87.87 ± 4.3 91.42 ± 0.7 76.71 ± 5.5

VF2 76.57 ± 1.3 87.71 ± 1.2 74.10 ± 0.3 90.70 ± 0.3 74.26 ± 0.6 92.91 ± 0.3 73.49 ± 0.9 94.15 ± 2.7 73.10 ± 1.0
LBinVF2 73.62 ± 1.0 76.34 ± 0.5 72.41 ± 0.4 79.84 ± 0.4 72.60 ± 0.6 83.09 ± 0.2 72.05 ± 0.9 84.98 ± 3.6 71.56 ± 0.9
MBLBP 67.02 ± 1.9 83.73 ± 0.2 67.55 ± 0.3 89.01 ± 0.2 67.29 ± 0.5 93.32 ± 0.2 67.69 ± 0.8 99.52 ± 0.2 66.79 ± 1.0

LBP 66.41 ± 1.7 83.60 ± 0.3 66.95 ± 0.6 88.75 ± 0.4 66.71 ± 0.5 93.45 ± 0.2 66.60 ± 0.6 99.46 ± 0.1 65.91 ± 1.1

Table 1: Recognition Preservation results (B): Face verification results (mean acc. and standard deviation in percent) for the
applied warping template protection scheme using subject-specific and system keys.

method baseline warp 8 4 warp 16 6 warp 20 9 warp 20 25
subject system subject system subject system subject system

ArcFace 99.87 ± 0.2 96.95 ± 0.2 96.83 ± 0.4 96.58 ± 0.2 96.77 ± 1.8 93.87 ± 0.3 95.34 ± 2.4 72.95 ± 1.3 78.37 ± 8.8
MobileFace 99.72 ± 0.3 96.15 ± 0.3 96.02 ± 0.7 95.42 ± 0.2 95.30 ± 2.3 91.95 ± 0.3 93.20 ± 3.1 72.78 ± 1.4 76.80 ± 8.6
ShuffleFace 99.62 ± 0.4 95.68 ± 0.2 95.61 ± 0.7 94.72 ± 0.2 94.64 ± 2.5 91.17 ± 0.3 92.16 ± 3.3 70.71 ± 1.1 74.70 ± 8.7

VF2 76.57 ± 1.3 74.96 ± 0.9 75.41 ± 0.4 75.19 ± 0.3 75.37 ± 0.3 74.18 ± 0.4 74.44 ± 0.8 72.17 ± 3.1 73.15 ± 2.1
LBinVF2 73.62 ± 1.0 72.18 ± 0.3 72.39 ± 0.3 71.87 ± 0.3 71.76 ± 0.6 70.30 ± 0.3 71.15 ± 1.0 68.47 ± 3.1 69.74 ± 2.1
MBLBP 67.02 ± 1.9 64.54 ± 0.4 64.58 ± 0.2 64.07 ± 0.5 64.19 ± 0.8 62.24 ± 0.5 63.19 ± 1.3 55.88 ± 0.7 57.53 ± 2.0

LBP 66.41 ± 1.7 63.21 ± 0.4 63.18 ± 0.4 63.29 ± 0.3 63.19 ± 0.7 60.95 ± 0.5 61.86 ± 1.3 54.47 ± 0.6 56.96 ± 1.5

Table 2: Protection Strength results (C): Face verification results (mean acc. and standard deviation in percent) by comparing
original versus protected images using subject-specific and system keys.
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Figure 2: Example images which display the genuine and impostor distributions behaviour using system keys (first row) and
subject keys (second row).

setting using distinct keys. The unlinkability results
shown in Table 3 are the result of an averaging process
thus the averaged Dsys values are presented together
with their standard deviation. Further details on the
comparison protocol can be found in [15].

4. Experimental Results

For the baseline experiments (A) we found that DL-
based face recognition scheme types work best on the

considered LFW dataset. The applied DL methods (Arc-
Face, MobileFace and ShuffleFace) clearly outperformed
all other schemes (acc. is almost 100%)) and are followed
by techniques applying the Fisher Vector representation
(acc. between 73% and 77%). Both LBP-based approaches
performed worst (acc. around 67%). Overall, the ranking
among the different recognition systems corresponds to our
expectations and earlier results in literature impressively
documenting the progress made over the last years.
Table 1 displays the results of our performance preserva-



method warp 8 4 warp 16 6 warp 20 9 warp 20 25
subject system subject system subject system subject system

ArcFace 80.55 ± 0.59 80.95 ± 1.75 75.57 ± 0.8 77.94 ± 4.8 63.82 ± 0.9 71.52 ± 5.7 17.13 ± 1.6 27.21 ± 10.3
MobileFace 72.52 ± 0.91 74.69 ± 2.35 61.16 ± 1.0 67.69 ± 5.9 48.04 ± 1.0 59.25 ± 6.1 18.99 ± 1.4 23.03 ± 8.1
ShuffleFace 70.79 ± 0.83 72.81 ± 2.24 58.63 ± 0.9 65.37 ± 5.4 46.80 ± 1.2 56.18 ± 6.1 15.95 ± 1.4 20.40 ± 7.7

