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Abstract

Several studies conducted on time-span separated finger-

print datasets revealed recognition performance degrada-

tion as compared to commonly achieved accuracies. The

reported accuracy reduction is mainly caused by a shift

of the genuine score distributions towards the impostor

ones. This fact raised discussions about the reasons be-

hind eventual template ageing effects in fingerprint recog-

nition. Analysing the only publicly available time-separated

fingerprint dataset (CASIA Fingerprint Subject Ageing Ver-

sion 1.0), it is demonstrated in the current study that (i) ad-

vances in recognition technology mitigate the earlier ob-

served decrease in recognition accuracy and (ii) advances

in fingerprint quality assessment now lead to the conclusion

that it is indeed fingerprint quality which causes the earlier

observed recognition impact. Current results on this dataset

do not suggest the existence of a fingerprint template ageing

effect.

1. Introduction

Over the last years, several studies have been conducted

on time-span separated fingerprint (FP) datasets. Most

of these investigations revealed a recognition performance

degradation introduced by a reduction of the genuine com-

parison scores. Obviously, there might exist several factors

causing the observed recognition accuracy reduction, and it

is definitely not clear that FP template ageing causes these

effects. However, only few studies so far tried to investigate

the reasons behind the exhibited recognition performance

degradations in time-span separated FP databases.

Proper quality assessment is a mandatory precondition to

ensure a stable and comparable application of FP recogni-

tion systems. Thus, it is natural to look at differences in

FP quality eventually causing the observed phenomena. If

the imprints’ quality is indeed responsible for reduced gen-

uine comparison scores, then it is incorrect to qualify the

observed effects as “template ageing” as these are eventu-

ally identified as not being time-dependent. Instead, such

effects would be properly termed as “template changes”

introduced by variations during data acquisition. In fact,

controversial results have been obtained, whether the ob-

served reduced genuine comparison scores can be attributed

to FP quality differences: The authors of [21] concluded

that indeed quality differences can be made better responsi-

ble for the reduced genuine comparison scores as compared

to time-separation data (using non-public FP forensic data),

while the authors of [7, 8] do not identify quality as the rea-

son for the observed effects, and thus do not rule out FP

template ageing as a potential reason (analysing the public

available ”CASIA Fingerprint Subject Ageing Version 1.0”

database).

The authors of [7] considered so called ghost fingerprints

as another potential reason for the described genuine score

decrease (again on the ”CASIA Fingerprint Subject Ageing

Version 1.0”). This investigation was motivated by the high

amount of ghost fingerprints present in the respective data.

These problematic structures in FP images are introduced

by a non sufficient sensor plate cleaning during FP acqui-

sition and are typically not detected by a FP based quality

assessment. In case the acquisition protocol is not constant

over time, one might observe a different amount of ghost

fingerprints in time-separated data eventually causing the

decreased genuine comparison score. Of course, such an

effect is not at all time-related as this effect could also oc-

cur between acquisition sessions, which are not separated
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by time intervals at all. Thus, recognition degradation in

time separated data caused by a different number of ghost

fingerprints could not be qualified as template ageing. How-

ever, the authors showed that decreased genuine comparison

scores still prevail even after ghost fingerprints have been

removed, thus, ghost fingerprints do not contribute to the

observed effects.

Since [7, 8] have been published, there have been new de-

velopments regarding (i) FP quality assessment (NIST FP

Image Quality 2.0 (NFIQ 2.0) as discussed in Section 5

has been introduced) and (ii) algorithmic accuracy in com-

mercial FP recognition systems (VeriFinger and Innovarics

SDK as described in Section 3). Also, we intend to apply

more sophisticated (statistical) analysis concerning eventual

quality differences. Extending previous investigations on

the CASIA Fingerprint Subject Ageing Version 1.0 data we

aim to answer the following research questions with this

work: (a) Do we observe similar recognition performance

degradations using more recent FP recognition systems? (b)

Does the application of NFIQ 2.0 on the imprints describe

the data’s quality better or more thoroughly compared to

NFIQ 1.0 regarding quality differences in the datasets ? (c)

Does the application of proper statistical tests clarify the

question if quality differences among the data can be re-

ported and made be responsible for the detected recogni-

tion accuracy degradations? (d) Does the consideration of

quality difference of imprints causing false matches lead to

clearer results with respect to eventual quality differences

as compared to the corresponding imprints’ average quality

(as used in [8])?

The rest of this paper is organised as follows: In Section 2 a

thorough description of related work is given. The used FP

databases and applied recognition SDKs will be described

in Section 3. A subsequent detailed discussion of recogni-

tion experiments is done in Section 4. The considered FP

quality assessment methodologies, applied statistical meth-

ods, performed experiments and corresponding results are

analysed in Section 5, before concluding this study in Sec-

tion 6.

