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Abstract

We confirm earlier findings on the existence of significant

fingerprint template ageing on a dataset acquired with com-

merical off-the-shelf optical fingerprint sensors exhibiting

a time-span of 4 years using two different minutiae-based

recognition schemes. A subsequent analysis of the quality

of imprints involved in false matches (type 1 and type 2 er-

rors, respectively) does not give clear evidence that reduced

quality of time-separated data can be made responsible for

the observed template ageing effects. Thus, the cause for the

observed template ageing remains unclear and is subject

to further investigation.that fingerprint ageing is a possible

explanation for the biometric menagerie in time separated

data

1. Introduction

Ageing phenomena potentially affect recognition accu-

racy of biometric systems. The most general term deal-

ing with this issue, template ageing, as being defined by

ISO/IEC 19795-1:2006 (“Information technology - Biomet-

ric performance testing and reporting -...”, Section 6.4.6),

relates to the fact that longer time intervals generally make

it more difficult to match samples to templates. This effect

refers to the increase in error rates caused by time-related

changes in the biometric pattern, its presentation and the

used sensor.

The state-of-the-art in dealing with template ageing varies

strongly among biometric modalities [10]. While template

ageing effects are quite accepted to be present e.g. in

speaker recognition and strategies have been developed in

this field to develop algorithms maintaining recognition ac-

curacy using speaker data separated by significant time in-

tervals, for other modalities like iris recognition even the

presence of template ageing effects remains controversial.

As soon as the presence of template ageing has been demon-

strated for a modlaity, the question for its cause arises natu-

rally to be able to eventually better cope with corresponding

higher error rates.

For fingerprints (FPs), until now, it is generally assumed

that a fingerprint (FP) pattern is fully formed at the gesta-

tional age of 24 weeks and is a rather stable modality [6].

Galton’s study on the permanence of human FP’s ridges and

furrows [4] is probably the first study related to FP age-

ing. Nevertheless, skin ageing can be measured by high-

frequency skin ultrasonography, prophilometry, skin micro-

relief descriptors [5], or skin topography changes from ca-

pacity images (analysing 3D profile suffering from ageing,

introducing wrinkles and getting deeper enlarging cells) [2].

FP ageing results in loss of collagen [13] causing skin being

dryer and looser in elderly people. Furthermore, several ac-

quired skin diseases affect FP recognition accuracy as well

[3].

With respect to behavioural effects, less accurate presenta-

tion of fingers due to arthritis has been identified [13]. Age

groups have been considered in [16] revealing that kids’ FP

verification performance suffers when compared to adults,

in terms of both equal error rate (EER) as well as Receiver

Operating Characteristics (ROC).

FP template ageing has been investigated and documented

on a low number of datasets so far. Forensic FP data from

the German federal criminal police office (BKA) is analysed

in [1]. A significant recognition performance degradation

for FP in intervals of 10 to 30 years has been found. Another

study [18], considering small time-intervals, revealed slight

degradation of recognition performance even for a 16 week

time-span, based on finger 3D range data. Using a hand-

print data base (5 year time-span), acquired by a flatbed

scanner, the effects of FP template ageing become man-

ifest in a 2-4 times lowered EER performance caused by

roughly 33% decreased genuine comparison scores [17]. A

recent extensive study [19] confirms the decrease of genuine

scores for longer time-spans (maximum 7 years) on foren-

sic data. The only study so far being conducted on time



separated data (4 years) collected with off-the-shelf com-

merical FP scanners [9] confirms the presence of FP tem-

plate ageing by analysing user-group specifc effects which

are introduced by the so called ”Doddington Zoo” concept

(not confirming all Doddington Zoo-related results found in

[17], i.e. the statement “Short-term goats extend to long-

term goats” [17] could not be verified in [9]).

While the presence of FP template ageing effects seems to

be pretty well confirmed considering the overall trend in all

these results, the reason(s) for these observed effecthat fin-

gerprint ageing is a possible explanation for the biometric

menagerie in time separated datats are hardly investigated

so far. At least, a recent study [8] excludes sensor age-

ing as a possible reason for observed FP template ageing.

Apart from this result, only [19] looks into factors caus-

ing FP template ageing: Covariate-fit analysis reveals that

FP image quality explains observed genuine score varia-

tion better than subject’s age and time-span among FP sam-

ples and templates included in the corresponding forensic

dataset used in this study.

