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Abstract

The vascular pattern inside human fingers has become

an emerging biometric trait during the last years, commonly

denoted as finger vein recognition. However, the number of

publicly available data sets is limited. In order to capture

a finger vein data set, a suitable scanner device is needed.

The design of such a scanner device is crucial if it comes to

image quality, robustness against external influences dur-

ing the capturing process and consequently to a good re-

cognition performance. In this paper we propose two novel,

modular designed, multi-purpose finger vein scanners, both

able to capture three fingers at once, together with a pub-

licly available finger-vein data set captured with these scan-

ners. One scanner uses common near-infrared LEDs as a

light source. The second one is based on a new concept

using near-infrared lasers. Near-infrared lasers are not

common in finger-vein recognition before despite their ad-

vantages especially in touchless operation. Our recognition

performance evaluation confirm the good recognition per-

formance that can be achieved using our proposed scanner

design and provides some new insights by conducting sex

and age-group specific analysis.

1. Introduction

Vascular pattern based recognition (commonly denoted

as vein recognition), as a promising new biometric, gains

more and more attention and can help to overcome some of

the problems existing biometric recognition systems have.

Vein based systems rely on the structure of the vascular pat-

tern formed by the blood vessels inside the human body

tissue. This pattern only becomes visible in near-infrared

(NIR) light. Thus, vein based biometrics provide a good

resistance to spoofing and are insensitive to abrasion and

skin surface conditions. They achieve good recognition per-

formance while the user convenience is at the same level as

for fingerprint systems as long as the scanner is designed in

an open manner. Moreover, a contactless operation is pos-

sible and liveness detection can be performed easily [6].

Although, especially hand- and finger-vein based sys-

tems are already equipped in commercial products, there

is still a lack of comprehensive, public available data sets,

which is one of the key factors in order to facilitate research

in vascular pattern based biometrics. A major reason for

this lack of available data sets is that almost all commercial

off-the-shelf finger- and hand-vein scanners do not provide

access to the raw vein images they capture. They only out-

put some kind of template in a proprietary format specified

by the manufacturer, which is of little use in research. Prior

to establishing such a data set, two important things are

needed. Most important are the volunteers, who are willing

to participate in the data collection, present their fingers to

the scanner and donate some of their time while their fingers

are scanned. The second most important thing is a scanner

device, which provides access to the raw vein images.

A deliberately designed scanner device is crucial for

the image quality of the vascular pattern images and con-

sequently, the recognition performance. The first contri-

bution of this paper is our proposed design of two novel

multi-purpose finger-vein scanners. Both of our proposed

scanners are equipped with transillumination as well as re-

flected light illumination and are able to capture dorsal and

palmar images. They are designed to capture three fingers

at a time to speed up the data acquisition process. The scan-

ners differ in the type of their NIR light source: the first

one is based on NIR LEDs, while the second one uses NIR

lasers. NIR lasers have hardly been used in finger-vein re-

cognition since they were first proposed by Kim et al. [5]

in 2009. The main advantage of lasers over LEDs is an in-

creased range of possible vertical finger movement without

impacting the image quality. This becomes important as

soon as the finger is desired not to touch the sensor’s sur-

face and thus especially if it comes to touchless operation.

This paper covers the main aspects of our scanner design.

The details of the scanner design, including all construc-

tion plans, schematics, parts lists and the software will be
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made publicly available as an open-hardware project. Other

researchers interested in finger-vein biometrics can bene-

fit from our open-source scanner design, build a scanner

on their own and capture finger-vein images. By providing

their captured data, they can help in establishing an extens-

ive, publicly available finger-vein data set and thus help in

stimulating research on vascular biometrics. Such an ex-

tensive data set is especially vital in order to develop ef-

ficient (in terms of runtime) finger-vein identification and

finger-vein indexing schemes.

The main contribution of this paper is the data set itself,

which was captured utilising our two finger-vein scanners.