2. FP Recognition on Time-separated Data

Almost all investigations on time-separated FP data re-

port a recognition performance decrease, caused by a reduc-

tion of the genuine match scores which can be described by

a shift of the genuine score distributions towards the impos-

tor ones.

In [20], a time-interval of 16 weeks has been sufficient to re-

veal a slight degradation in recognition accuracy conducting

experiments on 3D finger range data. Further, [14] reported

an EER increase using the Korea Fingerprint Recognition

Interoperability Alliance (KFRIA) database, which was ac-

quired using three different commercial sensors (2 optical

and 1 capacitive sensor type) and exhibits a time span of 1

year. Another study, using hand-print data collected with

a common flat-bed scanner, covering a 5 year time-span,

reports recognition degradation effects caused by roughly

33% decreased genuine match scores [19]. Comparable re-

sults on the same database were obtained by [18]. Further-

more, [21] confirms this genuine score decrease on a foren-

sic database (covering time-spans of up to 7 years) as well.

In [8], the same effects have been confirmed once more per-

forming the experiments on the CASIA Fingerprint Sub-

ject Ageing Version 1.0 data which will be considered in

this study too. The authors concluded that template ageing

could be an eventual explanation for the observed recogni-

tion accuracy reduction.

Further investigations focused either on longer time inter-

vals [1], non-minutiae based comparison schemes [9], or on

the description of observed reduced comparison scores by

analysing user-group specific effects [6]. In [1], a foren-

sic dataset provided by the German federal criminal police

office (BKA), exhibiting time intervals of 10 to 30 years,

was considered. As result it was concluded that the recog-

nition accuracy is lower when the time interval is increased.

The ”Doddington Zoo” concept [2] was used in [6] to re-

veal the presence of similar recognition accuracy degrada-

tion effects as reported before (again, the respective CA-

SIA data was analysed). Additional investigations on the

same data [9] described very similar effects with respect to

decreased comparison accuracy in case of applying non-

minutiae based recognition systems. However, only few

studies done on time-separated FP data so far performed

experiments to highlight the reasons which could cause the

recognition accuracy’s degradation. The sole description of

increased error rates is not sufficient enough to be compli-

ant with the definition of template ageing effects, because

for template ageing, it must be proven that these effects are

introduced by time-related changes. The underlying def-

inition is given in the ISO/IEC biometric testing standard

ISO/IEC 19795-1, which states that “Longer time intervals

generally make it more difficult to match samples to tem-

plates due to the phenomenon known as template ageing”

[11]. Further, it is defined that “template-ageing” might be

introduced by an “increase in error rates caused by time-

related changes in the biometric pattern, its presentation,

and the sensor”. Nevertheless, various non-time related rea-

sons are known, which might cause the observed increased

error rates. In [21] the described genuine comparison score

reduction was explained by quality based influences. This

conclusion was drawn after the application of a covariate-fit

analysis model which revealed that image quality explains

the observed increased errors better as time-related changes.

In [7, 8], it was possible to detect: (i) a genuine score distri-

bution shift towards the impostor scores distribution, (ii) al-

most no influence of the imprints’ quality upon the detected

effect and (iii) ghost FPs are not the reason for the observed



effects. This led the authors of [7, 8] to conclude that neither

quality nor ghost fingerprints can be made responsible for

the observed recognition accuracy degradations and thus,

template ageing can not be ruled out as eventually causing

these effects on the considered database.

Apart from investigations focusing on time-span related

recognition performance, there have been several studies

focusing on the impact of age on recognition performance

relying on age groups datasets. The aspect of consider-

ing different human age groups is very interesting and im-

portant for the analysis of time-separated FP recognition

performance: If it is possible to report a reduced perfor-

mance for more elderly age groups compared to younger

ones, the potential chances of detecting time-related effects

in databases containing time-separated imprints, at least for

long time-spans, would be higher of course. In fact, in [15]

the authors could show that elderly age groups exhibit a

worse behaviour in terms of FP quality and comparison ac-

curacy applying a statistical one-way analysis of variance

(ANOVA) and the calculation of Pearson correlation coef-

ficients. The same database, acquired by an optical and a

capacitive sensor, was reused in [12] and [13], where the

authors focused on a minutiae count, a biometric quality

and performance figure based analysis. The age group con-

taining the imprints of the oldest volunteers did receive the

worst results among all considered groups. In [17] a similar

study was performed, but the core aspect considered very

young people as well. For most performed experiments it

was reported that kids’ FP performance suffers compared

to the adults’ comparison accuracy [17]. Finally, in [4] the

main goal was to cope with different age groups and ob-

served quality degradation effects by performing isotropic

rescaling methods on the children’s data.