Based on those recent results we pursue two major objec-

tives with this work analysing the same dataset as in [9] (4

years separated commercial FP scanner data): First, we aim

at verifying the presence of FP template ageing using tradi-

tional EER and ROC analysis (as in [9], only Doddington

Zoo-related effects are documented). Second, we conduct

an analysis relating FP image quality to observed incorrect

FP matches with the aim to examine the relation of time-

span and eventually observed quality differences compar-

ing our results to [19] (using a different, forensic dataset).

Based on these results, a discussion on the eventual cause(s)

for observed FP template ageing effects will be conducted.

The rest of the paper is organised as follows: In Section 2,

the datasets and FP recognition systems employed in exper-

iments are introduced. Section 3 describes the experimental

setup wrt. examining template ageing effects and discusses

our analysis of the quality of FP images that are involved

in type 1 and type 2 matching errors, respectively. Section

4 concludes this paper with a discussion on the eventual

cause(s) for observed FP template ageing effects.

2. Datasets and Recognition Systems

When performing an ageing oriented FP analysis, several

factors affect the corresponding FP acquisition process: The

extent of non-ageing based variability within the dataset

should be as low as possible (e.g. concerning illumination

differences etc.). Ideally, the sensor used for the first acqui-

sition should be exactly the same as for the other acquisition

processes in the following year(s). In this case, cross sen-

sor effects can be excluded and only sensor ageing could

influence FP ageing analysis (see [8] for negating this). FP

quality, eventually to be considered as a non-ageing-based

variability, should therefore be kept constant across time-

separated acquisitions.

Basically two main data bases, provided by the biometrics

research team at the Center for Biometrics and Security Re-

search (CBSR) at the Chinese Academy of Sciences, In-

stitute of Automation (CASIA) were taken into account in

our study: The first dataset, ”CASIA 2009”, is a subset of

the CASIA-FPV51 database and contains 980 FP images

of 49 volunteers. For both hands, it includes FP scans of

forefinger and second finger, 5 prints per finger. All images

have been captured by a U.are.U 4000 scanner, produced by

DigitalPersona. This is an optical scanner with a resolution

of 512 dots per inch (dpi). All FP images are 8-bit/pixel

grayscale images and have a resolution of 328x356 pixel.

The second dataset, ”CASIA 2013”, consists of five differ-

ent datasets of FP images. Each subset contains 980 FP

images of the same 49 volunteers as in CASIA 2009, in-

cluding 20 imprints for each user using the same fingers.

Those five single datasets have been acquired by 3 differ-

ent sensor types. Two instances of U.are.U 4000 scanners

and two instances of U.are.U 4500 scanners were used to

acquire the imprints of two datasets per scanner. For the re-

maining 5th dataset a TCRU1C sensor was selected for the

acquisition process. The U.are.U 4500 is very similar to the

U.are.U 4000 and therefore the specifications with respect

to resolution, image dimensions and bit depth are identical.

The TCRU1C sensor is a capacitive FP scanner with a reso-

lution of 508 dots per inch (dpi). The imprints have a reso-

lution of 256x360 pixel. FP acquisition by different sensor

types enables an analysis of cross-sensor effects during the

experiments. In this study, matching score information and

corresponding recognition results were obtained by apply-

ing two different minutiae based FP recognition systems:

NIST Biometric Image Software (NBIS): Implemented

by the National Institute of Standards and Technology

(NIST)2; in this work release 5.0.0 was used.

VeriFinger (NEURO) The VeriFinger SDK3, developed by

Neurotechnology, is minutiae based as well. Release 7.1 in-

cludes algorithmic solutions enhancing the performance on

rolled and flat FP matching, tolerance to FP translation, ro-

tation and deformation as well as adaptive image filtration.

3. Experiments and Results

3.1. Experimental Setup

In the following experimental analysis 11 different

datasets were used. dataset A refers to CASIA 2009. Ev-

ery time a dataset is named with B as first letter, one of

the single datasets of CASIA 2013 is considered. B1 is

the dataset acquired with the TCRU1C sensor. B2 and B3

are the datasets for which a U.are.U 4000 sensor was used.

