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Abstract—This study investigates the impact of “ghost” finger-
print and minutiae information in 4 year time-span separated
fingerprint datasets. A high amount of ghost fingerprints within
the data, eventually a source for differences in acquisition
conditions, might be responsible for recently reported template
ageing effects. According to that, various experiments have been
performed to get rid of this problematic image content and to
compare the corresponding matching results to the performance
figures using the non altered imprints. The analysis with respect
to detected increased error rates exhibits very similar effects for
all considered methods no matter if ghost fingerprint information
is removed or not. Thus, ghost fingerprints are not responsible
for the observed effects.

I. INTRODUCTION

The ISO/IEC biometric testing standard ISO/IEC 19795-

1 reports that “Longer time intervals generally make it more

difficult to match samples to templates due to the phenomenon

known as template ageing” [1]. The standard then defines

“template-ageing” as an “increase in error rates caused by

time-related changes in the biometric pattern, its presentation,

and the sensor”. Apart from time-related changes various other

reasons can cause performance degradations in fingerprint

(FP) recognition as well. The most prominent ones are the

usage of different sensors and sensor types, alternation in

ambient conditions (e.g. changes in the illumination set-up),

differences in the acquisition protocol like variability in sensor

plates’ cleaning, weather conditions, or various skin diseases

as reported in [2].

Considering the high number of potential reasons for FP

recognition accuracy degradations, we investigate a different

(i.e. not time-related) explanation for the recently postulated

template ageing effects on time separated data [3], [4] in this

work. In [5] it is confirmed that a) FP images can be designed

which include the biometric minutiae information of at least 2

fingers and b) that such imprints cause serious troubles during

the recognition process using state-of-the-art implementations.

In Figure 2, displaying example imprints of the datasets used

in [3], [4], it is easy to find minutiae information in the

background, which clearly do not belong to the acquired finger

in the region of interest (ROI). This additional information,

a so called “ghost” FP, can be found very frequently in the

considered datasets. It is rather obvious that a ghost FP would

not cause any decrease in the quality measure analysis as

performed in [3], [4]. Further, the presence of ghost FP was

discussed as a complicating factor during FP segmentation in

[6]–[8] and most importantly, the detailed observation of our

considered imprints revealed that background information (i.e.

ghost FP) is not always present in each image of the used

data. There are images which contain identical ghost FPs each

time an imprint of the same finger is acquired. But, there are

also FP images available where no such information can be

retrieved. This alteration in the presence of ghost FPs actually

leads to template changes, which could cause changing error

rates and thus could be made responsible for template ageing

effects. However, it is not correct that these changes can

be classified as being time-related. A varying presence of

ghost FPs is caused by acquisition protocol variations, i.e. the

definition when the sensor surface is being cleaned. Of course,

acquisition protocols differing with respect to this property

could be used in two sessions without any time separation in-

between. Thus, if our experiments reveal that ghost FPs cause

the observed effects, template ageing is not the reason but a

time-unrelated template change effect.

The rest of this paper is organised as follows: In Section

2, we review the current state of the art on the relation of

fingerprint recognition and ageing. The experimental setup,

i.e. the used FP recognition SDKs, datasets and a detailed

discussion on the used experimental methodology will be pre-

sented in Section 3. The subsequently performed experiments

and corresponding results are analysed in Section 4, before

concluding this study in Section 5.

II. FINGERPRINT RECOGNITION AND AGEING

The biological reason for FP ageing is the loss of collagen

[9]. This structural protein ensures that the human skins’ fi-

brous tissue is resilient during time. Even though, it is possible

to measure skin ageing. The most prominent methods are the

usage of high-frequency skin ultrasonography, prophilometry

and skin micro-relief descriptors [10]. Furthermore it is even

possible to describe skin topography changes from capacity

images by analysing the 3D profile. This analysis reveals the

introduction of wrinkles and a cell enlargement caused by the

biological ageing process [11]. Uchida et al. [12] quantify skin



ageing by analysing the 3D profile of subjects aged 20-60

using 2D DFT features (assessing skin ridges) resulting in

less high frequency components for elder people - but also

wide scattering. But there are also more recent studies which

focus on the ageing behaviour of latent FP, being of high

importance in crime scene analysis, looking into biological

aspects in more detail. First the FP information of the various

test subjects was deposited at e.g. glass or synthetic material.