3. Datasets and Recognition Methodology

A dataset intended towards analysing FP ageing effects

can still be influenced by various non-ageing related fac-

tors. As a consequence, potential reasons for such non time-

related template differences, e.g. illumination variations or

other differences in acquisition protocol, should be avoided.

Furthermore, it is important that the same sensor(s) is/are

used at all data collection events, because otherwise cross

sensor effects might be introduced (which again might eas-

ily be misinterpreted as template ageing effect).

The authors decided to use the only publicly available time-

separated FP data, which was already considered in other

related studies. This decision leads to the possibility of

comparing to or even extending results presented in [7, 8, 9].

The corresponding data was acquired at the Center for

Biometrics and Security Research (CBSR) at the Chinese

Academy of Sciences, Institute of Automation (CASIA).

The entire database “CASIA Fingerprint Subject Ageing

Version 1.0” is publicly available1. On the one hand it con-

tains a subset of the also publicly available CASIA-FPV5

database2, and on the other hand a dataset which was col-

lected 4 years later in 2013, respectively. The first set “CA-

SIA2009” contains 980 FP images of 49 volunteers, whose

both fore- and second fingers have been acquired (5 im-

prints per finger). During the capturing process an U.are.U

4000 scanner, produced by DigitalPersona, was used. This

optical device has a resolution of 512 dots per inch (dpi),

which results in 8-bit/pixel grayscale images with a res-

olution of 328x356 pixel. The same set-up was consid-

ered in 2013 once again. This resulted also in 980 FP im-

ages using the same volunteer’s fingers as in 2009 and the

same number of imprints per finger. The main difference

in the “CASIA2013” database is that it contains 5 inde-

pendent subsets (980 images each), which have been col-

lected using 3 different sensor types. Two instances of an

U.are.U 4000 scanner were used as well as two instances

of an U.are.U 4500 scanner (datasets uru40001, uru40002,

uru45001, uru45002). In terms of image resolution and bit

depth the U.are.U 4500 device has the same specifications

as reported for the U.are.U 4000. The fifth subset was ac-

quired by a capacitive TCRU1C sensor characterised by a

resolution of 508 dots per inch (dpi) and an image resolu-

tion of 256x360 pixel.

To simplify the results’ description in the following sec-

tions, some abbreviations need to be introduced. These

are illustrated in Table 1. The first abbreviations (A,Bi)

were chosen to describe the so-called “single” 2009 and

2013 datasets (containing only the data acquired in these

years) independently from each other. The recognition ac-

curacy on each single database will represent a baseline

for the detailed analysis concerning the systems’ perfor-

mance and eventual ageing effects (see Section 4). All

databases, which have been abbreviated using Ci or Di, re-

fer to “crossed” datasets where two different sets from 2009

or 2013 have been combined into a new one. Ci datasets

contain data leading to potential ageing related results be-

cause imprint from 2009 and one set of 2013 were com-

bined. To eliminate possible cross-sensor effects we con-

structed only one dataset (D23) which contains the sole im-

ages acquired with an U.are.U 4000 scanner and are stored

in B2 and B3. This D23 dataset was built to showcase re-

sults that can be used during the ”ageing” datasets’ (Ci)

comparison. In case the performance figures are equal in

Ci and D23 and exhibit the same degradation as reported

in previous studies considering time separated FP data, it is

clear that template ageing can be excluded as potential rea-

son for this observation as time-differences were excluded

by the construction of D23.

FP Recognition Systems: The state-of-art algorithms in

1http://biometrics.idealtest.org/dbDetailForUser.do?id=15
2http://biometrics.idealtest.org/dbDetailForUser.do?id=7



Abbrev. Orig. Name Abbrev. Orig. Name

single crossed

A ’CAISA2009’ C1 A and B1

B1 TCRU1C C2 A and B2

B2 uru40001 C3 A and B3

B3 uru40002 C4 A and B4

B4 uru45001 C5 A and B5

B5 uru45002 D23 B2 and B3

Table 1. Abbreviations used for the processed datasets.

FP recognition obtain the comparison score information by

an application of minutiae based feature extraction systems.

In this study we applied 4 different recognition systems:

NIST Biometric Image Software (NBIS): Implemented

by the National Institute of Standards and Technology

(NIST)3; in this work Release 5.0.0 was used.

VeriFinger (NEURO): The VeriFinger SDK4, developed by

Neurotechnology, is minutiae based as well. The current

Release 10.0 was applied. It turns out that this release

contains algorithmic enhancements improving the overall

performance of the system compared to results reported in

[8] where Release 7.1 was applied on the imprints.

