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Abstract

Privacy preserving storage and secure processing of
biometric data is a key issue that has to be addressed
in finger-vein recognition systems as well. Various tem-
plate protection approaches originally proposed for well
established biometric modalities have been adopted to
the domain of finger-vein authentication. However,
these adopted methods have the disadvantage that
they are not designed for finger-vein patterns in partic-
ular and are thus suboptimal in the one or other way.
In this study we propose an alignment-free template
protection scheme that is based on an efficient binary
representation of finger-vein patterns on the one hand
and is further using the advantages of IoM hashing to
fulfil mandatory privacy and security based character-
istics. The proposed method is compared to block-
remapping and warping regarding recognition perfor-
mance and is analysed with respect to security and
privacy aspects.

1. Introduction
Despite the excellent usability of biometrics in authen-
tication, privacy invasion and impersonation may oc-
cur if the biometric template is compromised or stolen.
This is further complicated by the fact that biomet-
ric traits are irrevocable and irreplaceable. Hence,
templates compromised once implies a permanent loss
of identity. Biometric template protection (BTP)
techniques were invented to tackle these and further
challenges. An effective biometric template protec-
tion scheme should fulfil four requirements as de-
fined in ISO/IEC Standard 24745: Non-invertibility
or Irreversibility, Revocability or Renewability, Non-
linkability or Unlinkability and Performance preserva-
tion.
The current BTP methods proposed in literature can
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be broadly divided into feature transformations (can-
celable biometrics - CB) and biometric cryptosystems
(BCS) [22]. Another class of BTP schemes is discussed
as an alternative for CB, Homomorphic Encryption
(HE [29]). HE allows computations performed in the
encrypted domain without using helper data and re-
ceiving the same comparison results as done in the de-
crypted domain, however, the computational cost is
often prohibitive.
CB rely on the application of a transformation func-
tion to a biometric template or a biometric trait. This
can be done by applying invertible (salting) or non-
invertible transformations. If an adversary gets access
to the key used in the context of salting, the original
data can be restored by inverting the salting method.
This drawback can be solved by applying non-invertible
transformations as they are based on one-way func-
tions which can not be reversed in polynomial time (NP
hard problems). The main advantage of CB is that the
authentication of subjects can be done directly in the
transformed domain.
BCS is a process that either securely binds a secret key
(e.g., PIN, private keys) to a biometric template and
thus generates the protected biometric template, or di-
rectly generates the cryptographic key from biomet-
ric features so that neither the key nor the biometric
template can be retrieved from the protected biomet-
ric template. Thus, the template comparison is done
not directly on the biometric templates. In particular,
only if a genuine biometric trait is presented during the
authentication process the corresponding correct key is
retrieved.
In this paper, we propose a CB scheme, namely
Alignment-Free Hashing (AFH) for finger-vein biomet-
rics. This scheme was developed for finger-vein bio-
metrics because of two main reasons: First, finger-
vein biometrics exhibit several advantages compared
to other well established ones (high accuracy [13], in-
sensitivity to skin condition changes and high security
[14]). Second, there are no template protection schemes