1http://biometrics.idealtest.org/dbDetailForUser.do?id=7
2http://www.nist.gov/itl/iad/ig/nbis.cfm
3http://www.neurotechnology.com/verifinger.html



Table 1: Characteristic individual performance values of

NBIS matching for all datasets using all matches.

dataset EER AGS AIS FAR100 ZeroFAR

single

A 7.42 64.03 6.78 0.13 0.34

B1 8.95 64.87 6.64 0.15 0.39

B2 8.17 64.63 6.53 0.13 0.35

B3 9.07 53.69 6.83 0.18 0.81

B4 5.96 70.56 6.37 0.10 0.91

B5 7.30 67.30 6.34 0.14 0.97

crossed

C1 12.63 47.61 6.58 0.26 0.57

C2 14.76 44.71 6.51 0.29 0.58

C3 14.37 43.81 6.71 0.29 0.87

C4 13.18 49.06 6.52 0.25 0.97

C5 13.46 48.65 6.50 0.25 0.99

B4 and B5 are the datasets acquired with the U.are.U 4500

sensor. Apart from those 6 ”single” datasets, 5 so-called

”crossed” sets were constructed. Those contain both the

imprints of CASIA 2009 (A) and one of the 5 datasets of

CASIA 2013 - 1960 images in total. dataset C1 includes

the imprints of CASIA 2009 (A) and the TCRU1C sen-

sor recordings of CASIA 2013 (B1). C2 and C3 denote

the combination of A and U.are.U 4000 sensor FP images

of CASIA 2013 (B2 and B3). The remaining data sets C4

and C5 result from combining A and the U.are.U 4500 sen-

sor CASIA 2013 imprints (B4 and B5). The evaluation of

the recognition accuracy is based on the procedure used in

all four FP Verification Contests (FVC), for example see

[11]. Due to the described specifications of the datasets,

a different amount of genuine and impostor scores is com-

puted. For the single sets (A, B1 - B5), 1960 genuine and

95550 impostor matches were computed, respectively. The

crossed datasets’ (C1 - C5) number of genuine scores and

impostor scores is 4.5 times and 4 times the size of the sin-

gle sets, respectively. In order to be able to directly compare

performance figures without introducing bias due to differ-

ent dataset size, the identical number of matching scores

should be employed for all datasets during the performance

evaluation. For this purpose, a randomized selection strat-

egy of the scores was conducted for the crossed datasets to

select 1960 genuine and 95550 impostor matches. To en-

sure a balanced evaluation of the performance figures this

selection was repeated
(

10

5

)

times and the obtained perfor-

mance results were averaged.

3.2. Recognition Accuracy Analysis

For determining recognition accuracy, 5 different char-

acteristic performance figures were considered for all the

subsets described in Section 2: Equal Error Rate (EER %),

Average Genuine Score (AGS), Average Impostor Score

(AIS), the lowest FRR for FAR less or equal to 0.1%

(FAR100), and Zero False Acceptance Rate (ZeroFAR). The

Table 2: Characteristic individual performance values of

NEURO matching for all datasets using all matches.

dataset EER AGS AIS FAR100 ZeroFAR

single

A 2.07 508.56 0.005 0.04 0.08

B1 3.17 499.66 0.001 0.06 0.08

B2 1.96 562.11 0.005 0.04 0.06

B3 4.00 464.01 0.029 0.08 0.81

B4 2.04 553.72 0.013 0.04 0.73

B5 3.69 484.50 0.021 0.07 0.98

crossed

C1 5.32 356.57 0.002 0.10 0.22

C2 5.97 359.21 0.005 0.12 0.25

C3 6.16 350.87 0.015 0.12 0.90

C4 5.81 368.43 0.006 0.11 0.90

C5 6.73 352.25 0.008 0.13 0.99

Table 3: Characteristic individual performance values of

NBIS matching for the crossed datasets.

dataset EER AGS AIS FAR100 ZeroFAR

crossed - excluding time-span impostor scores

C1 13.03 47.58 6.71 0.26 0.54

C2 15.22 44.68 6.64 0.29 0.57

C3 13.86 43.76 6.80 0.29 0.80

C4 13.26 49.14 6.57 0.25 0.71

C5 13.43 48.71 6.55 0.26 0.82

crossed - randomly selected scores

C1 12.82 47.56 6.58 0.26 0.53

C2 14.79 44.69 6.51 0.29 0.57

C3 14.10 43.84 6.71 0.29 0.75

C4 13.15 49.07 6.52 0.25 0.60

C5 13.38 48.74 6.50 0.25 0.71

best achieved EER values are indicated in bold in the fol-

lowing tables. For both recognition systems the perfor-

mance figures are displayed in Tables 1 – 4. In the first ex-

periments, no randomised selection of the matching scores

was done. Instead the results include all possible genuine

and impostor matches (see Tables 1 and 2). Randomised

matching selection was applied in two variants and results

in a balanced number of matches for all datasets (see Sec-

tion 3.1). The first variant only considers impostor scores

without including any time-span matches in the randomised

selection, thus only matches among imprints of the same

year were taken into account. The second variant uses a

randomised selection of all genuine and impostor scores.