Innovatrics (ANSI, ISO and IDKiT): The fingerprint recog-

nition SDKs ANSI, ISO and IDKiT5 were developed by the

Slovakian company Innovatrics and have been selected to

use an additional common off-the-shelf (COTS) recogni-

tion system.

CFIM: This algorithm is based on the Delaunay trian-

gulation using a given minutiae set [5]. The comparison

algorithm performs the comparison between two models

which describe the spatial and directional minutiae rela-

tionships by using a triangle-based representation.

The comparison scores for each dataset were calculated

using the protocol as used in all FP Verification Contests

(FVC), e.g. [10]. This methodology excludes all symmetric

matches, thus no correlation among the received scores is

possible.

4. FP Recognition on CASIA Fingerprint Sub-

ject Ageing Version 1.0

In the following we discuss the results obtained by the

FP recognition systems applied to our dataset considering

three popular performance figures: Equal error rate (EER

%), the lowest false non match rate (FNMR) for a false

match rate (FMR) less or equal to 0.1% (F100) and the zero

false match rate (zFMR). In case performance figures on Ci

and D23 are worse compared to both figures obtained on A

and Bi they are highlighted in yellow. If a Ci value is worse,

3http://www.nist.gov/itl/iad/ig/nbis.cfm
4http://www.neurotechnology.com/verifinger.html
5https://www.innovatrics.com/tools-sdks/

data
NBIS VeriFinger 7.1

EER F100 zFMR EER F100 zFMR

A 7.42 0.13 0.34 2.07 0.04 0.08

B1 8.95 0.15 0.39 2.07 0.04 0.08

B2 8.17 0.13 0.35 1.96 0.04 0.06

B3 9.07 0.18 0.81 4.00 0.08 0.81

B4 5.96 0.10 0.91 2.04 0.04 0.73

B5 7.30 0.14 0.97 3.69 0.07 0.98

C1 12.63 0.26 0.57 5.32 0.10 0.22

C2 14.76 0.29 0.58 5.97 0.12 0.25

C3 14.37 0.29 0.87 6.16 0.12 0.90

C4 13.18 0.25 0.97 5.81 0.11 0.90

C5 13.46 0.25 0.99 6.73 0.13 0.99

Table 2. Recognition performance of NBIS and Verifinger 7.1

comparison according to [8].

time-related template changes (i.e. template ageing) or non

time-related changes might be the reason for it. However,

if we observe performance figure degradation in set D23

time-related template changes can be ruled out as a possi-

ble reason. In case C2,3 datasets’ performance values are

worse than those of D23, this is an indication that eventu-

ally, time-related changes might cause the observed effects.

Table 2 reproduces results of [8] (also using the older Ver-

iFinger version) while Table 3 displays results of the recog-

nition schemes additionally considered in this paper. It is

clearly visible that ANSI, ISO, IDKit, and the more recent

VeriFinger Release 10 perform much better than results re-

ported in [8, 9] and those of CFIM. On the one hand we

can be observe that the absolute recognition performance of

these recognition systems is better on datasets A and Bi. On

the other hand, and more importantly for the scope of this

study, it is interesting to detect that formerly reported per-

formance degradations on time-separated data (i.e. datasets

Ci) are not present in most of the considered cases. For all

Innovatrics’ implementations a performance decrease can

only be observed in terms of zFMR, while EER as well

as F100 are typically in-between figures obtained on A of

Bi. For A or Bi data’s zFMR the number of corresponding

false non matches must be higher compared to the number

of false non matches detected at the EER threshold. This is

obviously identical for Ci datasets. However, the sole de-

tection of a zFMR decrease in Ci can be explained by the

introduction of a few additional cross-time related false non

matches. Thus, the observation of a performance decrease

in terms of zFMR occurs not unexpected and seems reason-

able.

For VeriFinger 10 we still observe an EER increase on C1

and C5. Hence, we can answer research question (a) clearly:

(More) recent commercial COTS SDKs do exhibit previ-

ously seen recognition performance degradations on time-

separated data to a much lesser extent if they do at all.The

performance on dataset D23 is typically seen between the

performance of dataset C2 and C3, respectively, thus, no



additional time-related changes can be assumed for the Ci

data based on these results. Furthermore, when eventual

cross-sensor comparison effects are considered, the recog-

nition results of C2 and C3 (involving only U.are.U 4000

scanners) are expected to be superior compared to C1,4,5

which are based on cross-sensor comparison. Results do

not at all support this assumption. We also observe, that for

some recognition techniques, A, B3 and B5 performance

figures are inferior to those of other datasets. It will be inter-

esting to compare this observation to the quality determined

on these datasets in the next section.