available originally designed for finger-vein biometrics
which results in some problems regarding the applica-
tion of adopted template protections methods as fol-
lows. Most finger-vein recognition systems relying on
binary vascular patterns are using a correlation based
strategy to compare provided templates. Shifting the
templates against each other during template compar-
ison is required to compensate e.g. displacement in-
troduced during the image acquisition. Unfortunately,
after applying template protection a shifting of the pro-
tected templates is not possible as the used transfor-
mation is typically not shift invariant. Thus, recently
developed non-invertible transforms that are providing
good recognition performance and privacy protection,
e.g. Bloom Filters [21] or Indexing-First-One (IFO)
hashing [15] (both are adoptable for finger-vein bio-
metrics) suffer from alignment problems. As a conse-
quence there are two strategies to overcome this prob-
lem: a) all shifted variations of a template must be
stored during the enrolment (results in a very large
”master-template”) or b) during the comparison of the
templates all shifted variations must be transformed
and compared to each other (very high computational
costs). Both presented strategies can not be applied
in real world applications as computational speed is
crucial. In this work we propose a new feature extrac-
tion process mitigating the need for displacement com-
pensation during template comparison. The proposed
method computes local distances among vein patterns
from vein feature blocks to form an alignment-free de-
scriptor which is combined with IoM hashing [11] to
fulfil the ISO/IEC Standard 24745 template protection
requirements without an increase in template size or
higher computational costs. The AFH-based method
is analysed regarding recognition performance, secu-
rity and privacy aspects. The analysis also includes
a comparison to other non-invertible transformations,
namely block re-mapping and warping, which have
been used to protect finger-vein templates before [19].
The rest of this paper is organised as follows: In Sec-
tion 2 a brief discussion about finger-vein biometrics is
given before we provide a compact literature review on
related BTP techniques in Section 3. Subsequently, the
proposed template protection scheme is explained and
the applied concepts are described in detail in Section
4. Section 5 illustrates the experimental set-up (includ-
ing the used datasets) and the recognition performance
results of the analysis. The experimental evaluation re-
garding non-invertibility and unlinkability is presented
in Sections 6 and 7, respectively. Finally, Section 8
concludes this paper along with an outlook on future
work.

2. Finger-Vein Biometrics

Finger-vein biometric based systems rely on the struc-
ture of vascular patterns which are formed by the blood
vessels inside the human finger tissue. According to the
fact that the blood vessels lie beneath the human skin
it is necessary to use near-infrared (NIR) light based
scanners to make the structure visible as dark lines on
the resulting images which are further processed by the
recognition system. Example images are given in Fig-
ure 1.
There are several studies focusing on the presenta-
tion and discussion of finger-vein recognition systems,
e.g. [26]. The system may contain an optional tem-
plate protection module, applied either after the pre-
processing module (image domain) or after the feature
extraction module (feature domain). The proposed
template protection scheme is applied in the feature
domain.

Figure 1: Two finger-vein images using palmar view.

During pre-processing the ROI (region of interest),
which contains the finger-vein patterns, is extracted
first in our used tool-chain. After the ROI extrac-
tion, the vein pattern’s visibility is enhanced by ap-
plying High Frequency Emphasis Filtering (HFE) [31],
Circular Gabor Filter (CGF) [30] and CLAHE (local
histogram equalisation). After the visibility was en-
hanced vein feature extraction methods are applied.
We selected six techniques based on the binary vessel
structure (however, there exist also minutiae-related
extraction methods e.g. [3]). The extraction schemes
are Gabor Filter (GF) [14], Isotropic Undecimated
Wavelet Transform (IUWT) [23], Maximum Curvature
(MC) [18], Principal Curvature (PC) [2], Repeated
Line Tracking (RLT) [17], and Wide Line Detector
(WLD) [10]. Further details regrading these meth-
ods are given in [12]. Example images of binary fea-
ture representations extracted by the before mentioned
schemes are displayed in Figure 2. The BTP techniques
discussed in this work are applied to these extracted
features.



Figure 2: Features taken from an example finger-vein
image: (a) Original FV image (b) MC, (c) RLT, (d)
WLD, (e) PC, (f) GF and (g) IUWT.

3. Finger-Vein Template Protection

An analysis of two CB schemes was conducted by Pi-
ciucco et al. [19]. They applied block re-mapping and
block based warping in the image domain, while all
techniques described subsequently operate in the fea-
ture (i.e. template) domain. We use their approach
for comparison purposes, however, we apply it to gen-
erated binary templates after feature extraction.