The particular biometric traits were acquired after some period

exhibiting different time-spans. In [13] the relationship of

these latent FPs, their corresponding time-spans and biological

degradations during the specified time period was investigated.

Apart from classical examination methods like morphological

and structural approaches, biochemical and DNA based tests

have been used as well to measure FP degradations. The inves-

tigations revealed that for example the blood groups do have

an influence on the degradation. It seems that people exhibiting

blood group B are slightly more resistant to biochemical

ageing influences. Of course those results are more important

for forensic datasets, but small biochemical variations could

also lead to degradations which can influence the recognition

process. The authors of this particular study used 800 FP

images for the performed experiments. Further specifications

on the used analysis tools, e.g. microscope and DNA extraction

process, may be looked up in [13].

Another biological aspect was investigated in [14], using

chromatic white light sensors to study latent long-term FP

ageing. The authors state that an image contrast loss can be

observed over time, considering imprints of 40 volunteers. The

corresponding images have been acquired at three different

locations independently and were compared during the ex-

periments based on four different research goals. The results

revealed a high number of variance among the different time

series of user’s FP images. The authors concluded that the

reason for this observation might be a different biochemical

composition of the imprints.

A. Fingerprint Age Group Analysis

Focusing on the aspect of human ageing it is natural

that studies have been performed, which investigate the

influence of different subject age groups in FP datasets on

recognition performance. In [15] it was shown that older

age groups exhibit a worse performance in terms of FP

quality and recognition performance. This conclusion was

achieved by analysing the relationship between FP’s moisture

content and the volunteer’s age using a one-way analysis of

variance (ANOVA) and the Pearson correlation coefficient.

The corresponding database contains images of 79 people

(age group from 18-25) and imprints of 60 people (age group

62+). In total 948 images of age group 18-25 and 720 of

the second age group are included in this dataset. Of each

volunteer, 3 images of each index finger (left and right hand)

have been acquired. This database was reused in subsequent

research [16], where the authors focused on minutiae point

based analysis. This resulted in the conclusion that elderly

people exhibit a higher number of minutiae points, but the

biometric quality (using NIST Fingerprint Image Quality

algorithm1) displayed a degradation compared to the younger

age group. Finally in [9] this investigation was extended

once more. The dataset was expanded by two additional age

groups (26-39 and 40-64). The authors could confirm the

results stated by [15] that older age groups are displaying a

worse performance in terms of FP quality and recognition.

In [17] a similar study was performed, but the core aspect

of this research was the consideration of a different dataset

exhibiting very young people as well. Not only age groups of

volunteers older than 19 years have been taken into account,

but also the age group from 3 to 18 years. According to

this aspect two different sub-datasets have been acquired:

One containing the adult biometric templates (172 in total)

and one displaying the young volunteers’ images (498 in

total). Further specific information on the volunteers can be

looked up in [17]. Additionally it must be mentioned that the

acquisition was done by the use of a optical scanning device (a

HP 3500c flatbed scanner) with 500 dpi resolution, capturing

the full hand. Data analysis was done by the usage of 5

different (hand-)geometric and texture-based methodologies,

including FP minutiae, eigenfingers, geometric and shape

based approaches. The interested reader is referred to [18]

(eigenfingers) and [19] (geometric methods) for more detailed

information on those techniques.

The final results concerning the recognition performance are

based on three different age groups. These groups have been

selected as subsets of the previously introduced adult and

children datasets: The first group is called young group and

contains all images of children who are between 3 and 10

years old, the second one (youth group) includes the imprints

of all volunteers whose age is between 11 and 18 years,

and finally the adult group (19+ years). In most performed

experiments it can be observed that kids’ FP performance

suffers compared to adults recognition performance [17].