5. Quality Analysis of suspicious Imprints

In [7] and [8], no specific statistical analysis was con-

ducted to verify the obtained observations. The results indi-

cated no quality difference in the datasets separated in time

(the conclusion was drawn by considering average quality

values and box plots only). Further, the methodology ap-

plied to analyse the quality of imprints involved in false

matches seems questionable. In [8], the mean quality of

the two imprints involved in an incorrect match (false posi-

tive or false negative) was determined and compared to the

mean quality of the entire datasets. However, in case of

two imprints with very different quality the mean can be

simply identical to that of two imprints sharing the same

quality, thus, this strategy is simply not sensible. Instead

of considering the quality mean of two imprints causing

false matches we consider the absolute quality difference

between the imprints in the current analysis.

FP Quality Assessment: We focus on two well-known and

standardised assessment methodologies:

The first approach is the NIST FP Image Quality 1.0 (NFIQ

1.0)6. This method was chosen to compare the results of

the current study to those of the previously conducted one

[8]. The method, included in the NBIS software, uses var-

ious FP related information, like minutiae position and lo-

cal orientations to calculate a quality value from 1 (best) to

5 (worst) [16]. According to the fact that NFIQ 2.0 values

range from 0 till 100 (where a value of 0 indicates the lowest

quality) we adjusted the NFIQ 1.0’s values accordingly to

facilitate better comparability. A weighted-sum approach,

as proposed in [16] was considered, by applying the same

weights as suggested in the original work.

The second FP specific approach is the recent NIST FP

Image Quality 2.0 (NFIQ 2.0)7. This algorithm exhibits

increased reliability and accuracy in terms of determining

which FP sample is going to fail in the recognition stage,

with respect to its previous version (NFIQ 1.0). The method

is based on fourteen features with high predictive power se-

lected from 155 quality features reported in literature. The

6http://www.nist.gov/itl/iad/ig/nigos.cfm#Releases
7https://www.nist.gov/services-resources/software/development-nfiq-

20

applied classifier (binary classification) was trained using

a random forest with all the features describing the feature

vector. The final quality score expresses the probability that

a FP sample belongs to the FP class of highest utility multi-

plied by 100 and rounded to its closest integer.

Statistical Methodology: The statistical methodology used

to determine the existence of significant quality differences

is explained subsequently.

Overall quality analysis: The main objective is to deter-

mine if there is a significant difference in terms of quality

values with respect to the factors ”year” {2009, 2013} or

”database” {A,B1, B2, B3, B4, B5}. In order to determine

if there are significant differences between the groups, non-

parametric tests were used, due to the fact that the assump-

tions of normality and homoscedasticity in all the groups

were not met. The Mann-Whitney U-test was used to anal-

yse the ”year” factor and the Kruskal-Wallis with Scheffé

post hoc test is employed for the ”database” factor, respec-

tively.

Analysis of the false matches: The variable of interest (Q-

diff) is the absolute value of the quality difference of the

FP’s qualities involved in each match. The objective is to

determine if there are significant differences in terms of Q-

diff between the detected false matches (FM and FNM) and

all performed matches. In order to achieve a balanced de-

sign as well as the independence between the samples, a

random sampling was made on the set of all matches for

each comparison. The analysis was carried out for differ-

ent decision thresholds and both error distributions (FM

matches vs. randSample (all matches) and FNM matches

vs. randSample (all matches)). The Mann-Whitney-U test

was used in this analysis as well.

Mann-Whitney U-Test [3]: This test is a non-parametric al-

ternative to the t-test for two independent samples. The in-

terpretation of the test is essentially identical to the inter-

pretation of the result of a t-test, except that the U-test is

computed based on rank sums rather than means.

Kruskal-Wallis Test [3]: Is an extension of the U-test for

more than two independent samples being a non paramet-

ric alternative for one-way ANOVA. The test determines

whether the medians of two or more groups are different.

If the result is considered statistically significant it can be

affirmed that at least there are two different groups. Then,

which groups significantly differ from each other has to

be determined using a multiple comparison (post hoc) test

(Scheffé Test), correcting the bias. Multiple comparison

tests correct the estimation bias that occurs if all pairs of

means (central tendency values) are tested independently

with Mann-Whitney or t-student type tests, which causes

the type I error to increase, to ensure that type I error does

not exceed a pre-established level.