This new, publicly available, dorsal finger-vein data set con-

sists of two sub sets: one for each of our proposed two scan-

ners. To the best of our knowledge there is neither a finger-

vein data set which was acquired using NIR laser illumina-

tion nor an extensive, publicly available, data set containing

dorsal images. Our data set provides high resolution dorsal

finger-vein images of 360 individual fingers together with

additional information about the 60 subjects. It is currently

being extended by capturing additional subjects and is ex-

pected to grow further due to our plans to make the scanner

hardware an open-source project.

The performance evaluation based on some well-

established finger-vein recognition algorithms confirms the

good recognition performance that can be achieved using

our data set, both the LED and the laser scanner one. Bey-

ond the baseline performance results, a subgroup specific

analysis of the recognition performance is carried out. The

whole data set is divided into 2 sex specific subgroups as

well as 3 age specific ones. We did not come across any

other finger-vein recognition paper that covers such a sub-

group specific performance evaluation so far. The subgroup

specific results indicate that there is no significant differ-

ence in the recognition performance for male and female

subjects as well as among the different age groups. Finally,

the cross-sensor (LED vs. laser) recognition performance

is evaluated and an image quality analysis using several no

reference image quality metrics is performed.

The rest of this paper is organised as follows: Section

2 explains the principle of a finger-vein scanner in general,

followed by the details about the two proposed finger-vein

scanning devices. In Section 3 at first an overview of avail-

able finger-vein data sets, including all important details, is

given. This is followed by a detailed description of our new

finger-vein data set. Section 4 outlines the experimental set-

up, including the recognition tool-chain as well as the evalu-

ation protocol and gives the performance evaluation results

together with a results discussion. Section 5 concludes this

paper along with an outlook on future work.

2. Finger-Vein Scanners

Finger-vein biometrics rely on the structure of the vas-

cular pattern inside the fingers of a human. To be able

to extract meaningful features of this vascular structure at

first the blood vessels inside the human body tissue have

to be made visible. The blood vessels can be rendered vis-

ible (as dark lines in the images) due to the fact that the

haemoglobin contained in the blood flowing through the

vessels absorbs NIR light while the surrounding tissue is

semi-permeable. Hence, the crucial components of a finger-

vein scanner are an NIR sensitive camera and some kind of

NIR light source, the latter typically consists of NIR LEDs

with wavelengths between 750 nm and 950 nm. Usually

either an NIR pass-through filter is added to the camera or

the scanner is enclosed in an optically opaque box in order

to reduce the influence of ambient light.

Based on the positioning of the illuminator relative to the

camera and the finger, there are two types of illumination:

1. Transillumination, where the camera and the illumin-

ator are positioned on opposite sides of the finger. The

light penetrates the skin and tissue of the finger and

gets captured by the camera as it emerges.

2. Reflected light, where the camera and the illuminator

are positioned on the same side of the finger. The light

originates from the light source, gets reflected at the

finger’s surface and tissue and is captured by the cam-

era.

A further distinction can be made based on the side of the

finger where the camera is positioned or the images is taken

from, respectively: palmar (also called ventral), where the

images are taken from the palm side of the hand and dorsal,

where the images are taken from the back side of the hand.

In finger-vein recognition usually palmar images are cap-

tured using transillumination. Our proposed scanners are

multi-purpose finger-vein scanners, i.e. they are able to

capture dorsal as well as palmar images and apply trans-

illumination as well as reflected light illumination. Thanks

to its modular design it is easy to change, replace, modify

or improve individual parts of the scanner while keeping its

basic structure.

2.1. PLUS OpenVein LED Based Scanner

The LED based version of the PLUS OpenVein finger-

vein scanner can be seen in Figure 1. The image sensor

is an NIR enhanced industrial camera (IDS Imaging UI-

ML1240-NIR) equipped with a Fujifilm HF9HA-1B 9 mm

lens in combination with a MIDOPT FIL LP830/27 NIR

pass-through filter. The transillumination light source con-

sists of 3 stripes (one underneath each finger) of 8 Osram

SFH-4253-Z LEDs each. An LED ring consisting of 8 850
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Figure 1. PLUS OpenVein three-finger vein scanner LED version

