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Abstract—This study uses non-minutiae fingerprint recognition
methods to confirm earlier results on the existence of fingerprint
template ageing. We performed the experiments on datasets in-
cluding a time-span of 4 years. The acquisition was performed by
using three different commercial off-the-shelf optical fingerprint
sensors. Furthermore, we compared the results of those non-
minutiae experiments to investigations performed by a traditional
minutiae based approach. The analysis exhibits that there are
very similar effects in terms of fingerprint template ageing
detectable for all considered recognition methods.

I. INTRODUCTION

Over the past decade different fingerprint (FP) recognition

methods have been developed. The most typical method

employs a feature-based imprint matching. The corresponding

features are minutiae points, which are extracted from the

FP images and used during the matching step of common

recognition systems. In most of the cases those minutiae

based methods are outperforming non-minutiae applications.

However, according to a few studies there are situations where

non-minutiae methods lead to better results compared to the

typical minutiae based approaches. It seems that especially

on data exhibiting a difficult quality setting (e.g. high

amount of distortion due to different acquisition conditions)

non-minutiae FP recognition systems sometimes display a

better performance in terms of Equal Error Rate (EER) and

other measures. This seems plausible as a certain minimal

quality is definitely required to detect (and classify) minutiae,

while more coarse grained features might still be present

even in rather poor quality data.

The aspect of processing imprints characterised by low quality

was part of an investigation concerning the development

of a phase-based FP recognition system [1]. The authors

of this particular study wanted to design a non-minutiae

recognition system, which outperforms results of a minutiae-

based approach for low quality FP images. Furthermore, in

[2] the StirMark-Toolkit was used to perform experiments

on the robustness of FP matching. Two non-minutiae

fingerprint recognition methods (Fingercode (FC) and

Phase-Only-Correlation (POC)) were applied on Fingerprint-

Verification-Contest 2004 (FVC2004) datasets, distorted by

the StirMark-Toolkit, and better results could be observed

compared to the NIST Biometric Image Software (NBIS) for

certain distortion conditions, especially for very poor quality.

The same non-minutiae recognition systems have been used

to run experiments on partly encrypted FVC2004 datasets

as well [3]. Both FC and POC exhibit a better performance

on those datasets than obtained by the NBIS system. These

results call for the application of non-minutiae methods on

other difficult datasets, e.g., including a time separation.

This study is not the first one which is using FC and POC on

time separated FP data. There is one single previous study so

far [4], conducted on data (covering a time-span of 4 years)

acquired by off-the-shelf commercial FP scanners employing

FC and POC FP recognition. The so-called “Doddington Zoo”

concept was used for analysis and observed results confirm

the presence of FP template ageing in terms of certain user

dependent characteristics. Similar Doddington Zoo-related

analysis on time separated data have been conducted in

[5], which describes the effects of FP template ageing on a

hand-print data base (acquired by a flatbed scanner) covering

a time-span of 5 years. The statement “Short-term goats

extend to long-term goats” derived from the hand-print data

[5] could not be confirmed based on the data in [4]. However,

severe FP template ageing effects have been observed on the

hand-print data, i.e. a 2-4 times lowered EER performance

was stated caused by a 33% decreased amount of genuine

comparison scores.

In general, the aspect of FP ageing has been a topic in

research since Galton’s study on the permanence of human

fingerprints (FPs) [6]. Currently there are various methods

to measure human skin and corresponding ageing influences.

The most important are high-frequency skin ultrasonography,

prophilometry, and skin micro-relief descriptors [7]. In par-

ticular, FP ageing results in loss of collagen [8], a structural

protein responsible for assuring that the human fibrous tissue

of the skin remains resilient. Furthermore, various skin dis-

eases influence the FP recognition as well [9].

The aspect of FP template ageing in particular has been

considered in a surprisingly low number of studies (apart from

[4], [5]) so far. In [10] a recognition accuracy degradation

has been found for forensic FP data from the German federal

criminal police office (BKA), investigating time intervals of 10

to 30 years. The usage of an 3D finger range dataset, covering



a far smaller time-span of 16 weeks, revealed a matching and

recognition performance degradation [11] as well.