A direct application of BCS, i.e. a fuzzy Com-
mitment Scheme (FCS), to binary finger vein data is
demonstrated in [7]. In a similar approach, [4] also
apply the FCS, but they tackle the issue of a bias in
the binary data (as non-vein pixels are in clear ma-
jority as compared to vein pixels) by applying no vein
detection but a simple thresholding scheme using the
median. We find techniques, which apply both CB
and BCS to binary features: After applying a set of
Gabor filters for feature extraction and subsequent di-
mensionality reduction using PCA, a CB schemes close
to BioHashing is used employing random projections.
The obtained coefficients are binarised and subjected
to a fuzzy commitment scheme (FCS), which is a par-
ticular CBS approach based on helper data. This ap-
proach is used to secure medical data on a smartcard
[28]. A second approach combining CB and BCS is
suggested in [27], where bio-hashing is also applied to
features generated by applying Gabor filters and sub-
sequent LDA. The binary string is then subjected to
FCS and also to a fuzzy vault scheme (where the bi-
nary string is somewhat artificially mapped into points
used in the vault). Another approach to combine CB
and BCS is proposed in [16], where finger vein minu-
tiae are extracted and random projections are used to
achieve revocability and dimensionality reduction. Af-
terwards, a so-called deep belief network architecture
learns irreversible templates.

Minutiae-based feature representations suffer from
the drawback that they are no fixed length repre-
sentations (which is a prerequisite for the application

of several template protection schemes) – techniques
developed in the context of finger print minutiae-
representations have been transferred to vein minutiae
representations, i.e. vein minutiae cylinder-codes [9]
and vein spectral minutiae representations [8]. The
latter representations are subjected to binarisation and
subsequently fed into Bloom filters to result in a CB
scheme thereby avoiding position correction during
template comparison as required by many techniques
based on vascular structure representation [6].

A BCS approach based on quantisation is proposed
in [25]: Based on multiple samples per subject (i.e.
class), features with low intra-class scatter and high
inter-class scatter (found by Fisher discriminant anal-
ysis (FDA)) are generated, which are finally subjected
to a quantisation-based key generation where the quan-
tisation parameters (helper data) depend in the dis-
tribution of the generated stable features. Another
quantisation-based BCS is proposed in [1], where vein
intersection points are located by considering a neigh-
bourhood connectivity criteria, after Gabor-based en-
hancement with subsequent thresholding. However,
the generation of a stable key is not discussed as it is
just suggested to use a subset of the identified feature
points as key material.

4. An Alignment-Free CB scheme
It is known that vein feature templates contain a major-
ity of black background pixels, thus the binary finger-
vein feature is usually sparse. Consequently, slight dis-
placements between an enrolled vein template and a
query vein template would lead to a significant row-
wise or column-wise dissimilarity. Thus, a proper
alignment of the templates is a crucial step to obtain a
suitable recognition performance. The common strat-
egy to alleviate alignment issues is to perform multiple
comparisons with bit-by-bit shifts among binary tem-
plates. Moreover, the bit-by-bit shift has to be carried
out in both vertical and horizontal directions due to
the arbitrary placement of finger during image acqui-
sition [17, 18]. The computationally costly comparison
strategy leads to high computational load, especially
for carrying out identification over a large database.
This computational time is further increased if BTP
schemes need to be applied as well. Thus, we designed
a BTP scheme for finger-vein template protection with
an alignment-free property that also enables a faster
template comparison as it is done by bit-by-bit shift-
ing.

4.1. Alignment-Free Feature Descriptor

Let d(i, j) be the local distance between the i-th and
j-th locations in a binary vector V = (v1, , vn) where



vi, vj ∈ [0, 1]. In particular:
d(i, j) = |i− j| (1)

and Kronecker delta functions δ(vi, vj):

δ(vi, vj) =

{

0 if vi ̸= vj

1 if vi = vj
(2)

Then we combine Eq. (1) and Eq. (2). This leads to
the alignment-free transformation, coined as T over a
vector V which is described as:

Tk(V ) =
∑

i>j

δ(d(i, j)− k)δ(vi, 1)δ(vj , 1) (3)

where n represents the length of the given binary vec-
tor V and k ∈ {1, 2, . . . , n}. Eq. (3) shows us that T

in fact is designed to measure the number of pairs of
1s (representing vein information) in the binary feature
template that have a local distance k. We utilise the
local feature (e.g. local distance) to replace the prior
alignment required by global features as used in other
algorithms (e.g. [18]). Thus, the employment of local
distance measures as invariant feature descriptor elim-
inates the requirement of alignment from finger-vein
recognition.