nm LEDs, 8 950 nm LEDs and 8 daylight LEDs for captur-

ing reflected light images is situated on top of the device. To

assist in positioning of the finger, the lower part contains a

custom 3D printed finger support which serves as a bracket

for the 3 LED stripes too. The control board is located on

the back plate of the scanner. This scanner is designed to

capture 3 fingers (index, middle and ring finger) at once. It

is able to capture both palmar and dorsal (by rotating the

hand) as well as transillumination and reflected light fin-

ger vein images. The whole scanner is built into a wooden

housing to improve stability. The outside dimensions of the

scanner are 146 × 175 × 258mm. All the housing parts,

the 3D printed parts and the control boards were designed

by ourselves. The acquisition time for one image is about

3 s (containing three fingers). Figure 6 bottom shows some

example images captured with this scanner.

The scanner has an integrated control board which en-

ables the individual brightness control of each of the trans-

illumination LEDs. The capturing software uses an auto-

matic brightness control algorithm to achieve an optimal

image contrast and quality. This is done iteratively by com-

paring the average grey level of the image area around each

LED centre (GLcurrent) with a pre-configured target value

(GLtarget). Initially all LEDs are set to half of the max-

imum intensity (Imax). The intensity correction is then

done according to: corr =
GLtarget−GLcurrent

GLmax
·

Imax

2·n
,

where GLmax is the maximum grey value and n is the cur-

rent iteration. The LED centre positions are pre-configured

too. Each of the 3 reflected light illuminators can be

brightness controlled as a whole as well (not the individual

LEDs).

2.2. PLUS OpenVein Laser Based Scanner

This scanner is the first finger-vein scanner that uses NIR

laser diodes instead of NIR LEDs for transillumination. The

main parts (camera, reflected light source, finger support

and housing) of the laser based scanner are the same as

for the LED version except the illuminator and the control

board. The transillumination light source consists of 3x 5

DLC-180-500-9T5 808 nm 300 mW laser diodes including

a control PCB and a housing with an adjustable lens to fo-

cus the laser beam (subsequently called laser module). An

image of the scanner can be seen in Figure 1. The height

of laser based scanner is larger than the LED version (out-

side dimension are: 146×175×306mm) because the laser

modules are bigger than the LEDs.

An NIR illuminator based on laser modules instead of

LEDs exhibits several advantages in the transillumination

setting. First of all the laser modules have a very narrow ra-

diation angle. If LEDs are used, the finger has to be placed

close to the light source. As soon as the finger does not

directly touch the sensor surface most of the light emission

passes alongside and outside the finger, not through the fin-

ger. Thus, the finger boundaries appear too bright while the

interesting regions of the finger containing the blood vessels

exhibit little contrast leading to a lower vein image quality

in general, which can be seen in the bottom row of Fig-

ure 6 and in detail in Figure 3. Depending on the radiation

angle of the LED this gets worse the farther away the fin-

ger is from the illuminator, implying problems especially if

the distance between illuminator and finger cannot be easily

controlled. Figure 5 shows some example images captured

with our scanners. The distance between the finger and the

scanner surface varies from 0mm (directly on the scanner

surface), 20 mm and 40 mm. The images captured with

the LED based scanner (left part of the figure) clearly show

more bright areas around the finger boundaries and less im-

age contrast of the vein region the further away the finger

is from the scanner surface, while the laser based scanner

(images in right part of the figure) is still able to maintain a

good image contrast in the vein region. This is one of the

main problems if it comes to touchless finger-vein scanners.

The narrow radiation angle of the laser modules enables

an increased range of vertical finger movement (see Fig-

ure 4 for an illustration) without lowering the overall vein

image contrast and quality. This is a key requirement for

real touchless operation of a finger-vein scanner. Thus, the

design of a touchless finger-vein scanner becomes feasible

or at least less complex by utilising laser modules. Kim et

al. [5] were the first to propose the use of NIR lasers in-

stead of NIR LEDs in 2009. They exploited the increased

range of vertical finger movement and higher illuminous

flux compared to LEDs in their touchless finger-vein scan-

ner. In contrast to our design they used only one NIR laser

in combination with a laser line generator lens. They made a

real-time camera control software to achieve an optimal im-

age contrast instead of controlling the laser’s illumination

intensity. Their acquired data set consisting of 200 images
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Figure 2. PLUS OpenVein three-finger vein scanner laser version

Figure 3. Comparison of LED (left) and laser (right) illumination.