Another, more recent study [12] detects a decrease of genuine

scores for different time-spans (up to 7 years) in forensic FP

data. The application of a covariate-fit analysis model revealed

that the impact of FP image quality seems to be the more

model compliant explanation for the observed FP template

ageing than subjects’ age and the time-span.

Based on these recent results and the knowledge that non-

minutiae fingerprint systems might perform differently com-

pared to typical minutiae methods, we conduct the following

investigations. First, we aimed at verifying the presence of FP

template ageing using the same datasets as in [4] by analysing

EER and Receiver Operating Characteristics (ROC). Second,

we want to compare the results gained from the non-minutiae

experiments to the information which can be obtained from

similar studies using a minutiae-based recognition approach.

The rest of this paper is organised as follows: In Section II, the

datasets and FP recognition systems employed in the exper-

iments are introduced. Section III describes the experimental

setup and the corresponding results and the final Section IV

concludes this paper with a discussion on the eventual detected

FP template ageing effects.

II. DATASETS AND RECOGNITION SYSTEMS

The used datasets are provided by the Center for Biometrics

and Security Research (CBSR) at the Chinese Academy of

Sciences, Institute of Automation (CASIA). The experiments

are applied on two different types of datasets. The first one,

called ”CASIA 2009”, is a subset of the publicly available

CASIA-FPV51 database. It contains 980 FP images of 49

volunteers (both forefinger and second finger) and 5 images

of each finger. The acquisition was done by the use of

an U.are.U 4000 scanner, produced by DigitalPersona. This

optical scanner produces images with a resolution of 512 dots

per inch (dpi). The second dataset is called ”CASIA 2013”.

It includes 5 different subsets of FP images acquired in 2013.

Each subset contains the same amount of FP images of the

same volunteers as described before. The difference between

those single subsets is the choice of the FP sensors. In total

3 different sensor types are used. Two datasets have been

acquired by an U.are.U 4000 sensor, two by an U.are.U 4500

sensor and one by a TCRU1C sensor. The U.are.U 4500 is

closely related to the U.are.U 4000. Due to this fact, the

specifications with respect to resolution, image dimensions

and bit depth are identical. The third sensor, the TCRU1C,

is a capacitive FP sensor. The images are acquired with a

resolution of 508 dots per inch (dpi).

In this study three different FP recognition systems have been

applied to the data. Two of them are non-minutiae based. The

first one is the Fingercode (FC) approach and the second

one the Phase-Only-Correlation (POC). Both non-minutiae

recognition implementations are based on a custom in-house

software including the before referenced algorithms [13]. The

1http://biometrics.idealtest.org/dbDetailForUser.do?id=7

minutiae-based recognition software employed is the NIST

Biometric Image Software (NBIS)2.

Fingercode (FC): The first non-minutiae FP recognition sys-

tem is based on a ridge feature approach. In total a set of

8 Gabor filters (including orientations from 0◦ to 180◦) is

applied to the imprints. As a result 8 so called ”Standard

Deviation Maps” are received. Those maps are combined to

one single map, the so called Ridge Feature Map (RFM). Dur-

ing the matching step of the recognition software the RFM’s

local orientation and frequency information of the imprints

are compared to each other. This is done by calculating the

correlation value of these features in the Fourier space. Using

the ITF (Inverse-Fourier-Transformation) the correlation result

is mapped back from the Fourier space and weighted based on

the overlap between the imprints afterwards. Those weighted

ridge feature values of the FP images are compared to each

other using the Euclidean distance, resulting in an matching

score value. During the correlation values’ calculation the

imprints are rotated against each other to find the best fitting

position. Thus, there is not one single matching score for each

pair of FP images, but a list of scores. The final score value

is chosen form this list by selecting the lowest value (cf. [14],

[15]). The used implementation is representing a best fitting

pair of FP images by a value of 125 and a bad fit by a score

of 0.