4.2. Alignment-Free Hashing (AFH) and Template
Comparison

In this section, we introduce our feature extraction
scheme, the Alignment-Free Hashing (AFH), in detail.
The proposed method is based on the feature descriptor
described in Section 4.1. We extend AFH from mathe-
matical notation to a complete procedure for the sake
of readability. Let x ∈ [0, 1]n×m be a binary finger-vein
feature template that can be interpreted as a matrix,
with a size of n×m. In Figure 3 the feature descriptor’s
building process is displayed according to the algorith-
mical five-step procedure described in Algorithm 1.

Figure 3: The overall flow of the AFH protection
scheme.

Algorithm 1 Alignment-Free Hashing (AFH)
Input: Finger-Vein Feature Template x ∈ [0, 1]n×m

Output: Hashed Code xhash

1: Step 1: Non-overlapped Blocks Formulation
2: Let xblock ∈ [0, 1]bn×bm be a block
3: xblock(1,1) ← x[1 : bn, 1 : bm]
4:
5: for i← 2 to

⌊

n
bn

⌋

and j ← 2 to
⌊

m
bm

⌋

do
6: xblock(i,j) ← x[i×bn+1 : (i+1)×bn, j×bm+1 : (j+1)×bm]

7:
8: Step 2: 1-Dimensional Binary Vector Generation
9: for i← 1 to bn do

10: xbin = [xblock(i)|xblock(i+1)| . . . |xblock(bn)]
11: where | denotes a concatenation function
12:
13: Step 3: Invariant Feature Computation
14: for any two 1s (all combinations) in xbin do
15: Compute distance d(i, j) = |i− j|
16: between xbin(i) and xbin(j),
17: where xbin(i) = xbin(j) = 1
18: Store the computed distances in xdis(i)

19:
20: Step 4: Histogram Formulation from xdis

21: h = [h(1), . . . , h(nblocks)], where
22: h(i) =

∑bn×bm−1
j=1 xdis(j)

23:
24: Step 5: AFH Code Generation from h

25: xhash ← h, thus xhash = [h(1), . . . , h(nblocks)]

During template comparison of a gallery tem-
plate Xhash = [Xhash(1), . . . , Xhash(nblock)] and
a newly acquired probe template X

′

hash =

[X
′

hash(1), . . . , X
′

hash(nblock)
] the cosine similarity

(mean) between these two hashed codes is calculated
using Eq. 4 where ∥.∥ represents Euclidean norm:

S(Xhash, X
′

hash) =
1

nblock

nblock
∑

i=1

Xhash(i) ×X
′

hash(i)
∥

∥

∥
X

hash(i)

∥

∥

∥
×

∥

∥

∥
X

′

hash(i)

∥

∥

∥

(4)

As S(Xhash, X
′

hash) ∈ [0, 1], a high S indicates a high
probability that two hashed codes are from the same
subject and otherwise from different subjects.
Furthermore, the pair-wise (pairs of 1’s) local dis-
tance representation implicates strong irreversibility.
Let N1, . . . , Nb be the number of bit 1’s that can be
found in the binary vectors xbin(1), . . . , xbin(b). For
any k ∈ {1, 2, . . . , b}, there are at most

(

Nk

2

)

possi-
ble combinations to describe the pair-wise relation for
each binary vector, which contains local distances k.
In view of this, recovering a single binary vector xbin
would require at least

(minN1,...,Nb

2

)

number of combina-



tions representing collisions of 1’s. However, according
to the fact that the number of bit 1’s present in the
vectors xbin(1), . . . , xbin(b) are subjected to uncertainty
due to external environmental factors i.e., noise, fin-
ger movements, etc. it is difficult to determine the
value of minN1,...,Nb

precisely. However, AFH does not
offer revocability and unlinkability, which are crucial
requirements for a template protection scheme. These
requirements are not covered so far as no key is involved
in the template generation process and to distinguish
between different instances of generated protected tem-
plates. Hence, we adopted IoM hashing [11] to achieve
a full set of BTP requirements as defined in the Intro-
duction. A detailed discussion regarding irreversibility
is presented in Section 6.

