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Abstract

The near-infrared light source is a crucial part of a hand-

vein scanner. Depending on its position there are two main

illumination types: reflected light and transillumination.

Commercial scanners and all publicly available data sets

use reflected light. We established two dual illumination

dorsal hand-vein data sets (one of them is made publicly

available) including both, reflected light and transillumin-

ation images acquired using the same subjects, hand pos-

ition and environmental conditions. This enables a direct

comparison of both illumination scenarios as well as cross-

illumination matching. Several experiments utilising com-

mon hand-vein recognition algorithms were carried out to

quantify the recognition performance in each of the illumin-

ation scenarios and in the cross-illumination matching one.

1. Introduction

Biometric authentication systems are well established

today as they exhibit many advantages over traditional pass-

word and token based ones. The most prominent examples

are fingerprint and face recognition systems. In recent

times, authentication based on finger- and hand-veins gains

more attention as it provides advantages over the well es-

tablished fingerprint ones. Hand-vein recognition utilises

the pattern of the blood vessels inside the hand of a human,

which is captured using near-infrared (NIR) illumination.

The vein patterns are neither susceptible to abrasion nor to

skin surface conditions. However, hand-vein based systems

need relatively big capturing devices compared to finger-

print sensors, the vein images have low contrast and quality

in general and the vein structure may be influenced by tem-

perature, physical activity and certain injuries and diseases.

NIR illumination is the key to finger- and hand-vein re-

cognition. The positioning of the light source with respect

to the camera and the subject’s finger or hand plays an im-

portant role. We distinguish between reflected light, where

the light source and the camera are placed on the same side

of the hand and transillumination, where the light source

and the camera are located on the opposite side of the hand.

In hand-vein recognition all of the publicly available data

sets use reflected light illumination [1, 3, 8, 17, 6]. Some

authors used transillumination [20, 16], however their data

sets are not available. Furthermore, all commercial hand-

vein scanners are based on reflected light. To the best of our

knowledge there is no direct comparison of transillumin-

ation and reflected light in terms of recognition perform-

ance (requiring a data set containing both illumination con-

ditions). Moreover, it is not clear if cross matching between

reflected light and transillumination data is feasible.

The main goal of this work is to shed some light on

these two different illumination types. We established

one in-house and one publicly available dual illumination

dorsal hand vein data set, both containing images acquired

utilising reflected light (one of them with two different

wavelengths, 850 nm and 950 nm) and transillumination

of the same subjects. The hand remained in the same po-

sition during capturing of the different illumination condi-

tions. Based on these data sets the individual performances

of several hand-vein recognition algorithms are evaluated

and compared with respect to reflected light and transil-

lumination. The second set of experiments is devoted to

cross matching scenarios, reflected light - transillumination

as well as reflected light 850 nm - reflected light 950 nm in

order to assess the practical feasibility of cross-illumination

matching. Based on the results we give an explanation why

cross-illumination matching cannot work straight forward

using simple vein feature extraction methods.

The rest of this paper is organised as follows: Section

2 gives an overview of hand-vein recognition. At first the

principle of the acquisition hardware is explained, including

the different types of illumination, followed by a summary

of available hand-vein data sets. Then a brief overview of

the evaluated preprocessing, feature extraction and match-

ing methods is given. Section 3 describes the two data sets

and the scanner hardware used during the acquisition. Sec-
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tion 4 outlines the experimental set-up, lists and discusses

the results. Section 5 concludes this paper.

2. Hand Vein Recognition

Hand-vein recognition cannot be done without capturing

the biometric trait, i.e. the vein patterns, using an appropri-

ate scanner. A hand-vein scanner consists of 2 basic com-

ponents: a NIR sensitive camera and a NIR light source.

Usually there is some automatic illumination intensity con-

trol to achieve an optimal contrast of the vein images. The

wavelength of the NIR light source is between 730 and 950

nm as this NIR light is absorbed by the haemoglobin in the

blood flowing through the veins and arteries. Thus, they

appear as dark lines in the captured images. The camera

should be equipped with an IR pass-through filter to block

the ambient light and further enhance the image contrast.

2.1. Illumination Types

Two main illumination types are distinguished: reflec-

ted light and transillumination. Figure 1 shows the posi-

tioning for both illumination types. For reflected light, the

light source and the camera are positioned on the same side

of the hand, either palmar or dorsal. The light originates

from the light source, gets reflected at the hand’s surface

and tissue and is captured by the camera. Usually images

are taken from the palmar part. All commercial available

hand-vein scanners (Fujitsu, Sensometrix) are using reflec-

ted light. They can be built as small as fingerprint scanners,

but are more sensitive to ambient light as well as dirt and

e.g. sun lotion on the hand surface. In the transillumina-

tion setting the light source and the camera are placed on

opposite sides of the hand. The light penetrates the skin and

tissue of the hand and gets captured by the camera after-

wards. Ttransillumination requires a higher light intensity

than reflected light and the whole scanner device is bigger

(due to the opposite positioning). But usually more of the

small, thin veins are visible and the influence of ambient

light and hand surface conditions is reduced. In contrast to

commercial hand-vein scanners, most commercial available

finger-vein scanners (Hitachi) are based on the transillumin-

ation principle, which can be built more compact than the

hand-vein ones and achieve better performance at finger-

veins than reflected light.