Phase-Only-Correlation (POC): Compared to the other non-

minutiae FP recognition system the POC implementation uses

a holistic correlation based method. After a set of rotation

and displacement alignment operations are applied to the

input images, overlapping regions of both FP are selected.

To validate the amount of similarity within those regions a

modified Phase-Only-Correlation function [16], the so called

BLPOC (Band-Limited Phase-Only Correlation) [17] is cal-

culated. Similar to the FC the application of the BLPOC

function results in a list of matching score values due to

rotation compensation during the calculation process. The final

score value between two imprints is set to the maximum value

determined from this list. It will be 1 in case a perfect match

is found and 0 if the imprints do not share any information.

NIST Biometric Image Software (NBIS): This tool was

implemented by the National Institute of Standards and Tech-

nology (NIST). In the present study, release 5.0.0 was applied

to the data.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

In the following experiments the datasets’ names, intro-

duced in Section II, will be abbreviated. Thus, dataset A

describes the first data base, ”CASIA 2009”. Furthermore,

all datasets from ”CASIA 2013” will be named with B as

first letter and an index. This results in B1 as abbreviation

for the TCRU1C sensor dataset. B2 and B3 are the names ot

the U.are.U 4000 sensor datasets, respectively. Finally, B4 and

B5 denote the datasets acquired with the U.are.U 4500 sensor.

2http://www.nist.gov/itl/iad/ig/nbis.cfm



According to the fact that the experiments are designed for

template ageing investigations, it is necessary that there are

also datasets combining the imprints from 2009 and 2013.

This leads to 5 datasets including 1960 images. Those in total

will be called ”crossed” and the before discussed datasets A,

B1-B5 are the ”single” ones. The ”crossed” data bases are

abbreviated by the letter C and an index as well: C1 includes

the imprints of A and the TCRU1C sensor, B1. C2 and C3

describe the images of A and the U.are.U 4000 sensor FP

images, B2 and B3. Finally, C4 and C5 result from combining

A and the remaining U.are.U 4500 sensor imprints, B4 and

B5.

The determination of FC, POC and NBIS recognition per-

formance in terms of their matching accuracy is done by

calculating a set of 5 commonly used performance figures.

Those figures are the EER as mentioned in Section I mentioned

EER, measured in percent, the Average Genuine Score (AGS)

and Average Impostor Score (AIS) together with the lowest

False Rejection Rate (FRR) for False Acceptance Rate (FAR)

less or equal to 0.1% (FAR100), and finally the Zero False

Acceptance Rate (ZeroFAR). Each of those values has been

calculated for all introduced datasets A, B1-B5 and C1-C5.

The corresponding matching scores are obtained by applying

the protocol used in all four FP Verification Contests (FVC)

(e.g. [18]). As a consequence of the size of the datasets

discussed in the preceeding section, there is a different amount

of fingerprint images in the ”single” and ”crossed” datasets.

Performing the matching score calculation, following the FVC

protocol, it is obvious that a different number genuine and

impostor scores will be obtained. In total, 1960 genuine and

95550 impostor matches were computed for the ”single”

datasets. The “crossed” datasets’ number of genuine and

impostor matches is 4.5 times and 4 times as high as that

of datasets A and B1-B5, respectively. This imbalance might

question a direct comparison of the performance figures be-

tween “single” and “crossed” datasets. In order to equalise the

number of matching scores, a randomised selection strategy

of the “crossed” scores was applied. This random selection

of 1960 genuine and 95550 impostor matches was repeated
(

10

5

)

times and the obtained accuracy values were averaged

afterwards.

B. Results: FC and POC Experiments

In the following result Tables I - V and VIII the best EER

values are highlighted in bold. At first we will discuss the

results displayed in Tables I - IV. The second part of the

analysis focuses on the comparison between those values and

the minutiae-based performance figures.

Table I and II show the results for experiments including

all possible genuine and impostor matches. The randomised

selection of the matching scores was considered in a set of

additional experiments (see Tables III and IV).