4.3. IoM Hashing applied in AFH

IoM hashing, as introduced by Jin et al. in [11], pos-
sesses the property that if two similar feature vectors X
and X

′ are given their hashed values will be the same
with high probability. Opposed to this, if X and X

′

are distinct it can be expected that their IoM hashed
output will be the same only with low probability.
The IoM hashing uses a feature vector (the extracted
AFH template) x ∈ R

n and a n-dimensional Gaussian
vector, r ∈ R

n as input argument. Thus, the IoM
hashing operates as follows:

1. Randomly generate q n-dimensional Gaussian vec-
tors r1, . . . , rq.

2. Record the indices of the maximum value as ψ =
argmaxi ⟨ri, x⟩, where ⟨·, ·⟩ is the inner product
and i ∈ {0, 1, . . . q}.

3. Repeat Step 1-2 m number of times and yield the
IoM output vector (ψ1, . . . , ψm).

The similarity of two IoM hashed vectors (ψ1, . . . , ψm)
and (ψ

′

1, . . . , ψ
′

m) can be measured by counting the
number of collisions, i.e ψi = ψ

′

i among their size of
m as discussed in [11].
As we want to introduce revocability and unlinkability
by adding IoM to the AFH, it is necessary to define
the key of the system, which is represented by the q n-
dimensional Gaussian vectors r1, . . . , rq. While q con-
trols the number of generated Gaussian vectors (not
their concrete specifications), m is responsible for the
number of iterations conducted. According to [11], q
has no significant influence on the recognition perfor-
mance thus we have set q = 2 as suggested by [11].

5. Experimental Set-up and Performance Anal-
ysis

The experiments have been carried out using the
PLUSVein-FV3 Dorsal-Palmar finger-vein database

[13] and the University of Twente Finger Vascular Pat-
tern Database (UTFVP) [24]. As PLUSVein-FV3 con-
tains 4 subsets, Laser/LED DORSAL and Laser/LED
PALMAR, we selected the latter subsets because the
UTFVP database contains palmar images only. Thus,
a direct comparison between the databases is possible.
In the following we name the considered datasets UT-
FVP, PLUS LED and PLUS Laser.
After pre-processing the resulting binary features are
used to perform the baseline experiments without ap-
plying template protection schemes. After the baseline
experiments, the extracted templates are protected by
the use of the proposed AFH method, and by block
re-mapping and warping as a comparison. Note that
the latter techniques are applied in the feature domain
contrasting to [19]). Block re-mapping divides an in-
put template into non-overlapping blocks which are re-
arranged in a lossy manner (not all blocks of the input
template are contained in the protected template) to
achieve a higher amount of privacy protection as would
be given by just permuting the blocks. Warping is
based on deforming the vein patterns’ structures con-
tained in non-overlapping blocks using piece-wise lin-
ear interpolation. As block sizes 16, 32, 48 and 64 pixel
have been chosen, while the offset parameter, control-
ling the warping based geometrical distortions is set to
be maximal 6, 12, 18 or 24, respectively. These values
have been used in [19], thus we have selected them for
the sake of comparability.
For AFH different equidistant m values in the range
of [20, 200] have been selected as key parameters. Fur-
thermore, for the non-overlapped blocks formulation
(as needed for Step 1 of the proposed algorithm), sev-
eral block sizes are taken into account as well. We have
selected bn ∈ 10, 20, 30 and bm ∈ 20, 30, 40, 50, 60. The
recognition accuracy on the selected datasets is evalu-
ated by using the equal error rate (EER).

5.1. Baseline Performance

Table 1 lists the performance results of the baseline
experiments in percentage for the UTFVP and the
PLUSVein-FV3 datasets, respectively. Overall, the
performance on the UTFVP dataset is slightly supe-
rior compared to the PLUSVein-FV3 dataset for most
of the evaluated recognition schemes.
On the UTFVP, the best recognition performance re-
sult with an EER of 0.09% is achieved by MC, followed
by PC with an EER of 0.14%, then IUWT, WLD and
RLT follow while GF has the worst performance with
an EER of 0.64%. On PLUS Laser and PLUS LED the
best results are achieved by using MC as well, with an
EER of 0.28% and 0.33% on the LED and laser subset,
respectively. RLT performed worst compared to the