Note the bright spots along the left bottom part of the finger for the

LED scanner images which are reduced using the laser illumina-

tion.

captured from 10 different subjects has not been published.

Another advantage of NIR laser modules is that the emis-

sion spectrum of the laser modules is narrower compared to

LEDs. This enables the use of narrow band-pass filters in-

stead of NIR long-pass filters (filters all wavelengths below

the cut-off frequency but all frequencies above it will pass

unaffected) to further reduce the influence of ambient illu-

mination. The disadvantages of laser modules include the

higher current consumption (400 mA compared to 70 mA

for an LED), bigger size and the higher costs compared to

LEDs.

3. PLUSVein-FV3 Dorsal Finger-Vein Data Set

Table 1 lists some details of the the 8 publicly available

finger vein data sets we found so far, including the number

of subjects (subjs), the number of fingers per subject that

were captured (fings), the total number of images (imgs)

as well as if the images are captured from the palmar or

dorsal side (dors/palm). Furthermore, the number of ses-
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Figure 4. Illumination issues due to vertical finger movement: for

usual LEDs (depicted here is an LED with a radiation half angle of

15°) the further away the finger is from the illuminator, the higher

the amount of illuminous flux that is outside the finger. The more

illuminous flux outside the finger, the less image contrast and vein

visibility. Laser modules have a narrow radiation angle, thus the

illuminous flux outside the finger remains 0 if the finger is moved

in y-direction.
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Figure 5. Finger-vein images captured with our scanners show-

ing illumination issues due to vertical finger movement: note the

bright areas along the finger boundaries and the reduced contrast

of the vein region the further away the finger gets from the scan-

ner surface for the LED scanner images (left) compared to the laser

scannes ones (right) which still exhibit enough image contrast.

sions (sess), the image resolution and more important the

effective resolution of the visible finger area inside the im-

ages (finger w*h) as well as the type of camera and the il-

lumination type is given if this information was available.

The last row lists our new finger-vein data set.

This table clearly shows that all of these data sets except

the PROTECT Multimodal Database [16] are palmar finger-

vein data sets. Raghavendra and Busch [13] did some ex-

periments on dorsal finger veins but their data set has never

been published. Moreover, for all of these data sets, NIR



name subjs fings imgs dors/palm sess resolution finger w*h camera illumination

UTFVP [15] 60 6 1440 palmar 2 672× 380 672× 240 C-Cam BCi5 850 nm LEDs

SDUMLA-HMT [19] 106 6 3816 palmar 1 320× 240 320× 130 NIR CCD 900nm 890 nm LEDs

FV-USM [1] 123 4 5940 palmar 2 640× 480 170× 450 Sony PSEye cam 850 nm LEDs

VERA FingerVein [14] 110 2 440 palmar 2 665× 250 650× 240 C-Cam BCi5 850 nm LEDs

MMCBNU_6000 [9] 100 6 6000 palmar 1 640× 480 640× 240 - 850 nm LEDs

THU-FVFDT [18] 610 2 6540 palmar 2 720× 576 200× 500 camera + NIR filter 890 nm LEDs

HKPU-FID [6] 156 2 3132 palmar 2 512× 256 512× 190 NIR camera 850 nm LEDs

PMMDB-FV [16] 20 4 240 dorsal 1 1280× 440 1120× 400 UI-ML1240-NIR 850 nm LEDs

PLUSVein-FV3 60 6 3600 dorsal 1 1280× 1024 200× 750 UI-ML1240-NIR LEDs/laser

Table 1. Available finger-vein data sets

LEDs were used as light source. The main contributions of

our data set are:

1. A comprehensive dorsal finger-vein data set. We

aimed at optimising the acquisition set-up to achieve

a high and consistent image quality in order to obtain

a good recognition performance.