In general it seems that the overall performance of FC and

POC is not very good because the EER values are much

higher than expected. The only exception can be observed in

Table II considering the results for B1 - B5. Those values

Tab. I: Performance values of FC matching for all datasets using all
matches.

dataset EER (%) AGS AIS FAR100 ZeroFAR

single

A 23.86 110.24 102.03 0.53 0.84
B1 17.13 113.18 104.62 0.37 0.66
B2 12.20 113.10 104.67 0.33 0.66
B3 17.32 111.06 103.50 0.41 0.74
B4 11.72 112.56 102.80 0.26 0.71
B5 16.73 111.11 102.21 0.38 0.97

crossed

C1 20.15 112.81 102.13 0.43 0.69
C2 27.23 108.72 102.67 0.65 0.92
C3 25.70 108.52 102.44 0.65 0.94
C4 25.66 108.62 102.19 0.63 0.92
C5 27.21 108.12 102.00 0.65 0.99

Tab. II: Performance values of POC matching for all datasets using
all matches.

dataset EER (%) AGS AIS FAR100 ZeroFAR

single

A 25.39 0.24 0.11 0.44 0.77
B1 11.67 0.30 0.11 0.20 0.70
B2 8.00 0.31 0.11 0.15 0.57
B3 10.90 0.30 0.11 0.19 0.53
B4 6.87 0.35 0.11 0.11 0.64
B5 10.04 0.31 0.11 0.20 0.73

crossed

C1 37.75 0.18 0.11 0.69 0.89
C2 27.58 0.21 0.11 0.52 0.85
C3 26.12 0.21 0.11 0.50 0.85
C4 24.62 0.23 0.11 0.47 0.88
C5 25.63 0.21 0.11 0.49 0.90

are comparable to previous results using these methods (e.g.

[13]). Apart from this first impression an interesting trend can

be observed. There is a clear increase of EER, FAR100 and

ZeroFAR when comparing results from single and crossed

datasets. Furthermore, when considering the AGS and AIS

values the increase of the other 3 measures for the crossed

sets is logical. In case of the genuine scores a clear reduction

of the values for datasets C1 - C5 is present, while the impostor

scores are remarkably stable. Those observations can be made

in both, FC and POC results, independently.

Tab. III: Randomised score selection performance values of FC
matching for the crossed datasets.

dataset EER (%) AGS AIS FAR100 ZeroFAR

crossed - randomly selected scores

C1 20.23 112.81 102.13 0.43 0.67
C2 27.24 108.71 102.67 0.65 0.91
C3 25.73 108.51 102.44 0.65 0.94
C4 25.69 108.62 102.19 0.62 0.91
C5 27.20 108.12 102.00 0.65 0.94

In the following we discuss results obtained by the ran-

domised matching score selection as discussed in Section

III-A. The corresponding results for FC and POC experiments

are listed in Tables III and IV. Considering the performance

figures hardly any difference between the “crossed” datasets’

experiments conducted with the full set of matches and

those with randomised score selection can be observed. Of



course there some small fluctuations which are caused by

the underlying “single” datasets. There is only one larger

variation affecting the results of C1 applying POC. The

experiments using all matches display an EER of about 38%

while the randomly score values experiment results in an EER

at 25.56%. The relatively large difference is an interesting and

unexpected observation that might be attributed to a fortunate

random selection of score subsets. However, overall it seems

to be reliable to consider the results using all matches in a

comparison between single and crossed datasets despite the

difference in terms of absolute number of matches involved.

Tab. IV: Randomised score selection performance values of POC
matching for the crossed datasets.

dataset EER (%) AGS AIS FAR100 ZeroFAR

crossed - randomly selected scores

C1 25.56 0.21 0.11 0.51 0.83
C2 27.66 0.21 0.11 0.53 0.83
C3 26.13 0.21 0.11 0.50 0.82
C4 24.57 0.23 0.11 0.47 0.83
C5 25.63 0.21 0.11 0.49 0.86

Summarising these first results we conclude that according

to the decrease of the AGS and the stability of AIS values

for time separated (i.e. crossed) data in combination with the

increase of the EER and other measures that we are indeed

confronted with FP template ageing.