Expectations: In case the imprints’ overall quality com-

pared between the data separated in time is statistically dif-



data
VeriFinger 10 ANSI ISO IDKiT CFIM

EER F100 zFMR EER F100 zFMR EER F100 zFMR EER F100 zFMR EER F100 zFMR

A 1.57 0.019 0.09 3.48 0.047 0.26 3.47 0.047 0.25 2.96 0.000 0.23 5.07 0.064 0.15

B1 1.54 0.017 0.03 1.75 0.021 0.08 1.73 0.020 0.07 1.88 0.000 0.04 5.90 0.080 0.15

B2 0.60 0.006 0.01 1.74 0.019 0.03 1.75 0.019 0.07 1.20 0.000 0.03 5.19 0.068 0.16

B3 2.66 0.032 0.76 4.09 0.057 0.07 4.15 0.057 0.83 3.57 0.000 0.83 7.77 0.109 0.84

B4 0.79 0.008 0.85 1.76 0.019 0.75 1.77 0.021 0.74 1.48 0.000 0.75 5.08 0.063 0.96

B5 1.66 0.018 0.95 2.68 0.038 0.71 2.77 0.038 0.72 2.38 0.000 0.69 7.90 0.109 0.94

C1 1.70 0.019 0.10 2.02 0.026 0.36 2.04 0.025 0.34 2.67 0.000 0.28 11.92 0.180 0.34

C2 1.36 0.014 0.01 3.17 0.042 0.33 3.14 0.04 0.27 2.50 0.000 0.29 14.05 0.207 0.71

C3 2.27 0.026 0.74 3.49 0.049 0.80 3.48 0.049 0.79 3.09 0.000 0.80 13.15 0.207 0.94

C4 1.35 0.015 0.89 3.05 0.041 0.84 2.99 0.040 0.83 2.57 0.000 0.83 13.50 0.220 0.73

C5 1.80 0.019 0.96 3.24 0.044 0.77 3.19 0.044 0.78 2.90 0.000 0.74 13.88 0.216 0.98

D23 1.72 0.019 0.67 2.22 0.028 0.73 2.25 0.028 0.72 1.85 0.000 0.73 9.95 0.158 0.92

Table 3. Performance figures for the VeriFinger, Innovatrics-ANSI/ISO/IDKiT and CFIM FP recognition system.

ferent, the (earlier) observed recognition accuracy decrease

can be attributed to this quality difference. However, in case

the quality is higher for more recently acquired fingerprint

data (i.e. ageing has progressed in subjects), time-related ef-

fects can be ruled out for being the reason for the described

recognition degradation (as ageing cannot be expected to

increase quality). Of course, if the quality difference be-

tween imprints involved in false matches over time is larger

than the difference between imprints where the matches do

not involve cross-time matches, we have again a clear indi-

cation of quality being responsible for the effects (earlier)

observed on time-separated data.

variable

Mann-Whitney-U Test (NFIQ 1.0), α = 0.01

Rank Sum
Z p-value

2009 2013

values 3134461 14155679 5.5867 0.000

Table 4. Mann-Whitney-U Test (NFIQ 1.0) results based on year

information.
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Figure 1. Boxplots of NFIQ 1.0 Analysis done according to year

information.

Figure 1 shows the NFIQ 1.0 quality in box plots com-

paring 2009 to 2013. Although looking pretty similar,

please note that the median is clearly lower in 2013, and

overall, the quality is very high. The results of the corre-

sponding statistical analysis are shown in Table 4, clearly

indicating that the imprints of 2009 and 2013 are not from

the same continuous distribution with equal medians. So,

contrasting to results on this dataset published earlier [8],

we are able to identify statistically significant quality dif-

ferences between time-separated data using NFIQ 1.0. Cor-

responding results, obtained when analysing NFIQ 2.0 as-

sessment, are displayed in Table 5 and Figure 2. Statistical

analysis of NFIQ 2.0 values confirms the results of NFIQ

1.0 stating a significant quality difference between data sep-

arated in time.

variable

Mann-Whitney-U Test (NFIQ 2.0), α < 0.01

Rank Sum
Z p-value

2009 2013

values 35400185 137501215 13.5742 0.000

Table 5. Mann-Whitney-U Test (NFIQ 2.0) results based on year

information.
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Figure 2. Boxplots of NFIQ 2.0 Analysis done according to year

information.

However, there is also a clear difference between NFIQ

1.0 and 2.0 quality, respectively. As detectable in Figure 2,

the quality values in both years are much worse for NFIQ

2.0 compared to the NFIQ 1.0 figures, which corresponds

much better to the visual impression when looking at the

imprints. Further, and even more important for this study, is



the fact that in the box plot the quality of 2013 data is clearly

lower compared to 2009 (with also higher amount of vari-

ation). Thus, trends observed when considering NFIQ 1.0

figures are more clearly confirmed on NFIQ 2.0 data.