To cope with different age groups and effects which are

introduced by the usage of data exhibiting such variability

some studies have been performed as well. In [20] an isotropic

rescaling method was used on children data to improve the

recognition performance from 11−14% to 5−6% equal error

rate (EER). The experiments were done on imprints, whose

feature extraction and matching procedure was improved

by analysing the FP’s shape and the application of some

rescaling approach.

B. Fingerprint Ageing Analysis (FP Template Ageing)

Ageing effects in human FP recognition been a topic in

research since Galton’s first study on the permanence of FPs

[21]. In all papers discussed subsequently, increased error rates

have been reported for time-separated data. Time intervals

of 10 to 30 years have been studied in [22] using a dataset

provided by the German federal criminal police office (BKA,

i.e. forensic FPs). The authors reported a lower recognition

1https://www.nist.gov/programs-projects/biometric-quality-homepage



accuracy when the time interval is increased. Further, [23]

performed experiments on the so called Korea Fingerprint

Recognition Interoperability Alliance (KFRIA) database ac-

quired with three different commercial sensors (2 optical and

1 capacitive sensor type). This dataset exhibits a time span of 1

year between acquisition sessions, which is quite a short time

gap, but despite this fact the authors have been able to report

an EER increase using three different sensors. The EER of the

second acquisition’s data was about two times higher than the

EER of the corresponding imprint of the first acquisition.

Similar to these results of [22], [23], a degradation of different

FP matching performance figures (e.g. equal error rate (EER))

was observed on data acquired by a flatbed scanner [24], where

in particular a decrease of genuine scores was detected for

a time separation of 5 years (the genuine scores revealed

a decrease of roughly 33% and a 2-4 times lowered EER

performance is found). These observations were confirmed on

a further massive forensic FP dataset including time-spans up

to 7 years in [25] as well. Similar to the detected genuine score

degradation on 2D FP data discussed so far, it was possible to

observe a decrease in matching and recognition performance

using some 3D finger range data which were acquired by

covering only a time span of 16 weeks between sessions

[26]. In [27], the presence of similar effects are confirmed on

time-separated FP data acquired by off-the-shelf commercial

FP scanners by analysing user-group specific effects which

are known as the “Doddington Zoo” concept [28]. Further

investigations on the same data [3], [4] revealed very similar

effects with respect to decreased recognition performance on

time separated data as reported by [24], [25].

However, most studies done on time-separated FP data have

not performed experiments to reveal the reasons for decreased

recognition accuracy in detail. In fact, it does not suffice to

describe increased error rates on time separated data to have

observed a template ageing effect. To be compliant with the

definition, time-related changes have to introduce the observed

effects, while the sole employment of time-separated data

does not automatically imply template ageing being present in

case of higher errors (as these might be caused by non-time-

related changes). Only few of the studies on time-separated

FP data [3], [4], [25] try to explain why the observed effects

occur. The very extensive covariate-fit analysis model in [25]

revealed that differences in image quality explain the observed

increased errors better as time-related changes. In [3], [4] the

analysis did not indicate that FP biometric quality decrease

can be made responsible for the claimed template ageing

effects. However, these studies unfortunately did not employ

the identical experimental and statistical set-up and thus do

not even fully clarify the contribution of FP quality to the

observed effects, as the results contradict each other.

A potential generic approach to cope with FP template ageing

effects is the usage of template update techniques, which have

been investigated for example by [29]. The authors of this

particular study used an adaptive feature set introduced by an

algorithm allowing to reduce intra-personal variabilities over

time. Similar to this approach there is more recent work fo-

cusing on self-updating algorithms [30]. The mentioned update

methods provide a path-based clustering setup to enhance the

initial template selection before starting the update process on

the one hand. On the other hand an improved adaption of the

recognition system’s threshold is ensured as well in case high

environmental variability is measured.

III. EXPERIMENTAL SETUP

The experiments have been conducted using two minutiae

based FP recognition SDKs: the NIST Biometric Image

Software (NBIS) and the Neurotechnology VeriFinger SDK

(NEURO). The first one (release 5.0.0) has been implemented

by the National Institute of Standards and Technology

(NIST)2. The second recognition approach (release 9.0) was

developed by the Lithuanian company Neurotechnology3.