VF2 42.63 ± 0.46 43.72 ± 0.68 38.93 ± 0.6 41.77 ± 1.4 33.53 ± 0.8 39.35 ± 3.0 27.21 ± 6.1 34.07 ± 5.8
LBinVF2 38.82 ± 0.44 39.02 ± 0.73 36.45 ± 0.5 36.92 ± 1.6 31.86 ± 0.7 35.05 ± 2.2 25.60 ± 6.1 29.79 ± 5.2
MBLBP 28.59 ± 0.69 28.74 ± 0.70 25.06 ± 0.7 27.08 ± 1.5 17.29 ± 0.8 24.74 ± 2.7 6.62 ± 0.7 11.23 ± 3.2

LBP 32.83 ± 0.61 32.53 ± 0.87 29.15 ± 0.8 31.06 ± 1.5 19.51 ± 0.9 28.04 ± 2.6 7.28 ± 1.0 13.83 ± 4.1

Table 3: Unlinkability results (D): Averaged Dsys unlinkability scores for the warped dataset using subject and system keys.
The best results (low values, representing unlinkability) for each parameter setting are highlighted in bold numbers.

tion experiments (B). The results of applying recognition in
the protected (i.e. warped) domain show a clear difference
between the usage of subject-specific and system keys.
For system keys, we observe a significantly decreasing
recognition accuracy for increasing warping strength (thus,
warp 20 25 resulted in the worst performance: Deep
learning-based schemes loose about 15% accuracy and
go down to almost 75%). However, this is only the case
for recognition schemes with sensible accuracy in the
baseline experiments, for weaker schemes this decrease is
observed only to a lesser extent. As the comparison was
done using different keys for probe and reference images,
it is certain that the performance reduction is assumable
based on a lower false-acceptance-rate (FAR) as the applied
subject-key specific warping introduces a 2nd layer of
separability as for each user the corresponding samples are
secured with the same key while all other user’s samples
are protected by a different ones.
While DL based schemes are reduced in their accuracy
down to 91% only (as compared to using system keys), for
all non-DL methods even a clear accuracy enhancement
is observed. In particular, the LBP schemes benefit a
lot as their accuracy (baseline around 67%) increases to
approximately 84% (warp 8 4) or even up to 99.52%
(warp 20 25 using MBLBP). The application of warping
using subject-specific keys enables a two factor authen-
tication, which not only takes the biometric information
present in the original unprotected images into account,
but also the newly introduced geometrical variations which
differ among users. Due to the higher robustness of the DL
based schemes, this effect is not observed in their results
(as the warping-related variations are compensated by the
robustness properties).
For the DL based schemes, we assume that a re-training
of the networks including warped images in the training
dataset would result in a recognition accuracy increase (we
only used networks trained on original unprotected face
images). Overall, the property of performance preservation
(B) as recommended by ISO/IEC Standard 24745 [1]
is fulfilled only for subject-specific keys as we notice
a partially significant accuracy drop for the system key

approach. The results of subject-specific keys have to be
taken with care as discussed in [30] for iris data. There it
is stated that a biometric (iris) recognition system becomes
highly vulnerable even in case the subject-specific key of
only one subject is stolen, lost, shared or duplicated. This
vulnerability might be similar for face recognition as well.
The results presented in Table 2 describe the recognition
performance (accuracy) in case original unprotected images
(e.g. in the gallery) are compared against protected ones
(e.g. the probe images) - protection strength analysis (C).
Contrasting to the evaluation of recognition performance
preservation as done before, good accuracy is now a
negative result – as we compare unprotected samples to
protected ones, good recognition performance indicates
that recognition is possible although probe samples are
being protected.
Regardless if subject- or system-specific keys are taken
into account it can be observed that a comparison between
unprotected and protected images leads to an accuracy of
clearly above 50% thus, recognition partially works despite
the probe samples being protected. The worst accuracy is
observed in case of warp 20 25 (the stronger the warping
is applied, the more challenging the recognition task
becomes). However, an accuracy of more than 70% in the
warp 20 25 setting for the DL methods is a remarkable
result if the strongly distorted images (see Figure 1) these
results are based on are taken into account. This underpins
the extremely high robustness of these techniques being
partially able to deal with these strong geometrical distor-
tions.
The accuracy of around 55% for the LBP-based tech-
niques under warp 20 25 exhibits a result as required for
successful template protection. Given the corresponding
results for subject-specific keys with respect to recog-
nition preservation, this parameter configuration is the
only one which seems to be suited for actual template
protection. A further aspect to be noted is that for average
and strong warping parameters the system key approach
results in better accuracy values, i.e. subject-specific keys
introduce additional entropy enhancing protection. This
observation is perfectly in-line with the results obtained