2. Images captured using two scanners: one with NIR

LED based illumination and one with NIR laser mod-

ule based illumination.

3. Subjects’ metadata enabling sub-group specific ana-

lysis (e.g. sex and age group as we performed in this

paper).

3.1. Data Set Description

The PLUSVein-FV3 finger-vein data set consists of 2

subsets: one dorsal finger-vein subset captured with the

LED based scanner and one dorsal finger-vein subset cap-

tured with the laser module based scanner. There are the

same 60 subjects in each of the 2 subsets. 6 fingers (left

and right index, middle and ring finger) and 5 images per

finger in 1 session were captured. So each subset consists

of 360 individual fingers. Each scanner captures 3 fingers at

a time. Thus, each subset contains 600 raw finger-vein im-

ages. Some of these example images can be seen in Figure

6. The images are then separated into 3 parts, correspond-

ing to index, middle and ring finger, respectively. Hence,

there are effectively 1800 images in each subset and 3600

images in the data set in total. 25 of the subjects are female,

35 are male. The youngest subject was 18, the oldest one

79. The subjects are from 11 different countries.

The raw images have a resolution of 1280× 1024 pixels

and are stored in 8 bit greyscale png format. The separ-

ated images have a resolution of 420 × 1024 pixels and

the visible area of the finger inside the images is about

200×750 pixels per finger. The data set is publicly available

for research purposes and can be downloaded at: http:

//www.wavelab.at/sources/PLUSVein-FV3. It

is still being extended and is expected to contain more than

100 subjects until the end of 2018.

Figure 6. Scanner example images, laser (top) and LED (bottom)

4. Performance Evaluation

In the following the finger-vein processing tool-chain

and the evaluation protocol are described. Then the experi-

mental results are given and discussed.

4.1. Processing Tool­Chain

The finger-vein processing tool-chain consists of ROI

(region of interest) extraction, preprocessing, feature ex-

traction and comparison. We opted for simple binarisation

type feature extraction methods as well as one key-point

based method (SIFT based) to have a complimentary fea-

ture type too. If these simple recognition schemes perform

well on our data set, more recent and more sophisticated

recognition schemes will certainly perform even better. Im-

plementations of all of the methods we used are publicly

available.

ROI Extraction At first the input image is split into 3

parts, corresponding to index, middle and ring finger, re-

spectively. This can be done using fixed boundary lines.

Afterwards each image is processed individually. Prior to

the extraction of the ROI, the finger outline is detected by

the help of edge detection algorithms. Then a straight centre

line is fitted into the finger. Based on this centre line, the fin-

ger is aligned (rotated and shifted) such that it is in upright

position in the middle of the image. Then the area outside

the finger is masked out (pixels set to black). Then a rect-

angular ROI is fit inside the finger area. The ROI images



Figure 7. ROI extraction process, from left to right: input image,

left finger separated, finger outline and centre line detection, finger

aligned and masked, ROI boundary

have a size of 192× 736 pixels. The single steps of the ROI

extraction are depicted in Figure 7.

Preprocessing To improve the image contrast and the vis-

ibility of the vein pattern CLAHE [22], which is the most

prevalent and simple technique, in combination with High

Frequency Emphasis Filtering (HFE) [21] and filtering

with a Circular Gabor Filter (CGF) as proposed by Zhang

and Yang [20] are applied. Furthermore, the images are res-

ized to half of its original size, which not only speeds up the

comparison process but further improves the results due to

intrinsic denoising. For more details on the preprocessing

methods the interested reader is referred to the authors’ ori-

ginal publications..

Feature Extraction and Comparison The first three of

the following techniques aim to extract the vein pattern from

the background resulting in a binary template image fol-

lowed by a comparison of these binary templates using a

correlation measure.

Maximum Curvature (MC [12]) aims to emphasise

only the centre lines of the veins, making it insensitive to

varying vein widths. The first step is the extraction of the

centre positions of the veins. Afterwards a score according

to the width and curvature of the vein region is assigned to

each centre position and recorded in a matrix called locus

space. Due to noise or other distortions some pixels may

not have been classified correctly at the first step, thus the

centre positions of the veins are connected using a filtering

operation. Finally binarisation is done by thresholding us-

ing the median of the locus space.