According to the study purpose we are using datasets

already analysed earlier [3], [4], [31]. The data has been

acquired at the Center for Biometrics and Security Research

(CBSR) at the Chinese Academy of Sciences, Institute

of Automation (CASIA) in 2009 and 2013. The imprints

from 2009 are a subset of the publicly available CASIA

fingerprint database V54. Using an U.are.U 4000 scanner

(produced by DigitalPersona), images of both forefingers and

second fingers of 49 volunteers are stored in dataset “CASIA

2009”, which will be denote by A. In total 980 fingerprint

images are available, 5 imprints of each finger. The same

acquisition process was repeated four years later to create

the “CASIA 2013” database, which includes 5 independent

subsets in total. Each subset contains again 980 images of

the same volunteers. The main difference among the subsets

is the usage of various sensors, among them optical and

capacitive fingerprint sensors. They are denoted as B1-B5.

Apart from the “single” datasets containing only imprints of

2009 or 2013 independently, it was necessary to combine

the imprints of both years to get so called “crossed”, i.e.

time-separated, datasets C1-C5. In each of these crossed

sets the imprints from 2009 and one of the 2013 “single”

datasets are combined (e.g. C1 contains the imprints of A

and B1). Further information on the concrete specifications

can be found in [3], [4], [31]. For all recognition experiments

and datasets the same performance figures as in [3] have

been derived to evaluate the recognition results. For the

evaluation process of the recognition accuracy, the Fingerprint

Verification Contests’ (FVC) procedure was performed, see

[32].

In the following, we describe the different techniques applied

to separate (minutiae) data resulting from the currently

acquired FP and the already present ghost FP.

Masking the Background (MBw): This first method

is used to separate the background and region of interest

(ROI) of the FP images from each other by applying FP

2http://www.nist.gov/itl/iad/ig/nbis.cfm
3http://www.neurotechnology.com/verifinger.html
4http://biometrics.idealtest.org/dbDetailForUser.do?id=7



segmentation. After sharpening the edge information we

used a Sobel operator to retrieve the edges of the ROI. We

also tested other edge detection algorithms (e.g. Canny Edge

detector, Prewitt operator and Harris corner points as used

in [7]), but for the given data, the Sobel approach worked

best. Subsequently performing image dilation and erosion

calculations we obtained the final masks. In Figures 1a) and

b) an imprint mask and the combination of mask and image

is displayed.

Smooth Masking of the Background (SMB): This

approach was designed to enhance the background masking

method (MBw). According to the fact that the edges of

the masks could introduce new positions where minutiae

information may be detected falsely, a Gaussian smoothing

operation using σ = 2 as parameter was applied. In Figures

1c) and d) the example image of user 7 can be seen.

Splitting the ROI and Background minutiae (ROIm):

This method was designed to perform a reference analysis

for the background masking method in order to mitigate for

newly created minutiae caused by the masking operation. For

that reason we created the minutiae files, then we used the

background masks to separate the minutiae which have been

detected in the background and in the ROI. The selected

minutiae were stored in two single files and we repeated the

matching process using NBIS on the background and the

ROI minutiae independently. Results are provided for the

ROI minutiae only, as background minutiae do not lead to

sensible recognition results.

Removing “stable” ROI and Background minutiae

(wS and ROIwS): The previously introduced approaches

are focusing on removing artifacts caused by ghost FPs by

focusing on the ROI only - spatial background information

is removed. However, ghost FP might also affect the ROI of

course. To discriminate minutiae resulting from ghost FP from

minutiae of the current imprint, we introduce the concept of

“stable minutiae”. While for taking different imprints of the

same finger the finger is lifted off the sensor and re-allocated

each time the data is acquired (causing the FP minutiae to

manifest at different spatial locations), this is not the case for

minutiae caused by ghost FPs, as these are detectable at the

same x- and y- axis position (as long as the sensor is not

cleaned minutiae information of some previous acquisition

of the same finger remained on the sensor plate). According

to a visual analysis it could be confirmed that there is FP

information of the same finger from a previous acquisition

present in most of the cases (see Figure 2 as example). In the

presented images minutiae in the ROI are coloured red and

blue if they belong to the background. If a minutia is marked

as stable it is coloured green (ROI) or magenta (background).