EER [%]
dataset GF IUWT MC PC RLT WLD
UTFVP 0.64 0.36 0.09 0.14 0.60 0.46

PLUS LED 0.61 0.63 0.28 0.35 0.79 0.53
PLUS Laser 0.74 1.49 0.33 1.47 1.71 1.38

Table 1: Baseline performance in terms of EER. The
best performing results are highlighted in bold num-
bers.

other schemes on both subsets. Nevertheless, each of
the evaluated recognition schemes achieves a competi-
tive performance on all of the tested datasets.

5.2. Recognition Performance applying Template
Protection

Table 2 presents the EER by using the mean (x̄) and
the standard deviation (σ) for all datasets and applied
template protection schemes. These results are calcu-
lated by randomly choosing 10 different keys (system-
specific, i.e. identical keys for all users) as suggested
by [5] to subsequently perform a suitable unlinkability
analysis.
Due to the length of the paper we will only present
the best performing results and discuss the trend of
the other experimentally considered cases without a
detailed presentation of the EER values. Not surpris-
ingly, the overall best recognition performance is ob-
served for warping in almost all cases using a block
size of 16 pixels and a maximal offset of 6 pixels. The
remaining warping experiments based on other param-
eters resulted in slightly worse EER, but still outper-
form the best EER values of the other schemes. The
only exception to this trend is obtained by our pro-
posed AFH-based scheme (m = 180, bn = 20 and
bm = 60) on the PLUS Laser dataset applying MC
for feature extraction (EER = 3.79). In all other cases
using the PLUSVein-FV3 dataset the newly introduced
technique achieved better results compared to block re-
mapping but was outperformed by warping. In general
it has to be mentioned that the observed results are a)
similar for all other parameter configurations of block
re-mapping and AFH and b) are strongly depending on
the particular feature extraction method used and the
selected dataset. Thus, the AFH-based method did not
work well using WLD on the PLUSVein-FV3 data and
further a poor EER must be reported for the UTFVP.
In case WLD is considered the difference to the sec-
ond best method (i.e. block re-mapping) is only small,
while a larger amount of displacement, e.g. longitudi-
nal rotation as reported by [20], seems to be the reason
for the performance issues concerning UTFVP.
Apart from recognition performance results the aspect

of computational costs needs to be discussed. Consid-
ering the number of performed comparisons, which are
conducted during the comparison of two templates, it
is possible to state the following: Regardless if baseline
or template protected experiments applying block re-
mapping/warping are performed, the number of tem-
plate comparisons for each pair is always the same. As
a maximum of vertically 30 pixel-wise shifts and hor-
izontally 80 pixel-wise shifts are done for the probe
finger-vein template, a total of 2400 different shifted
versions of two templates need to be compared to each
other. Opposed to this computational costly process,
two AFH-based protected templates must be compared
only once (by counting the number of collisions of 1’s,
which is extremely fast). As a consequence, the com-
putational cost using AFH-based template protection
is reduced to a high extent compared to the other tem-
plate comparson methods.

6. Non-invertibility Analysis
First of all, the pair-wise local distance representation
of AFH (considering the pairs of 1’s) implicitly intro-
duces non-invertibility. In detail, let N1, N2, . . . , Nb

be the number of 1’s that can be found in the binary
vectors xbin(1), xbin(2), . . . xbin(b), respectively. For any
k ∈ 1, 2, . . . , b there are at most

(

Nk

2

)

possible combina-
tions to describe the pair-wise relation for each binary
vector, which contains a certain distance k. Further,
the minimal number of combinations representing col-
lisions of 1’s between different finger-vein binary fea-
ture vectors xbin(1), xbin(2), . . . xbin(b) can be described
formally as

(

minN1, N2, . . . , Nb

2

)

× (1− (Pd)
b) (5)

where Pd refers to the minimum dissimilarity between
two different binary vectors. The maximum number of
combinations representing collisions of 1’s can therefore
be described as

(

maxN1, N2, . . . , Nb

2

)