Principal Curvature (PC [2]): At first the gradient field

of the image is calculated. Hard thresholding is done to fil-

ter out small noise components and then the gradient at each

pixel is normalised to 1 to get a normalised gradient field.

This is smoothed by applying a Gaussian filter. The next

step is the actual principal curvature calculation, obtained

from the Eigenvalues of the Hessian matrix at each pixel.

Only the bigger Eigenvalue, corresponding to the maximum

curvature, is used. The last step is a binarisation of the prin-

cipal curvature values to get the binary vein output image.

Gabor Filter (GF [6]): The image is filtered using a fil-

ter bank consisting of several 2D even symmetric Gabor fil-

ters with different orientations, resulting in several feature

images. The final vein feature image is obtained by fusing

all these single images, which is then post-processed using

morphological operations to remove noise.

For comparing the binary feature images we adopted the

approach of Miura et al. [12]. As the input images are

neither registered to each other nor aligned vertically, the

correlation between the input image and x- and y-direction

shifted versions of the reference image is calculated. The

maximum of these correlation values is normalised and then

used as final comparison score.

In addition to the techniques described above, the fourth

technique is a key-point based one. Key-point based tech-

niques try to use information from the most discriminative

points as well as considering the neighbourhood and context

information of these points by extracting key-points and as-

signing a descriptor to each key-point. We used a SIFT [8]

based technique with additional key-point filtering along the

finger boundaries as proposed by Kauba et al. [4].

4.2. Evaluation Protocol

To quantify the performance, the EER as well as the

FMR1000 (the lowest FNMR for FMR <= 0.1%) and

the ZeroFMR (the lowest FNMR for FMR = 0%) are

used. We followed the test protocol of the FVC2004 [10].

For calculating the genuine scores, all possible genuine

comparisons are performed, which are 62 · 6 ·
5·4

2
= 3600

comparisons. For calculating the impostor scores, only the

first image of a finger is compared against the first image

of all other fingers, resulting in 6 · 60·59

2
= 10620 compar-

isons, so 14220 comparisons in total. All result values are

given in percentage terms, e.g. 1.43 means 1.43%. A pub-

lic implementation of the complete processing tool-chain

as well as the score and detailed results are available at:

http://www.wavelab.at/sources/Kauba18c.

4.3. Baseline Performance Results

Table 2 shows the baseline recognition performance res-

ults for all 4 tested finger-vein recognition schemes and both

scanner types, laser and LED. All of the 4 quite simple

finger-vein recognition schemes achieve a competitive re-

cognition performance in terms of EER, FMR1000 as well

as ZeroFMR on both, the laser and the LED scanner data

set. The DET plots for the laser and the LED scanner can be

found in Figure 8 left and right, respectively. Regarding the

laser scanner data set, MC performs best achieving an EER

of 0.028%, followed by SIFT and PC while GF performs

worst. On the LED scanner data set, PC performs slightly

better than MC (in terms of ZeroFMR), both having an EER

of 0.028%. SIFT is ranked third while GF again performs



MC PC SIFT GF
la

se
r EER 0.028 0.331 0.111 0.523

FMR1000 0.028 0.444 0.111 0.694

ZeroFMR 0.028 0.694 0.361 1.306

L
E

D

EER 0.028 0.028 0.117 0.336

FMR1000 0.028 0.028 0.139 0.444

ZeroFMR 0.083 0.056 0.361 0.917

Table 2. Baseline performance results (the best results per illumin-

ation type are highlighted bold)

Figure 8. DET plot for laser scanner (left) and LED (right)

worst. Note that due to the limited number of comparison

scores (14220) the resolution of the DET curve is limited.