2.2. Public Datasets

Table 1 provides an overview of the publicly available

hand-vein data sets. All of these data sets use reflected light

illumination.

2.3. Preprocessing, Feature Extraction and Match-
ing

The hand-vein recognition toolchain consists of prepro-

cessing, feature extraction and matching. We opted for

Near-IR

Illumination

Image

Sensor

Veins

Near-IR

Illumination

Image Sensor

Veins

Figure 1. Transillumination (left) and reflected light illumination

(right) principle.

simple binarisation type feature extraction methods as their

output feature images can be compared visually. Thus, they

are more suitable to highlight the differences across the illu-

mination scenarios in the figures. In addition, we included

a key-point based method (SIFT based) to have a compli-

mentary feature type too. Implementations of all of the

methods we used are publicly available.

Preprocessing tries to enhance the low contrast and im-

prove the image quality. We applied CLAHE [22], which

is the most prevalent and simple technique, as well as High

Frequency Emphasis Filtering (HFE), which was pro-

posed especially for hand vein image enhancement [21]. In

addition, filtering using a Circular Gabor Filter (CGF) as

proposed by Zhang and Yang [19] was utilised. Further-

more, the images were resized to half of its original size,

which not only speeded up the matching process but further

improved the results due to intrinsic denoising. For more

details on the preprocessing and feature extraction methods

the interested reader is referred to [9].

Feature Extraction and Matching The methods we used

were originally proposed for finger vein recognition but

have been successfully applied in hand-vein recognition too

[10]. The first three of the following techniques aim to ex-

tract the vein pattern from the background resulting in a

binary template image followed by a comparison of these

binary templates using a correlation measure.

Maximum Curvature (MC [15]) aims to emphasise

only the centre lines of the veins, making it insensitive to

varying vein widths. The first step is the extraction of the

centre positions of the veins. Afterwards a score according

to the width and curvature of the vein region is assigned to

each centre position and recorded in a matrix called locus

space. Due to noise or other distortions some pixels may

not have been classified correctly at the first step, thus the

centre positions of the veins are connected using a filtering

operation. Finally binarisation is done by thresholding us-

ing the median of the locus space.
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Name Images Subjects Imgs/

hand/

session

Dorsal/palmar Resolution Illumin. type Camera type

CIE [8] 2400 50 12 palmar and wrist 1280× 960 reflected light low cost USB camera

Vera Palm Vein [17] 2200 110 5 palmar 580× 680 reflected light -

Bosphorus Hand Vein [1] 1575 100 3 dorsal 300× 240 reflected light monochrome NIR CCD

camera

CASIA Multispectral [6] 7200 100 18 palmar 660× 550 reflected light multi-spectral imaging

device

Tecnocampus Hand Image [3] 6000 100 12 palmar and dorsal 640× 480 reflected light NIR, visible light and

thermal

Table 1. Publicly available hand-vein data sets

Principal Curvature (PC [2]): At first the gradient field

of the image is calculated. Hard thresholding is done to fil-

ter out small noise components and then the gradient at each

pixel is normalised to 1 to get a normalised gradient field.

This is smoothed by applying a Gaussian filter. The next

step is the actual principal curvature calculation, obtained

from the Eigenvalues of the Hessian matrix at each pixel.

Only the bigger Eigenvalue, corresponding to the maximum

curvature, is used. The last step is a binarisation of the prin-

cipal curvature values to get the binary vein output image.

Gabor Filter (GF [11]): The image is filtered using a

filter bank consisting of several 2D even symmetric Gabor

filters with different orientations, resulting in several feature

images. The final vein feature image is obtained by fusing

all these single images, which is then post-processed using

morphological operations to remove noise.

For matching the binary feature images we adopted the

approach of Miura et al. [15]. As the input images are

neither registered to each other nor aligned, the correlation

between the input image and x- and y-direction shifted ver-

sions of the reference image is calculated. The maximum of

these correlation values is normalised and then used as final

matching score. Hand-vein images, especially ROI images,

cannot be rotationally aligned like finger vein images (based

on the finger outline), so we had to account for differently

rotated images. Our main focus is on matching performance

and not on runtime. Thus, the rotation correction is simply

done by matching the template image against rotated ver-

sions (steps of 0.5° in a range of ±15°) of the probe image

and again using the maximum score as final matching score.

In contrast to the techniques described above, key-point

based techniques try to use information from the most dis-

criminative points as well as considering the neighbourhood

and context information of these points by extracting key-

points and assigning a descriptor to each key-point. We

used a SIFT [12] based technique with additional key-point

filtering as proposed by Kauba et al. [9].

3. Dual Illumination Hand-Vein Data Sets

In this section we describe our two dual illumination (re-

flected light and transillumination) hand-vein data sets.