The results are listed in Tables 3 and 4. There is hardly

any difference among the various experimental results for

the crossed datasets. Neither the random selection strategy

to avoid bias due to unbalanced dataset sizes nor the in-

clusion of time-separated imposter scores have any impact

on the overall trends observable in the results. The most

important result which can be seen in Tables 1 – 4 is the

significant increase of the EER, FAR100, and ZeroFAR fig-

ures comparing the single and crossed datasets. Looking at



Table 4: Characteristic individual performance values of

NEURO matching for the crossed datasets.

dataset EER AGS AIS FAR100 ZeroFAR

crossed - excluding time-span impostor scores

C1 5.29 356.93 0.004 0.10 0.18

C2 5.98 359.12 0.006 0.12 0.21

C3 6.21 350.21 0.017 0.12 0.82

C4 5.75 368.77 0.009 0.11 0.55

C5 6.73 352.36 0.013 0.13 0.77

crossed - randomly selected scores

C1 5.33 356.95 0.002 0.10 0.17

C2 6.00 359.12 0.005 0.12 0.18

C3 6.16 350.82 0.015 0.12 0.71

C4 5.80 368.33 0.006 0.11 0.44

C5 6.71 352.39 0.009 0.13 0.64

the AGS and AIS values, a clearly observable reduction of

the genuine scores and a more or less stable behavior of the

impostor scores can be observed. These effects are present

for both NBIS and NEURO recognition schemes. In fact,

the stability of the AIS values and the high decrease in the

AGS leads to the assumption that ageing-related degrada-

tions could be responsible for these observations and con-

firms earlier finding in ageing-related analysis (e.g [17, 19]).

However, based on the results, it can be stated that not the

security aspect but the user convenience is impacted by the

decreased genuine scores. Another interesting effect can be

observed focusing on cross-sensor effects. As opposed to

the expectations, datasets C2 and C3, which contain time-

separated data acquired with the same sensor type, do not

exhibit the best accuracy results. For NBIS, even the oppo-

site is observed for EER and FAR100. Thus, it seems that

an identical sensor type is not important to get good results

but, as we shall see in the subsequent section, the quality of

the acquired FP images determines the resulting accuracy

no matter which sensor type is used.

The tendency of the genuine scores becoming more similar

to the impostor ones for the crossed datasets is displayed

graphically in Figures 1 and 2, where the x-axis denotes the

matching scores and y-axis the percentage scaled from 0 to

1. For all crossed datasets the situation is similar. A clear

shift of the genuine score distribution to the left approach-

ing the impostor distribution can be observed for C2 data

for both recognition schemes. Thus, we have a very clear

confirmation of template ageing effects in terms of quanti-

titive performance measures and qualitative genuine score

distribution shape. In the following Section 3.3 we will in-

vestigate the role and contribution of FP quality in/to the

observed effects.

3.3. Fingerprint Quality Analysis

For this analysis, we use the following rationale: We de-

termine the quality of FP images involved in type 1 and type

2 erroneous matches when considering time separated data.

a: Set A b: Set B2 c: Set C2

Figure 1: Genuine (colored red) and Impostor (colored yel-

low) score distribution of NBIS A, B2 and C2 dataset.

a: Set A b: Set B2 c: Set C2

Figure 2: Genuine (colored red) and Impostor (colored yel-

low) score distribution of NEURO A, B2 and C2 dataset.

If the quality of these FPs is not lower than the overall aver-

age quality of FPs, it is not lower quality that causes the ob-

served template ageing effects and a thorough investigation

is required for identifying the actual reasons (e.g. differ-

ent acquisition conditions not impacting measured quality

or subject ageing).