Thus, the DET curve of MC and the one of PC for the

LED scanner shows a straight line between 0.01% and 0.1%

(0.6% for MC on the LED scanner and 1.2% for PC on the

LED scanner, respectively). Consequently, the EER could

be any value in between 0.028% and 0.1%/0.6%/1.2%, re-

spectively. We decided to report the lowest possible FRR as

EER in those cases. In our scanner set-up, where the fin-

gers are placed directly above the illumination source, the

tested recognition schemes perform slightly better on the

LED scanner data set than on the laser one, especially PC

and GF. However, the laser based scanner has its main ad-

vantage in terms of recognition performance if the finger is

not placed directly on the scanner surface but located a few

centimetres away from it (touchless operation).

4.4. Cross­Sensor Comparison Performance

The cross-sensor recognition performance results are

given in Tab. 3. MC performs best if it comes to

cross-sensor comparison achieving a competitive EER of

0.288%. This time GF performs second best, followed

by PC while SIFT performs worst. In terms of relative

performance degradation (
EERi,cross−EERi,single

EERi,single
· 100%,

where EERi,cross is the cross-sensor comparison EER for

the i-th recognition scheme and EERi,single is the lower

of the two single sensor performances for the corresponding

recognition scheme), MC’s performance dropped by about

930%. PC’s performance dropped by 740%, the one of

SIFT by 2340% and the one of GF only by 160% in terms

of relative EER increase. According to these relative per-

MC PC SIFT GF

EER 0.288 2.775 2.86 1.353

FMR1000 0.478 5.078 5.622 3.522

ZeroFMR 1.267 6.522 7.689 8.144

Table 3. Cross-sensor (LED vs. laser) comparison performance

results

male female

MC SIFT MC SIFT

nr. of subjects 35 25

la
se

r EER 0.0 0.038 0.061 0.122

FMR1000 0.0 0.286 0.067 0.2

ZeroFMR 0.0 0.429 0.067 0.4

L
E

D

EER 0.089 0.052 0.0 0.211

FMR1000 0.048 0.048 0.0 0.267

ZeroFMR 0.95 0.048 0.0 0.533

Table 4. Sex subgroup specific results

formance drops GF can handle the cross-sensor comparison

best. However, MC still performs best in terms of absolute

performance values in the cross-sensor comparison. Sum-

ming up, the cross-sensor comparison lowers the recogni-

tion performance but is still usable in practical deployments

of finger-vein scanners, especially if it comes to MC.

4.5. Sex and Age Group Specific Analysis

In addition to the baseline performance evaluation we

also conducted a subset specific analysis. Therefore, we di-

vided the total data set into 2 sex (male/female) and 3 age

group (< 30 / ≥ 30 < 40 /≥ 40) specific subsets. To

keep the tables and plots clear, only the results of MC and

SIFT are depicted. PC and GF follow the same trend. The

sex subgroup specific results are given in table 4. While

the general performance (including male and female sub-

jects) in terms of EER for MC using the LED scanner data

is 0.028%, for the male subset it is 0.089%, whereas for the

female one it is 0%. For SIFT the situation is completely

opposite: the baseline EER for the LED scanner data is

0.117%, for the male subset it is 0.052% and for the fe-

male one it is 0.211%. Regarding the laser scanner, male

subjects achieve a slightly better recognition performance

than female ones for both, MC and SIFT. Overall, there is

no substantial difference between male and female subjects

regarding the recognition performance using our finger-vein

recognition system including the scanner hardware and the

recognition tool-chain.

The age-group specific results are listed in table 5. It can

be seen that for the LED scanner the EER as well as the

FMR1000 and the ZeroFMR are all 0%, i.e. the best re-

cognition performance that can be achieved. Consequently,

there is no difference between the three age subgroups, i.e.

the finger-vein recognition system’s performance is inde-



< 30 ≥ 30 < 40 ≥ 40

MC SIFT MC SIFT MC SIFT

nr. of subjects 19 21 20

la
se

r EER 0.0 0.0 0.0 0.0 0.0 0.0

FMR1000 0.0 0.0 0.0 0.0 0.0 0.0

ZeroFMR 0.0 0.0 0.0 0.0 0.0 0.0

L
E

D

EER 0.0 0.0 0.0 0.0 0.0 0.0

FMR1000 0.0 0.0 0.0 0.0 0.0 0.0

ZeroFMR 0.0 0.0 0.0 0.0 0.0 0.0

Table 5. Age subgroup specific results

metric BIQAA SSEQ GCF Wang17

laser 0.00461 28.5888 1.289 0.32679

LED 0.00423 36.4295 1.419 0.30035

Table 6. Image quality evaluation results, BIQAA values are in the

range of [0, 1], SSEQ in [0, 100], GCF in [0, 8] and Wang17 in [0,

1]. Higher values correspond to higher image quality, except for

SSEQ where 0 is the best quality.