Following the general year specific analysis the set-up was

refined to a statistical comparison of the different single

databases (using a Kruskal-Wallis test). For both NFIQ 1.0

as well as NFIQ 2.0 these tests resulted in a p− value = 0

at a significance level of α = 0.01 for all performed exper-

iments, resulting in the conclusion that the imprints of the

given distinct databases are of different quality when com-

paring quality figures over time. A graphical representation

of the single databases’ quality values using box-plots is

shown in Figure 3 (NFIQ 1.0) and Figure 4 (NFIQ 2.0).
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Figure 3. Boxplots of NFIQ 1.0 Analysis done according to the

different datasets.

A B1 B2 B3 B4 B5
0

10

20

30

40

50

60

70

80

90

100

Figure 4. Boxplots of NFIQ 2.0 Analysis done according to the

different datasets.

The imprint’s NFIQ 1.0 quality in A and B1 looks iden-

tical and also A and B5 is similar (although the median is

clearly lower in B5). The other 2013 databases contain

more low quality images according to NFIQ 1.0. In Fig-

ure 4 two observations concerning NFIQ 2.0 results can be

made: i) The quality of dataset A is higher as compared

to the 2013 databases (as already indicated by the results

displayed in Figure 2). ii) The imprints’ quality of the sin-

gle 2013 databases is rather similar and does not exhibit

the trend as seen with NFIQ 1.0 (where B2,3,4 exhibited

clearly worse results). The results of these refined observa-

Dependt.:

Quality

Multiple Comparisons p values (2-tailed);

Quality (Quality)

Independent (grouping) variable: Sensor

Kruskal-Wallis test:

H (5, N=5880) = 205.992 4 p = 0.000

A B1 B2 B3 B4 B5

A 0.00 0.00 0.00 0.00 0.00

B1 0.00 1.00 1.00 1.00 0.02

B2 0.00 1.00 1.00 1.00 0.06

B3 0.00 1.00 1.00 1.00 0.002

B4 0.00 1.00 1.00 1.00 0.0006

B5 0.00 0.02 0.06 0.002 0.0006

Table 6. Kruskal-Wallis Test (NFIQ 2.0) and Multiple Compar-

isons (Scheff’e Test) results based on database information.

tions considering NFIQ 2.0 using the Kruskal-Wallis Test

and a subsequently Multiple Comparisons (Scheffé) Test

are shown in in Table 6. In case of rejecting the null hy-

pothesis (quality values are selected from distributions with

the same median), the associated values in the table are

coloured in red. Thus, it is possible to statistically confirm

the results of Figure 4. Each time dataset A is compared to

B1 - B5 we observe statistically significant difference be-

cause of p = 0. For comparisons among datasets B1 - B5,

in most cases it can be assumed that their quality values are

selected from distributions with the same median, except for

B5, which exhibits better quality compared to the others.

Based on these results, we are now able to answer research

questions (b) and (c) posed in the Introduction: (b) Ob-

served differences are more distinct (and even clearly ob-

served in box plots) for NFIQ 2.0. (c) The application of

statistical testing clearly reveals significant differences for

both NFIQ 1.0 and NFIQ 2.0 values when comparing qual-

ity of 2009 and 2013 data, respectively (which clearly con-

trasts earlier results in [8]).

Comparing Figures 3 (NFIQ 1.0) and 4 (NFIQ 2.0) also

shows that quality assessment contrasts to the different Bi

datasets: While B2,3,4 are rated as being of lower quality

and B1 as rather identical to A by NFIQ 1.0, only B5 is

better rated as the other Bi by NFIQ 2.0 and B1 is very dif-

ferent in terms of quality compared to A according to NFIQ

1.0. Note also, that interestingly the quality values do not at

all correspond to the trend in comparison accuracy for some

recognition schemes, where worse accuracy is observed for

A, B3 and B5, where especially A and B5 are particularly

well rated in terms of quality.

After focusing on the overall quality of the entire datasets,

we refine the quality based analysis by looking at the quality

of imprint-pairs leading to false matches in the recognition

experiments (as done earlier in [8]). For each match the ab-

solute difference between the two imprints’ quality values is

calculated. The determination of the particular false accept

and reject matches was done at certain decision thresholds,

which have been experimentally chosen to represent the



system’s performance best. For NBIS, 5, 10, 20, 30, 50 have

been chosen, for VeriFinger 5, 20, 50, 70, 100, for CFIM

20, 30, 50, 75, 100, and for all other recognition systems the

selected thresholds are 50, 150, 250, 350, 450. After com-

puting the quality differences, these values are statistically

tested against randomly selected sets of all quality differ-

ence values using the Mann-Whitney U-Test once again.

The significance level α = 0.01 is set like in the previous

tests.