There are different approaches to determine quality of FP

images. The first FP specific approach is the NIST FP Im-

age Quality (NFIQ)4, also included in the NBIS software,

which uses various information of a FP image, like minu-

tiae feature information and local orientations to calculate a

quality value from 1 (best) to 5 (worst) [15]. The second FP

specific approach, the Image Quality of FP (IQF)5 [14], se-

lects certain parameters of the power spectrum based on the

Fast Fourier Transform (FFT) to calculate a score between

0 (worst) and 100 (best). An entirely different approach is

to determine generic image quality without exploiting the

fact that the input images are containing FPs [7]. There

are various generic quality metrics which ca be used for

that purpose. We used the non-reference metric Blind Ref-

erenceless Image Spatial Quality Evaluator (BRISQUE)6

[12]. As result of this measurement a score value between

100 (worst) and 0 (best) is obtained.

4http://www.nist.gov/itl/iad/ig/nigos.cfm#Releases
5http://www2.mitre.org/tech/mtf/
6http://live.ece.utexas.edu/research/Quality/index.htm



The FP image examples displayed in Figure 3 have the

a: A: userID

13 #1

b: A:

userID 13

#3

c: B2:

userID 13#8

Figure 3: Volunteer 13 representing NFIQ/IQF value: 2/97

same NFIQ/IQF value but very different similarity scores

(eventually caused by ageing effects). All of the im-

prints of user 13 have an NFIQ/IQF value of 2/97. The

NBIS/NEURO matching scores between imprint 13 #1 and

13 #3 are 60 and 606, respectively. The matching scores

between 13 #1 and 13 #8 are 16 and 84, respectively. Al-

though all imprints exhibit identical biometric quality, the

matching scores between imprints separated by a time span

are considerably lower. In the figures, minutiae not present

in the corresponding imprint separated by 4 years time span

are depicted by green crosses (see colour print). Obviously,

a considerable amount of minutiae is changed which may

be a consequence of the type of matcher and imprints used.

In order to augment this qualitative finding with quantitative

results, we first compute average biometric quality values of

all datasets.

As NFIQ values must not be directly averaged, a weighted-

sum approach was used instead, as introduced in [15]. We

used the identical weights as suggested in the original work.

After computing the NFIQ average, a [0,100] range is ob-

tained for all figures (NFIQ, IQF and BRISQUE), where

a value of 0 indicates the lowest quality (NFIQ, IQF) and

100 denotes the best (NFIQ, IQF) or the other way round

(BRISQUE). In the leftmost column of Tables 5 – 9, the

results of computing these average quality values are dis-

played for reference.

In order to determine the quality of the imprints involved in

type 1 errors (false accepts) and type 2 errors (false rejects),

we defined a set of 5 thresholds experimentally, for which

the false accepted and false rejected matches (and the cor-

responding imprints involved) have been determined. We

choose the thresholds to cover a wide range of operating

conditions of the recognition systems, depending either on

the NBIS or the NEURO software.

In Table 5 the quality results for the false accepted matches

employing NBIS are displayed. Comparing the results with

the average quality values of the entire datasets in the left-

most column, it is obvious that except for a few thresh-

old dependent fluctuations no highly significant difference

Table 5: Average image quality of imprints involved in false

accepted matches depending on different decision thresh-

olds using NBIS.

all img.