pendent of the subject’s age. The results for the laser scan-

ner are in line with the LED ones. Note that this is only a

first indicator as the number of subjects/fingers in each of

the subgroups is low. In order to arrive at a more profound

statement, a larger data set is needed.

4.6. Image Quality Assessment

The finger-vein images were analysed using 2 general

image quality metrics (BIQAA [3] and SSEQ [7]). BIQAA

and SSEQ were selected as they have been proved to be well

suited for natural scene images. As they are based on im-

age entropies they should perform well using arbitrary, not

necessarily natural scene images, too. Moreover, GCF [11]

was selected as it is a general image contast metric and thus

independent of the image content. With the help of GCF the

image contrast can be quantified exclusively disregearding

the actual image content. As we aim to quantify the image

quality of finger-vein images, of course a vein specific NIR

image quality metric, Wang17 [17] was included as well.

The image quality assessment results, listed in Tab. 6 are

diverse. The recognition performance of the LED scanner

is superior compared to the laser one. However, only GCF

indicated that the LED images exhibit a higher image qual-

ity while BIQAA, SSEQ and Wang17 indicate the contrary.

Hence, a reliable prediction of the recognition performance

based on the assessed image quality is not possible.

5. Conclusion and Future Work

Two new, modular designed, multi-purpose finger-vein

scanners have been proposed. The first one is based on

widely used NIR LED illumination while the second one

uses NIR lasers. NIR lasers have hardly been used in finger-

vein recognition despite their advantages over LEDs, espe-

cially if it comes to touchless operation. Due to the narrow

radiation angle of the lasers they enable an increased range

of vertical finger movement without lowering the image

contrast and overall image quality. A new dorsal finger-vein

data set captured by utilising our two proposed scanners has

been established. This data set contains 360 individual fin-

gers (60 subjects and 6 fingers each), is publicly available

for research purposes and can be downloaded at: http:

//www.wavelab.at/sources/PLUSVein-FV3.

The performance evaluation on our new data set confirms

the decent recognition performance that can be achieved

using our proposed scanner design, both the LED and the

laser version and in the cross-sensor comparison scenario as

well. Even the selected simple but well-established finger-

vein recognition schemes arrived at quite a remarkable per-

formance. In our set-up, where the finger is placed directly

on top of the illumination source, the LED based scanner

is able to compete and even slightly outperform the laser

based version. However, this situation changes if the finger

is placed a few centimetres away from the illuminator, then

the laser scanner will outperform the LED one.

Moreover, a sex and age group specific subset analysis

has been carried out which indicates that there is no sub-

stantial difference in terms of recognition performance for

male and female subjects as well as among the different age

groups of the subjects. Such a subgroup specific analysis

has not been performed before. These results need further

investigation and confirmation based on a larger data set.

As mentioned in the introduction, all the details about the

scanner and its design will be made available as an open-

hardware documentation together with an open-source re-

pository where construction plans, schematics, parts lists,

firmware, etc. can be found. Researchers can benefit from

our open-source design, as it enables them to build a scan-

ner based on our design on their own. By capturing and

providing finger-vein images using a scanner based on our

design, i.e. having essentially the same structure as we pro-

posed, they can contribute to a large, open, publicly avail-

able finger-vein data set. The whole finger-vein research

community will benefit from such a data set.

Together with our partners as well as other researchers

building a scanner device based on our design, we are con-

fident that our data set will continue to grow in the future.

We are currently capturing further subjects in-house and our

finger-vein data set is expected to contain more than 100

subjects by the end of 2018. Furthermore, we are extending

our data set by capturing palmar finger-vein images as well,

which will be released soon.
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