In the following Figures 1 and 2 this trend can be confirmed

visually as well by visualising actual genuine and impostor

score distributions, respectively. The datasets for the examples

have been chosen randomly because effects do not differ

among the different datasets. For both examples (FC and

POC), the amount of genuine scores (colored red) with low

matching values in the rightmost chart (c) (corresponding to

C4 or C3) is much higher as compared to the cases of the

“single” datasets as shown in charts (a) and (b). On the other

hand, no actual difference in the impostor score distribution

(colored yellow) among single and crossed datasets is visible.

This clear shift of the genuine score distribution to the left

confirms earlier findings in FP ageing-related investigations

(e.g. [5], [12]). Thus, a confirmation of FP template ageing

effects, based on non-minutiae recognition schemes and their

templates, can be clearly stated.

(a) Set A (b) Set B4 (c) Set C4

Fig. 1: Genuine (colored red) and Impostor (colored yellow) score
distribution of the FC A, B4 and C4 data set.

(a) Set A (b) Set B3 (c) Set C3

Fig. 2: Genuine (colored red) and Impostor (colored yellow) score
distribution of the POC A, B2 and C2 data set.

C. NBIS Experiments

After performing the FC and POC experiments, the same

experimental setup was used to repeat the investigations ap-

plying the NBIS recognition system to the data. We want to

verify if the observed template ageing effect also translates to

minutiae-based recognition. Thus, this study is the first one,

applying both non-minutiae and minutiae-based recognition

schemes to the same time separated datasets.

Table V presents the same performance measures correspond-

ing to all computed matches as in Table I and II.

Tab. V: Performance values of NBIS matching for all datasets using
all matches.

dataset EER AGS AIS FAR100 ZeroFAR

single

A 7.42 64.03 6.78 0.13 0.34
B1 8.95 64.87 6.64 0.15 0.39
B2 8.17 64.63 6.53 0.13 0.35
B3 9.07 53.69 6.83 0.18 0.81
B4 5.96 70.56 6.37 0.10 0.91
B5 7.30 67.30 6.34 0.14 0.97

crossed

C1 12.63 47.61 6.58 0.26 0.57
C2 14.76 44.71 6.51 0.29 0.58
C3 14.37 43.81 6.71 0.29 0.87
C4 13.18 49.06 6.52 0.25 0.97
C5 13.46 48.65 6.50 0.25 0.99

First, the overall performance of the NBIS system is much

better compared to previous FC and POC results (e.g. the EER

is reduced to half the size for most datasets). This leads to

an interesting question concerning the quality of the imprints.

As usually FC and POC are superior to NBIS only for very

low quality datasets, it can be assumed that the quality of the

used FP images cannot be that low, because otherwise the

performance of FC and POC would be better.

To verify this assumption the NIST FP Image Quality (NFIQ)3

and the non-reference metric “Blind Referenceless Image

Spatial Quality Evaluator” (BRISQUE)4 [19] were applied to

the given datasets. The average quality values are displayed in

Table VI. For the average NFIQ values’ calculation a weighted

3http://www.nist.gov/itl/iad/ig/nigos.cfm#Releases
4http://live.ece.utexas.edu/research/Quality/index.htm



approach as introduced in [20] was applied. If an NFIQ value

is close to 0 this indicates lowest possible quality and a value

of 100 indicates best quality. For BRISQUE, those values are

flipped. A value of 0 can be interpreted as best possible quality

and 100 as worst one. The results in Table VI show that the

average quality of the datasets is not really good, but not

very bad as well. This could serve as an explanation for the

low recognition accuracy of the used non minutiae recognition

systems as these only outperform minutiae-based ones on very

low-quality data. As a comparison, we have computed average

NFIQ and BRISQUE values for the three natural FP subsets of

the FVC 2004 data (DB1: A, DB2: A, DB3: A) which confirm

the observation that the datasets considered in this study are

of rather average quality (cf. VII). Despite, it seems that the

BRISQUE quality of the used CASIA datasets is slightly better

compared to the data bases from FVC2004.