avg.
dataset

threshold values for false accepts

1.0 5.0 10.0 20.0 30.0

NFIQ

78.40 A 78.29 78.29 78.99 79.89 88.52

85.33 B1 85.27 85.25 86.06 87.17 97.07

65.84 B2 66.18 66.30 68.18 81.04 82.95

64.09 B3 64.24 64.24 65.27 78.29 72.73

69.73 B4 69.88 69.88 70.43 76.31 58.95

73.09 B5 73.23 73.21 73.11 75.10 76.62

81.87 C1 81.83 81.80 82.23 83.66 91.54

72.12 C2 72.31 72.33 73.96 78.94 86.99

71.25 C3 71.34 71.32 72.19 80.06 91.74

74.06 C4 74.15 74.19 74.48 78.62 93.43

75.75 C5 75.82 75.88 76.06 79.45 80.59

IQF

95.34 A 95.34 95.34 95.46 95.69 97.00

92.85 B1 92.83 92.82 92.78 93.32 96.31

95.26 B2 95.25 95.25 95.55 96.03 96.62

95.11 B3 95.10 95.10 95.48 95.64 91.22

95.25 B4 95.24 95.24 95.60 96.59 96.80

95.10 B5 95.09 95.09 95.48 96.26 96.40

94.10 C1 94.09 94.10 94.28 94.90 96.50

95.30 C2 95.30 95.29 95.58 95.71 96.89

95.23 C3 95.22 95.22 95.31 96.06 95.91

95.32 C4 95.29 95.29 95.34 95.18 92.70

95.22 C5 95.22 95.21 95.20 95.81 96.77

BRISQUE

49.63 A 49.56 49.56 49.46 49.52 49.72

31.52 B1 31.57 31.62 31.67 31.10 30.89

45.28 B2 49.51 49.46 49.16 48.91 48.89

44.51 B3 49.51 49.51 49.25 49.58 49.47

46.75 B4 49.51 49.51 49.14 49.48 49.48

50.14 B5 49.51 49.51 48.90 49.02 49.03

40.58 C1 43.59 43.60 43.56 43.40 43.42

47.46 C2 49.57 49.55 49.39 49.35 49.44

47.07 C3 49.57 49.57 49.42 49.60 49.68

48.19 C4 49.57 49.57 49.38 49.45 49.53

49.89 C5 49.57 49.57 49.29 49.33 49.43

is present for the NBIS results. For NFIQ and IQF, there

is a slight tendency for higher quality (i.e. higher val-

ues) observed for the imprints involved in false accepts as

compared to the datasets’ average (!), while for BRISQUE,

quality is lower (i.e. higher vaulues) for imprints involved

in false accepts (except for datasets A and B5).

For the NEURO software a similar behaviour is observed

(results are not shown and not discussed in detail as the false

accepted matches are not responsible for the observed tem-

plate ageing effects).

In the following we concentrate the attention to the false

rejected matches. In Tables 6 and 7 the averaged quality

values of the imprints involved in false rejected matches for

the single datasets (A, B1 - B5) are displayed. Note that

these imprints and their average quality also correspond to

the subset of false rejected matches in the crossed sets C1 -

C5 in case no matches among imprints acquired in different



years are considered. As IQF exhibits a very low extent of

variability overall which can hardly be sensibly interpreted

we refrain from further presenting and discussing IQF re-

sults.

In Table 6 we observe non-consistent results among differ-

ent datasets for the NBIS results. For NFIQ, quality of im-

prints involved in false rejected matches is lower than the

average dataset quality (leftmost column) for datasets A and

B1 and vice versa for sets B2 - B5. For BRISQUE, B1 and

B3 exhibit lower quality for imprints involved in false re-

jected matches compared to average values, and vice versa

for dataset B5 while A, B2 and B4 do not exhibit a clear

trend. Overall, we do not observe a clear trend towards

lower quality for imprints involved in false rejected matches

for not time-sparated (i.e. single) datasets for NBIS.

The NEURO results are displayed in Table 7. Contrast-

Table 6: Average quality of imprints involved in false re-

jected matches depending on different decision thresholds

using NBIS.

all img.

avg.
dataset

threshold values

1.0 5.0 10.0 20.0 30.0

NFIQ

78.40 A 51.12 51.12 55.25 59.20 62.50

85.33 B1 91.74 71.97 62.98 66.60 71.54

65.84 B2 88.37 73.93 77.39 77.61 78.78

64.09 B3 88.37 72.73 75.24 73.88 74.24

69.73 B4 70.61 70.61 77.63 75.94 76.23

73.09 B5 73.03 76.82 79.29 77.48 77.64

BRISQUE

49.63 A 64.58 47.52 45.92 47.00 47.12

31.52 B1 49.03 40.72 46.63 44.78 41.24

45.28 B2 47.82 45.16 47.13 45.67 45.16

44.51 B3 47.84 44.93 47.20 45.53 44.98

46.75 B4 47.16 45.58 47.10 45.72 45.56

50.14 B5 47.66 47.14 47.81 47.00 47.16

ing to NBIS results, we observe quite uniform behaviour

for NFIQ: For all datasets, the quality of imprints involved

in false rejected matches is significantly lower as com-

pared to the average of the respective datasets. Surpris-

ingly, the quality as determined by BRISQUE does not fol-

low this trend, as for datasets A, B4 and B5 quality of im-

prints involved in false rejects is slightly higher compared

to the average values, while for B1 - B3 the opposite is the

case. Thus, overall, we observe a clear trend towards lower

quality for lower quality for imprints involved in false re-

jected matches only for NFIQ, however, still for not time-

separated data.