× (1− (Pd)
b) (6)

However, it is difficult to determine the value of
minN1, N2, . . . , Nb and maxN1, N2, . . . , Nb precisely.
The reason is based on the fact that the number of
1’s detected in the vectors xbin(1), xbin(2), . . . xbin(b) is
subjected to uncertainty due to external environmental
factors, i.e. noise, finger misplacement like longitudinal
rotation and several others. Nonetheless, the expected
number of minN1, N2, . . . , Nb and maxN1, N2, . . . , Nb

can be estimated numerically for all given finger-vein
templates. This yields to E(minN1, N2, . . . , Nb) = 29



EER

tempProt GF IUWT MC PC RLT WLD
x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP
remp_64 8.43 2.23 3.94 0.77 3.27 0.83 3.81 0.97 4.68 0.89 3.72 0.67

warp_16_6 3.36 0.74 0.74 0.18 0.78 0.23 0.71 0.21 1.20 0.24 1.16 0.25
AFH_180_20_60 10.98 0.04 4.43 0.06 4.77 0.03 7.18 0.16 3.89 0.11 3.90 0.12

PLUS Laser
remp_48 11.55 3.47 6.86 1.71 10.45 2.03 14.10 3.42 12.51 3.41 5.52 2.04

warp_16_6 6.33 0.99 2.21 0.20 8.78 0.10 3.30 0.41 4.27 0.39 2.02 0.18
AFH_180_20_60 6.66 0.06 6.30 0.10 3.79 0.14 7.11 0.04 6.56 0.03 5.67 0.12

PLUS LED
remp_48 10.32 3.08 6.68 1.57 7.71 2.47 13.43 4.00 12.21 2.92 4.42 1.27

warp_16_6 5.27 0.99 1.33 0.17 2.01 0.52 2.30 0.53 3.88 0.58 1.00 0.17
AFH_180_20_60 5.44 0.05 5.94 0.11 4.08 0.03 6.61 0.41 6.11 0.57 5.27 0.39

Table 2: Recognition performance results (%). The best result for each feature extraction method is highlighted
in bold numbers.

and E(maxN1, N2, . . . , Nb) = 234, while Pd = 0.0557
is calculated by taking the normalised minimum non-
zero Hamming distance between different binary vec-
tors of the same template across the whole dataset
(the estimated results are presented only for PLUS
Laser). According to the low value of Pd it is implied
that the correlation between two binary finger-vein fea-
ture vectors is high enough to maximise the number
of combinations representing collisions of 1’s, reported
by Equations 5 and 6, by approaching

(

minN1,N2,...,Nb

2

)

and
(

maxN1,N2,...,Nb

2

)

for the minimum and maximum
number of combinations representing collisions of 1’s,
respectively. Subsequently, the expected number of
combinations representing collisions of 1’s can be esti-
mated by using the following inequality:

E(
(

minN1,N2,...,Nb

2

)

× (1− (Pd)
b))

≤ E(combinations) ≤

E(
(

maxN1,N2,...,Nb

2

)

× (1− (Pd)
b)) (7)

After selecting the best performing parameters bn = 20
and bm = 60 we have b = 29 and calculated 29 ≤
E(combinations) ≤ 215 as bounding for the expected
number of combinations representing collisions of 1’s.
The AFH-based transformation implicitly provides ir-
reversibility by the argument of an expected guess com-
plexity from 29 to 215, but the CB scheme only provides
further requirements like revocability and unlinkability
after the application of IoM hashing. The latter re-
quirement is discussed in the following Section 7, while
the property of revocability is fulfilled by the design of
IoM hashing. As described in Section 4.3, randomly
constructed Gaussian vectors are used to generate the
IoM hash codes. Thus, a new template can be gen-
erated to replace a compromised one by re-generating
an IoM hash code using a different random Gaussian
vector (revocability is assured).