Tab. VI: Average NFIQ and BRISQUE values per CASIA dataset.

datasets av. NFIQ value av. BRISQUE value

A 78.40 49.63
B1 85.33 31.52
B2 65.84 45.28
B3 64.09 44.51
B4 69.73 46.75
B5 73.09 50.14
C1 81.87 40.58
C2 72.12 47.46
C3 71.25 47.07
C4 74.06 48.19
C5 75.75 49.89

Tab. VII: Average NFIQ and BRISQUE values per FVC2004 dataset.

datasets av. NFIQ value av. BRISQUE value

DB1: A 98.15 53.30
DB2: A 88.05 57.43
DB3: A 95.08 57.07

Apart from the overall much better recognition accuracy,

we observe identical template ageing effects in the NBIS per-

formance figures as seen in FC and POC results, respectively.

The EER, FAR100 and ZeroFAR are much higher in datasets

C1-C5 compared to A, B1 - B5. The AGS is also decreased

and the AIS remains almost stable also in the NBIS data. Thus,

also NBIS data exhibits an analogous template ageing effect.

Tab. VIII: Randomised score selection performance values of NBIS
matching for the crossed datasets.

dataset EER AGS AIS FAR100 ZeroFAR

crossed - randomly selected scores

C1 12.82 47.56 6.58 0.26 0.53
C2 14.79 44.69 6.51 0.29 0.57
C3 14.10 43.84 6.71 0.29 0.75
C4 13.15 49.07 6.52 0.25 0.60
C5 13.38 48.74 6.50 0.25 0.71

By analogy to the FC and POC case, there is also no

difference between the performance figures obtained when

using random score selection (leading to a balanced number of

matching scores in single and crossed datasets) and the usage

of all matching scores in the crossed sets (cf. Table VIII).

The graphical representation (see Figure 3) of the A, B1 and

C1 NBIS matching score distributions emphasises the identical

trend as seen on FC and POC score distributions as well.

Similar to Figures 1 and 2 the x-axis describes the matching

scores and the y-axis the percentage of matches within a bin

(scaled from 0 to 1). In fact, the shift of the genuine score

distribution is even clearer in Figure 3 (NBIS score data)

compared to earlier Figures 1 (FC) and 2 (POC).

(a) Set A (b) Set B2 (c) Set C2

Fig. 3: Genuine (colored red) and Impostor (colored yellow) score
distribution of NBIS A, B1 and C1 dataset.

IV. CONCLUSION

Fingerprint template ageing effects have been demonstrated

for different types of datasets (e.g. forensic data [12], [21],

data acquired by a flatbed scanner [5], and data acquired

with different types of off-the-shelf commercial FP readers

[22]). However, all these investigations have employed either

minutiae-based FP recognition schemes [12], [21], [5] or are

not based on the classical EER / ROC based recognition

performance assessment [22].

In this work we were able to show FP template ageing effects

using two non-minutiae type FP recognition schemes (i.e.

clearly worsened EER and ROC performance figures for time-

separated data) and confirmed these effects also using the

popular minutiae-based NBIS FP matching scheme. Thus,

for the data considered, template ageing is present for three

very different types of FP matching schemes and one might

eventually conjecture that it is present independent of the

employed FP recognition scheme. Still, more types of FP

recogniiton schemes will be considered in future work.

However, the reason for the observed phenomena can only be

subject to speculation as we have not tackled this question

so far regarding the datasets in question. Possible reasons

include differing fingerprint quality in the data acquired at

distinct points in time (as identified in [12] as cause in their

dataset), differing non-quality related acquisition conditions,

subject ageing (and thus skin ageing) effects, and many others.

This important issue is also subject to further investigations.
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