So far, we have not yet extended the quality analysis to

”crossed” datasets C1 - C5 which are affected by the tem-

plate ageing effects. This is done in the following. The

detected false rejected matches in datasets Ci were sepa-

rated into three classes during the refined analysis. The first

and third class only contain those matches which have been

Table 7: Average quality of imprints involved in false re-

jected matches depending on different decision thresholds

using NEURO.

all img.

avg.
dataset

threshold values

5.0 20.0 50.0 70.0 100.0

NFIQ

78.40 A 47.42 47.42 47.42 47.12 45.84

85.33 B1 45.53 45.53 46.09 44.99 46.33

65.84 B2 24.16 24.16 23.64 24.27 21.61

64.09 B3 28.28 28.28 27.93 28.17 26.92

69.73 B4 26.53 26.53 25.95 29.37 29.13

73.09 B5 34.46 34.46 34.76 31.63 37.51

BRISQUE

49.63 A 43.83 43.83 43.83 44.44 44.57

31.52 B1 43.40 43.40 43.40 43.32 43.09

45.28 B2 45.80 45.80 45.80 46.00 45.57

44.51 B3 44.98 44.98 44.98 44.96 45.05

46.75 B4 46.13 46.13 46.14 46.26 46.18

50.14 B5 46.74 46.74 46.70 46.44 46.13

performed among imprints of the same year (A: 2009 vs

2009 and B1 - B5: 2013 vs 2013), so they exactly corre-

spond to the matches covered in Tables 6 and 7. The second

class consists of the remaining cross-year matches: 2009

vs 2013. If the quality values of imprints involved in false

rejects of this second class do not exhibit a high extent of

degradation compared to the average values of the corre-

sponding entire data sets or if the degradation is less pro-

nounced as compared to the first and second class, then it is

quite clear that reduced quality cannot be responsible for the

reduced recognition accuracy exhibited for the crossed (i.e.

time separated) datasets. The results of the refined analysis

of NBIS and NEURO false rejected matches based on their

NFIQ/BRISQUE values are shown in Tables 8 and 9.

Apart from threshold and dataset dependent random fluc-

Table 8: NFIQ/BRISQUE quality refinement analysis using

NBIS false rejects information.

all img.

avg.
dataset

threshold values

1.0 5.0 10.0 20.0 30.0

class 1
NFIQ/BRISQUE - 2009 vs. 2009

see dataset A in Table 6

class 2 NFIQ - 2009 vs. 2013

81.87 C1 62.30 63.45 68.39 71.26 74.04

72.12 C2 74.30 69.15 73.51 75.22 76.07

71.25 C3 90.17 73.15 69.38 74.24 76.32

74.06 C4 67.97 73.82 78.45 67.97 71.12

75.75 C5 47.58 66.35 67.30 72.67 74.16

BRISQUE - 2009 vs. 2013

40.58 C1 47.43 49.22 47.08 48.26 48.89

47.46 C2 46.72 49.14 48.35 48.93 49.15

47.07 C3 46.79 49.53 48.20 48.92 49.36

48.19 C4 46.65 49.21 47.50 48.23 48.88

49.89 C5 46.71 49.09 47.76 48.74 49.14

class 3
NFIQ/BRISQUE - 2013 vs. 2013

see dataset B1-B5 in Table 6



tuations some interesting observations can be made. The

NBIS results for imprints involved in false rejects displayed

in Table 8 exhibit slightly worse quality (i.e. higher val-

ues) compared to the average C1 - C5 quality as shown in

the leftmost column in case of BRISQUE (only for C1, the

difference is rather significant). NFIQ values do not ex-

hibit a clear trend: while for C1 and C5 average quality is

definitely better, C2 - C4 results depend on the specific de-

cision threshold considered and seem to be quite randomly

distributed.

When comparing the false rejected matches’ NFIQ quality

values to those within datasets A and B1 - B5 (compare Ta-

ble 6), C1 - C5 values are between A and B1 - B5 values,

respectively. Thus, these results do not indicate that the re-

duced NFIQ quality of time separated matches is responsi-

ble for template ageing as observed. On the other hand, for

BRISQUE, C1 - C5 values are worse compared to A and

B1 - B5 values indicating slightly degraded quality for time

separated matches.

Table 9 shows the results obtained when analysing false re-

jected matches of the NEURO software. For datasets C1,

C4, and C5 NFIQ quality values are clearly worse for im-

prints involved in false rejects as compared to the datasets’

average value as shown in the leftmost column. Also for C2

and C3 this is true for most decision threshold values con-

sidered. Interestingly, the opposite is the case for BRISQUE

results except for C1, where the average result is clearly su-

perior to the false rejected imprints results.