FP recognition, using NBIS minutiae files without stable

features (these are explicitly removed), was performed in two

different ways. For the first case, we removed the stable

minutiae information in the entire minutiae files. This led to

results using all the minutiae detectable in the whole images,

except the removed stable ones. We abbreviated this method

with “wS” as acronym for “withoutStable”. In the second

approach we only focused on the ROI area for recognition

and removed the stable minutiae there. The corresponding

abbreviation is “ROIwS”.

In Table I the number of images where stable minutiae

information can be detected is presented in column all images

(together with the relative amount of images in percent). In

columns all minutiae, ROIm and ROIwS the average number of

detected minutiae is displayed as well as the standard deviation

concerning the minutiae appearance in the selected methods.

In column ROIm the results considering only minutiae within

the ROI exhibit a clear difference compared to using the whole

imprints. According to the fact that ghost FPs are present in

nearly all images of the datasets it is understandable why the

mean values in ROIm are lower as in the all minutiae case.

In terms of the standard deviation only minor fluctuations can

be observed. The same minor variations can be detected in

ROIwS. It seems that stable features are rarely in the imprints’

ROI, which could be a disproof of the assumption that stable

minutiae are responsible for effects exhibiting higher errors.

Nevertheless, we considered this set-up in the recognition

process as well because we wanted to prove/disprove the

statement entirely.

IV. EXPERIMENTAL EVALUATION

The most important results (the EER values for the different

experimental set-ups) are presented in Table II. In the first

two columns the reference results, which have been calculated

by analogy to [3], are displayed. The differences in NEURO

results as compared to the original ones of [3] are caused by

the usage of different SDK releases. The following columns

represent the various experimental outcomes we obtained in

this study. The best results are highlighted in bold numbers.

The most obvious observation using NBIS is that the method

MBw leads to a clearly worse EER performance compared to

the reference values. This fact is not only valid for the single

datasets, but also for the crossed ones in all cases. Further,

the removal of ghost FPs does enhance the performance if

it is done in a smooth way using some Gaussian filtering

(SMB) because comparable measures can be reported for that

case independently from NBIS and NEURO. Additionally,

it is observable that the removal of stable features as it is

done in wS and ROIwS experiments hardly influences the

performance. According to that it can be concluded that the

experiments we performed in removing ghost FPs did not have

any impact on the higher error rates for time separated data in

case of the EER. This performance figure is much higher for

the time-separated datasets once more. But, the de-masking of

ghost FPs does have an impact on the EER if it is done in a

very rough way because new minutiae are introduced falsely

(see MBw vs. SMB results). We also performed FP recognition

using only the background information for all the described

methods, but it was not possible to get EER values below

(49%). Apart from that, it is interesting to observe that the



(a) Imprint mask.
(b) Mask and image com-
bined.

(c) Imprint smooth mask.
(d) Smooth mask and image
combined.

Fig. 1: Background masked fingerprint images of user 7, dataset B4.

Fig. 2: Images with “stable” minutiae (first two images from the left) and ghost fingerprints.

Tab. I: Number of images with “stable” minutiae and minutiae counts of all detectable minutiae.