7. Unlinkability Analysis

ISO/IEC Standard 24745 defines various criteria to en-
sure a proper protection of templates, one of those
criteria is the unlinkability. Unlinkability guarantees
that stored and protected biometric information can
not be linked across various different applications or
databases.
However, the standard only defines what unlinkabil-
ity means but gives no generic way of quantifying it.
Gomez et al. [5] present a universal framework to
evaluate the unlinkability of a biometric template pro-
tection system based on the comparison scores. They
proposed the so called Dsys measurement as a global
measure to evaluate a given biometric recognition and
template protection system. The Dsys ranges normally
from 0 to 1, where 0 represents the best achievable un-
linkability score. We shifted the range from [0, 1] to
values in [0, 100] to improve the readability of the re-
sults presented in Table 3. Furthermore, the authors of
[5] stipulated that 10 different keys should be consid-
ered during the unlinkability analysis as this simulates
a real world case where the same subjects are enrolled
in ten different applications and an attacker aims at
linking the templates of the corresponding datasets to
each other. Thus, we have also selected 10 different
keys for our performance, see Section 5.2, and unlink-
ability analysis, respectively.
The Dsys values are shown for all three template pro-
tection schemes in Table 3. For block re-mapping al-
most full unlinkability is achieved in the most cases
(especially for remp_16), while for the warping scheme
almost full linkability can be reported. The worst re-
sult regarding the ISO/IEC Standard 24745 property
of unlinkability is exhibited by warp_16_6. From a
security point of view warping is not really a proper
template protection scheme using the given parame-
ters.
Compared to the recognition performance, see Table



2, the unlinkability of our proposed AFH-based tem-
plate protection technique, independently of the pa-
rameter selection, outperformed warping and is simi-
lar to the results obtained for block re-mapping, espe-
cially if compared to remp_16. Nevertheless, it also
needs to be mentioned that AFH-based method’s σ is
much higher in several cases. Corresponding distribu-
tion plots are presented in Figure 4. The blue line
represents the Dsys values for all threshold selections
done during the computation (see [5]). The green dis-
tribution describes the so called mated samples scores.
These comparison scores are computed from templates
extracted from samples of a single instance of the same
subject using different keys [5]. The red coloured dis-
tribution correspond to the non-mated samples scores,
which yielded by templates generated from samples of
different instances using different keys. According to
[5] a fully unlinkable scenario can be observed if both
coloured distributions are identical, while full linkabil-
ity is given if mated and non-mated distributions can
be fully separated from each other. The presented dis-
tribution plots of Figure 4 show nearly full unlinkabil-
ity in all cases as the Dsys values are close to 0. As a
consequence, the distributions of mated and non-mated
samples scores are highly overlapping.
The provided level of privacy protection, especially if
it comes to unlinkability is clearly not sufficient for
a practical application of warping based cancellable
schemes and the severe recognition performance drop
restricts the use of block re-mapping schemes in the
most cases as well. Thus, the proposed method offers
a promising trade-off between recognition performance
loss and unlinkability in most cases, while the other two
investigated template protection schemes either have a
low recognition performance loss but bad unlinkability
(warping), or have a relatively high performance loss
but good unlinkability (block re-mapping).

8. Conclusion
The proposed AFH-based template protection scheme
shows a slightly lower recognition performance com-
pared to warping, but exhibits a much better unlink-
ability. Bock re-mapping was outperformed in most
cases regarding recognition performance and unlink-
ability as well. Another advantage of the proposed
method are much lower computation costs due to a
highly reduced number of template comparisons which
are conducted for two templates. Furthermore, secu-
rity based aspects like irreversibility and revocability
were discussed. The AFH feature descriptor design
implicitly ensures non-invertibility of the entire tem-
plate protection system. The revocability requirement
is fulfilled as well because a new template can be re-

generated by using a different random Gaussian vec-
tor during the IoM hash code computation. Thus, the
main requirements of a template protection scheme are
achieved.
The proposed scheme offers a promising trade-off be-
tween recognition performance loss and unlinkability,
while especially block re-mapping is not able to per-
form well in terms of recognition performance and un-
linkability at the same time. One possibility for future
work includes the combination of warping and the pro-
posed alignment-free hashing based template protec-
tion scheme to possibly maintain the recognition per-
formance obtained by warping, while improving unlink-
ability at the same time.
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