When comparing the false rejected matches’ NFIQ quality

values to those within datasets A and B1 - B5 (compare Ta-

ble 7), C1 - C5 values exhibit significantly higher quality

compared to A and B1 - B5 values (which shows again, that

reduced NFIQ quality of time separated matches is not re-

spondible for template ageing), while the opposite is true for

BRISQUE quality values. Thus, while reduced NFIQ qual-

ity of imprints involved in false rejected matches definitely

cannot be made responsible for template ageing results (in-

terestingly, quality of time-separated false rejected matches

is better in several cases), there are some settings where re-

duced BRISQUE quality can be observed in some of these

imprints. Still, results are not consistent enough to make a

general statement.

So far, we have only shown averaged results. However,

considering the quality mean only may hide important as-

pects of the distribution of the quality values. Thus, we

exemplary present boxplots of the NEURO and NBIS qual-

ity values corresponding to thresholds 20.0 and 10.0 from

Table 9 and 8. The green squares in the plots depict the

average values and the red lines display the median values

(see colour print). In Fig. 4 we notice that both mean and

median values of the time separated false rejected matches

are higher (i.e. better quality) as compared to non time sep-

arated matches within datasets C1 - C5. In Figure 5 there

Table 9: NFIQ/BRISQUE quality refinement analysis using

NEURO false rejects information.

all img.

avg.
dataset

threshold values

5.0 20.0 50.0 70.0 100.0

class 1
NFIQ/BRISQUE - 2009 vs. 2009

see dataset A in Table 7

class 2 NFIQ - 2009 vs. 2013

81.87 C1 68.04 68.04 68.71 69.44 70.16

72.12 C2 71.91 71.91 72.39 71.87 72.18

71.25 C3 68.51 68.51 68.35 70.59 72.21

74.06 C4 61.86 61.86 62.07 65.39 67.08

75.75 C5 65.89 65.89 65.99 65.98 69.07

BRISQUE - 2009 vs. 2013

40.58 C1 46.15 46.15 46.28 46.83 47.52

47.46 C2 46.93 46.93 47.01 47.16 47.91

47.07 C3 46.57 46.57 46.62 46.94 47.62

48.19 C4 47.15 47.15 47.13 47.04 47.65

49.89 C5 46.69 46.69 46.68 47.13 48.12

class 3
NFIQ/BRISQUE - 2013 vs. 2013

see dataset B1-B5 in Table 7
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Figure 4: NFIQ quality of NEURO false rejected matches

based on decision threshold 20.0.
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Figure 5: BRISQUE quality of NBIS false rejected matches

based on decision threshold 10.0.

is hardly any difference between the three depicted cases,

except for the C1 dataset in 2013 vs 2013 matches. The

box is positioned much lower (higher quality) compared to

the others. This indicates better quality, but including some

very poor quality values as well because the average quality



value is similar to the other average quality results.

4. Conclusion

In the first part of this study we have clearly observed

template ageing for 4 years separated FP data acquired with

off-the shelf commercial optical FP scanners. Results are

consistent for two different minutiae-based FP matching

schemes. In particular, we detect clearly increased EER,

FAR100, ZeroFAR and correspondingly decreased AGS for

time separated data, while the AIS remains remarkably sta-

ble. These results confirm earlier findings on FP template

ageing on forensic FP datasets [1, 19] and on a dataset ac-

quired with a flatbed scanner [17].

A subsequent analysis of the quality of imprints involved

in false matches (type 1 and type 2 errors, respectively)

did not give clear evidence that reduced quality of time-

separated data can be made responsible for the observed

template ageing effects. Of course, the question remains,

which effects cause template ageing and how this can be

mitigated or avoided at all. Based on the observed results,

effects are caused by a phenomenon not reducing (but even-

tually increasing) FP specific NFIQ quality but slightly re-

ducing generic image quality as measured by BRISQUE.

In this context, corresponding systematic acquisition setting

differences or even subject ageing effects and correspond-

ing changes in the finger tips’ physiology are candidates to

cause the observed effects. Of course, the robustness of em-

ployed FP recognition schemes plays an important role –

while for less robust schemes template ageing might be ob-

served, the results of a more robust scheme eventually will

not be influenced at all. Finally, it has to be stated that ob-

serving a decrease in FP image quality would not rule out

subject ageing effects as possible reasons for template age-

ing – subject ageing effects might just impact on FP quality

as well.
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