For ANSI, ISO, IDKit and VeriFinger it was not possible

to observe any false (non) matches at the selected thresh-

olds, which would have been introduced by 2009 vs. 2013

image pairs. Thus, only the false matches from 2009 vs.

2009 and 2013 vs. 2013 imprints can be made responsi-

ble for performance figures deviating from perfect accuracy.

Consequently, time-related reasons for any observed recog-

nition accuracy decrease can be completely ruled out for

these recognition schemes.

The statistical analysis of quality difference of false-match

causing imprint pairs considering NFIQ and CFIM displays

a similar trend even though the performance of these sys-

tems is much worse compared to the commercial SDKs.

As example, we show results of the statistical analysis for

CFIM in tables 7 and 8. These tables’ entries report the

p − values for each experiment instance. The cases where

significant differences are found with a p < 0.01 are high-

lighted in red colour. The analysis was conducted by select-

ing only the cross year matches for the Ci datasets (2009 vs.

2013 imprints) and all matches for the remaining datasets.

dataset
p− values for false matches

20 30 50 75 100

A 0,001 0,006 0.479 0.547 0.431

B1 0,000 0,000 0.171 0.679 0.311

B2 0,000 0,002 0.827 0.464 0.785

B3 0,000 0,000 0,001 0.323 0.618

B4 0,000 0,000 0.048 0.016 0.467

B5 0,000 0,000 0.061 0.338 0.931

C1 0.057 0.903 0.642 0.927 0.981

C2 0,000 0,002 0.222 0.021 0.044

C3 0.338 0.599 0.015 0,000 0,001

C4 0,000 0,000 0.105 0.658 0.562

C5 0,002 0.268 0.199 0.029 0.028

D23 0,000 0,000 0,004 0.046 0.219

Table 7. Mann-Whitney U-test ρ − values for the quality dif-

ferences of CFIM false matches against a random sample of all

matches using NFIQ 2.0.

We note that for both types of false matches time sep-

aration does not play an important role. In contrary, for

false (non) matches between imprint pairs of the same year

we indeed result in differences to all matches more often

as compared to false (non matches) between time-separated

imprint pairs. This indicates, that the observed quality dif-

ferences are not associated to any time-related effects. The

same trend is observed for NBIS false (non) comparison re-

sults as well. Thus, we are now able to answer research

question (d): The consideration of quality differences of

imprint-pairs causing false (non) matches is highly valu-

able in that it reveals that (i) for the better performing

COTS SDKs, no time-separated imprint pairs cause any

comparison errors and (ii) for the SDKs with lower per-

formance, time-separated imprint pairs causing false (non)

matches have no stronger deviation from the distribution

of imprint-pair differences over the entire dataset than non

time-separated imprint pairs have.

dataset
p− values for false non-matches

20 30 50 75 100

A 0,000 0,000 0,000 0,000 0,000

B1 0,000 0,000 0,000 0,000 0,000

B2 0,000 0,000 0,000 0,000 0,000

B3 0,000 0,000 0,000 0,000 0,000

B4 0,000 0,000 0,000 0,000 0,000

B5 0,000 0,000 0,000 0,000 0,000

C1 0.015 0.013 0.184 0.078 0,000

C2 0.793 0.340 0.049 0,000 0,000

C3 0,001 0,000 0,000 0,000 0,000

C4 0,000 0,000 0,000 0,000 0,000

C5 0,006 0.078 0.043 0.083 0,006

D23 0,000 0,000 0,000 0,000 0,000

Table 8. Mann-Whitney U-test p − values for the quality differ-

ences of CFIM false non-matches against a random sample of all

matches using NFIQ 2.0.

6. Conclusion

The detailed analysis of the CASIA Fingerprint Sub-

ject Ageing Version 1.0 dataset reveals interesting results.

Employing more recent FP recognition technologies, ear-

lier observed accuracy reduction when considering com-

parison across time is significantly reduced (to a slight in-

crease of zFMR only, while EER and F100 are no longer

affected). Contrasting to earlier results, the authors find

statistically significant quality differences between imprints

acquired in 2009 and 2013, considering both NFIQ 1.0 and

NFIQ 2.0 quality, respectively. The overall quality is con-

sistently rated as being better in 2009 imprint and still sug-

gests time-related reasons for observed effects in recog-

nition performance decrease. The more detailed analysis

on imprint pairs causing false (non) matches entirely rules

out time-related effects to cause quality differences or re-

duced recognition accuracy on time-separated data, at least

for recent COTS SDKs. But also for less accurate recogni-

tion schemes time-related effects do not seem to contribute

to observed recognition effects on the investigated dataset.

Thus, earlier observed effects are not caused by time-related

changes resulting in template ageing, so: It’s the quality,

stupid !
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