dataset all images
all minutiae ROIm ROIwS

µ σ µ σ µ σ

A 504 (51.43%) 59.98 15.56 46.61 13.21 46.31 13.15
B1 180 (18.36%) 56.05 19.62 52.86 18.43 52.02 18.48
B2 364 (37.14%) 59.42 18.90 47.14 16.14 46.72 16.06
B3 500 (51.02%) 69.17 19.28 52.43 17.16 52.02 17.11
B4 416 (42.44%) 69.56 21.89 56.31 20.27 55.82 20.19
B5 246 (25.10%) 64.57 25.17 59.78 25.18 59.04 25.16

usage of NEURO on dataset C1 indicates extraordinary cross-

sensor effects, which have not been reported in [3]. This must

be caused by the different release we used. In the following

we are going to discuss the other performance figures: Average

Genuine Scores (AGS), Average Impostor Scores (AIS), the

lowest FRR for FAR less or equal to 0.1% (FAR100), and Zero

False Acceptance Rate (ZeroFAR). The results can be looked

up in Figure 3. At first we want to discuss the most important

observation concerning a possible template ageing effect based

on the AGS values: The decrease in the genuine scores is

detectable for all performed NBIS and NEURO experiments

independently. This is observable in Figures 3a) and b). There

are fluctuations depending on the used dataset and analysis

method, but the overall trend is similar. It is confirmed that

NEURO exhibits some cross-sensor effects in dataset C1
because comparing images of the same finger involving the

time-span leads to much lower genuine scores as can be seen

by matching images of the same year. According to that the

AGS for C1 is much lower compared to all the other datasets.

For the average impostor scores (AIS) (see Figures 3c) and

d)) a very similar stable behaviour as detected in [3] can be

described for the NBIS system. In case of NEURO there are

some dataset dependent fluctuations which are based on the

used datasets. In general it is interesting to observe that the

crossed datasets’ AIS is lower as in the single datasets from

2013. The experiments’ FAR100 can be looked up in Figures

3e) and f). For both recognition methods it can be reported

that the FAR100 is higher in all crossed datasets. Using NBIS

the MB’s performance figure is always worse compared to

the others and some minor fluctuations can be detected for

the other analysis methods. The high amount of variation is

not describable in the NEURO case. Finally, we are having

a look at the ZeroFAR values which are displayed in Figures

3g) and h). In general, the ZeroFAR for the crossed cases is

always higher as for the single datasets. Nevertheless it must

be mentioned that especially the results of B3-B5 and C3-

C5 are much higher compared to the remaining values of the

other datasets.

V. CONCLUSION

Based on the fact that in the given data a high number

of ghost FPs (and thus stable minutiae) can be reported, it

was a likely assumption that these might be responsible for

the EER increase and average genuine score decrease in FP

images exhibiting a time-span of 4 years. According to the

knowledge that ghost FPs cause problems in FP segmentation

(see [6]–[8]) and that double biometric identities influence

the recognition process (see [5]) the erroneous ghost FP

information was removed using various methods. However,

the same tendencies with respect to higher error rates, in

particular increased EER and FRR caused by decreased



Tab. II: EER results of all datasets using NBIS and NEURO.

dataset
entire images MBw SMB ROIm wS ROIwS

NBIS NEURO NBIS NEURO NBIS NEURO NBIS NBIS NBIS

single - all matching scores

A 7.42 1.58 9.94 2.42 7.47 1.59 7.63 7.45 7.67
B1 8.95 2.77 10.98 2.84 9.71 2.58 8.98 8.93 9.09
B2 8.17 0.74 9.07 0.91 7.78 0.66 7.64 8.17 8.50
B3 9.07 3.06 11.68 3.34 8.99 3.03 9.40 9.24 9.35
B4 5.96 0.99 6.82 1.01 6.34 1.04 5.70 6.18 5.81
B5 7.30 1.29 9.65 1.61 7.82 1.42 7.59 8.23 7.53

crossed - all matching scores

C1 12.63 21.09 15.56 21.61 14.09 21.21 13.15 14.01 13.15
C2 14.76 4.55 17.79 5.02 14.99 4.42 14.43 14.85 14.46
C3 14.37 4.61 17.24 4.63 14.42 4.43 13.77 14.43 13.74
C4 13.18 3.83 15.66 4.10 13.35 3.93 12.94 13.26 12.97
C5 13.46 4.61 16.66 4.78 13.48 4.53 12.86 13.51 12.86