for the performance preservation experiments (B). The
usage of subject-specific keys introduces an additional
(but only slight) protection layer to the protected images.
The additional subject-specific geometric variations ensure
that each subject is a little bit “more unique” than the
original sample and system-key protected images and thus
the applied face recognition systems tend to have more
problems comparing original data with the protected ones.
Summarizing, the outcomes of experiments (C) clearly
indicate that an application of warping is not a sufficient
privacy protection method, especially if DL recognition
systems are used. Additionally, it must be noted that from
Table 2 and the linking knowledge from unlinkability
and irreversibility these experiments also indicate that
the deployed template protection scheme will not achieve
unlinkability.
The observations made so far are visually underpinned in
Figure 2. In this figure the dashed lines correspond to the
impostor score distributions, while the solid lines represent
the genuine score distributions. The red color corresponds
to the baseline experiments (A), while blue lines depict
performance preservation (B) and green lines the protection
strength (C) analysis, respectively.
The genuine and impostor score distributions for baseline
experiments (A) show that only for the usage of DL face
recognition schemes (see Figure 2 (a) and (e)) a clear sep-
arability of genuine and impostor scores can be described,
regardless if system or subject keys are used.
What else do we expect in terms of relation between gen-
uine and impostor distributions ? For decent performance
preservation (B), blue genuine and impostor distributions
should preferably exhibit no overlap but should at least
show an overlap similar to the unprotected (red) case. In
fact we observe for the DL-based cases (Figures 2 (a),
(c), (e), and (g)) the separation of blue distributions being
worse as the red ones - thus, this corresponds to reduced
recognition accuracy and confirms results of table 1. For
the LBP-based schemes the overlap between genuine and
impostor distribution is similar for experiments (A) and
(B), except for the subject-specific keys, which clearly
show a smaller overlap when comparing warped gallery
and probe samples with identical parameters (also in
perfect correspondence to table 1 results).
For a high protection strength (C), we expect green genuine
distributions to have maximal overlap with the red and
green impostor distributions (indicating that no genuine
matches are recognized as such due to the protected sam-
ples). We are able to observe this almost perfect overlap
for the LBP results (Figures 2 (b), (d), (f), and (h)), the
results for the DL-based techniques display a reduced but
still large overlap for middle warping parameters (Figures
2 (c) and (g))) but little overlap for the strong warping
warp 20 25 (Figures 2 (a) and (e)). Thus, confirming the

results of table 2, protection strength is very weak for
DL based schemes, whereas it is acceptable for extreme
warping parameters.
The outcomes for the unlinkability experiments (D) are
presented in Table 3. According to the description given in
Section 2, low D sys values represent good unlinkability,
while high values indicate a severe extent of linkability
present among protected templates. Overall it can be stated
that we only observe results with sensible unlinkability if
warp 20 25 using MBLBP and LBP is considered. The
absolute values suggest “semi-unlinkability” according
to [15] and [11]. In particular, all DL-based methods are
close to full linkability except for the warp 20 25 setting.
Again, subject-specific keys provide better unlinkability as
compared to the system key scenario.
This result underlines once more that warping-based sam-
ple transformation is not an appropriate template protection
method especially if DL-based recognition schemes are
applied. Only in case of applying very strong warping
parameters and using MBLBP and LBP, the ”oldest” recog-
nition schemes investigated, the D sys values indicate to
fulfill the required property of unlinkability to some degree.

5. Conclusion
ISO/IEC Standard 24745 compliant assessment of

block-based warping sample transformation techniques re-
veals that for state-of-the-art DL-based face recognition,
protection strength and unlinkability are not sufficient and
corresponding deployment is depreciated. Earlier face
recognition schemes based on “handcrafted” LBP features
turn out to benefit from this template protection approach
when applying strong warping and subject-specific keys if
focusing on the recognition accuracy only. In this setting
the recognition accuracy is improved at the cost of the in-
troduction of a second authentication factor (i.e. the key)
and corresponding key management requirements. How-
ever, we also cannot really recommend warping as a protec-
tion measure for LBP as the unlinkability, although better
than with DL-based schemes is already at risk.
For a complete assessment with respect to ISO/IEC Stan-
dard 24745, irreversibility needs to be considered. How-
ever, as the unlinkability and protection strength experi-
ments already reveal that template comparison is already
possible without actually reversing the warping transforma-
tion, there is no need to investigate irreversibility, as an ap-
proximation based on an inverted warping would bring the
protected templates even closer to the originals. Further-
more, it was discussed in the setup of the protection strength
experiments that a close relation to an irreversibility attack
is given by performing these experiments. Thus, the com-
bined view at unlinkability and protection strength results
implies that irreversibility is not given for almost all set-



tings.
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