(a) NBIS - y-axis: AGS (b) NEURO - y-axis: AGS

(c) NBIS - y-axis: AIS (d) NEURO - y-axis: AIS

(e) NBIS - y-axis: FAR100 (f) NEURO - y-axis: FAR100

(g) NBIS - y-axis: ZeroFAR (h) NEURO - y-axis: ZeroFAR

Fig. 3: NBIS and NEURO performance figures of the experiments (x-axis: datasets).



genuine matching scores can be detected also with removed

ghost FPs in our time-separated data. This leads to the

disprove of the assumption that the observed effects are

caused by ghost FP and corresponding stable minutiae

information. This leads to the final statement that something

different must cause the observed effects. So far it is not even

clear, if decreased recognition accuracy as observed on the

time separated data considered is caused by time-related or

not time-related changes (i.e. differentiating between template

ageing or a simple template change effect).

REFERENCES

[1] A. Mansfield, “Iso/iec 19795-1 biometric performance testing and re-
porting: Principles and framework, fdis ed., jtc1/sc37/working group 5,
aug. 2005,” 2005.

[2] M. Drahansky, M. Dolezel, J. Urbanek, E. Brezinova, and T.-H. Kim,
“Influence of skin diseases on fingerprint recognition,” Journal of

Biomedicine and Biotechnology, vol. 2012, p. Article ID 626148, 2012.

[3] S. Kirchgasser and A. Uhl, “Template ageing and quality analysis
in time-span separated fingerprint data,” in Proceedings of the IEEE

International Conference on Identity, Security and Behavior Analysis

(ISBA ’17), New Delhi, Indien, 2017, pp. 1–8.

[4] ——, “Template ageing in non-minutiae fingerprint recognition,” in
Proceedings of the 5th International Workshop on Biometrics and

Forensics (IWBF’17), Coventry, United Kindom, 2017, pp. 1–6.

[5] M. Ferrara, R. Cappelli, and D. Maltoni, “On the feasibility of creating
double-identity fingerprints,” IEEE Transactions on Information Foren-

sics and Security, vol. 12, no. 4, pp. 892–900, 2017.

[6] D. H. Thai, S. Huckemann, and C. Gottschlich, “Filter design and
performance evaluation for fingerprint image segmentation,” PloS one,
vol. 11, no. 5, p. e0154160, 2016.

[7] C. Wu, S. Tulyakov, and V. Govindaraju, “Robust point-based feature
fingerprint segmentation algorithm,” Advances in Biometrics, pp. 1095–
1103, 2007.

[8] E. Zhu, J. Yin, C. Hu, and G. Zhang, “A systematic method for
fingerprint ridge orientation estimation and image segmentation,” Pattern

Recognition, vol. 39, no. 8, pp. 1452–1472, 2006.

[9] S. Modi, S. Elliott, J. Whetsone, and H. Kim, “Impact of age groups on
fingerprint recognition performance,” in IEEE Workshop on Automatic

Identification Advanced Technologies, 2007, pp. 19–23.

[10] A. Bevilacqua and A. Gherardi, “Age-related skin analysis by capaci-
tance images,” in Pattern Recognition, 2004. ICPR 2004. Proceedings

of the 17th International Conference on, vol. 2, aug. 2004, pp. 703 –
706 Vol.2.

[11] M. Gniadecka and G. Jemec, “Quantitative evaluation of chronological
ageing and photoageing in vivo: studies on skin echogenicity and
thickness,” British J. of Dermatology, vol. 139, pp. 815–821, 1998.

[12] T. Uchida, T. Komeda, M. Miyagi, H. Koyama, and H. Funakubo,
“Quantification of skin aging by three-dimensional measurement of
skin surface contour,” in Systems, Man, and Cybernetics, 1996., IEEE

International Conference on, vol. 1. IEEE, 1996, pp. 450–455.

[13] G. Popa, R. Potorac, and N. Preda, “Method for fingerprints age
determination,” Romanian Journal of Legal Medicine, vol. 18, no. 2,
pp. 149–154, 2010.

[14] R. Merkel, K. Otte, R. Clausing, J. Dittmann, C. Vielhauer, and
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