Transillumination

light source

Reflected light

source

Camera mount

Finger

guide

Figure 2. Hand-vein scanner for VeinPLUS (left) and a detail of

the surface where the hand is placed including the light source for

transillumination (right).

VeinPLUS [4]: The scanner used for capturing the Vein-

PLUS data set consists of a modified Canon EOS 5D

MarkII DSLR (removed IR-blocking filter) with an addi-

tional 830 nm IR pass-through filter, mounted on the top of

the scanner box. There are two NIR LED light sources, one

for transillumination using a NIR surveillance lamp with 50

940 nm LEDs, mounted below a glass plate, and 6 950 nm

NIR LEDs mounted on top of the wooden box for reflected

light. The hand is placed on top of the glass plate above the

transillumination light source (see Figure 2).

The data set consists of 107 subjects, 2 hands per subject

for most of the subjects, at least 3 images per hand and 2

illumination settings per hand, resulting in a total of 1213

RGB colour dorsal hand-vein images with a resolution of

2784 × 1856 pixels. The extracted ROIs are 500 × 500

pixels. More details about the scanner and the database can

be found in [4]. Figure 3 shows some example images.

PROTECT Multimodal Biometric Data Set [18]: The

hand-vein data set included in the PROTECT Multimodal

Biometric Database (PROTECTVein) was acquired using

a custom built scanner shown in Figure 4. This scanner uses

two imaging devices. The first one is a NIR enhanced indus-

trial camera (IDS Imaging UI-1240ML-NIR, max. resolu-

tion 1280x1024 pixels) together with a 9 mm wide-angle-

285



Figure 3. Example images of the the VeinPLUS data set. Left:

transillumination, right: reflected light.

Nexus 5

Camera

IDS

Camera

Reflected light

850 nm

Reflected light

950 nm

Transillumination

light source

Figure 4. Hand-vein scanner for PROTECTVein. Left: actual

hardware, right: schematic diagram of the set-up.

lens. The second one is a modified Nexus 5 smartphone (by

EigenImaging), which has its IR-blocking filter removed

but has no additional IR pass-through filter, max. resolu-

tion 3264x2448 pixels. The scanner has 4 different light

sources. A 16x16 NIR LED matrix (850 nm LEDs) at the

bottom for transillumination, where the brightness of each

LED can be controlled separately and two intensity con-

trollable 4x4 NIR LED panels at the top, one using 850 nm

LEDs and the other one using 950 nm LEDs, both dedicated

to reflected light. In addition, there are 2 3x3 LED panels

consisting of white LEDs to support the Nexus 5 at focus-

ing. Thus, 3 different illumination scenarios and 2 capturing

devices are available, resulting in 6 different sub data sets.

This data set consists of 40 users, both hands, 5 images

per hand (each time removing the hand from the device and

putting it in again) and 3 illumination types captured with

both cameras in one session, resulting in 40 · 2 · 5 = 400

dorsal hand-vein images per subset and 400 · 3 · 2 = 2400

images in total. The hand remained in the same position

while capturing all 6 different camera/illumination condi-

tions. The images captured with the IDS camera are grey-

scale with a resolution of 720 × 720 pixels. The Nexus 5

images are RGB, 3264× 2448 pixels. Figure 5 shows some

example images. The ROI was extracted manually. The

ROI images have a size of 384 × 384 pixels for the IDS

camera and 704× 704 for the Nexus 5.

Due to legal issues we are not allowed to publish the

Figure 5. Example images of the PROTECTVein data set. First

row showing the images captured with the IDS camera (from left

to right: reflected light 850 nm, reflected light 950 nm, transillu-

mination), second row showing the Nexus 5 images.

PLUSVein data set as the original consent form does not

include the right to publish the acquired hand vein im-

ages. The PROTECTVein data set is publicly available and

can be downloaded at: http://projectprotect.

eu/dataset/.

4. Experiments

The experiments are split into two main parts: The first

part deals with the performance evaluation of each single

data set in order to compare the performance of reflected

light versus transillumination. The second part deals with

the cross matching performance between the three differ-

ent illumination scenarios. To quantify the performance,

the EER as well as the FMR1000 (the lowest FNMR for

FMR <= 0.1%) and the ZeroFMR (the lowest FNMR

for FMR = 0%) are used. For their calculation we fol-

lowed the test protocol of the FVC2004 [13]. Only the

ROI images of both data sets were used. All values are

given in percentage terms, e.g. 2.35 means 2.35%. An

implementation of our complete toolchain as well as the

performance evaluation score sets are available at: http:

//www.wavelab.at/sources/Kauba18a/.

4.1. Single illumination/spectrum results

Table 2 lists the results for the VeinPLUS data set. MC

using transillumination achieves the best performance in

terms of EER (0.255%) as well as FMR1000 and ZeroFMR,

followed by PC, then by GF and SIFT performing worst.

For VeinPLUS reflected light leads to an inferior recogni-

tion performance compared to transillumination in general.

The results for the first subset (IDS camera) of the PRO-

TECTVein data set are given in Table 3. In general MC per-

forms best, followed by GF and PC while SIFT performs

worst, except for reflected light 950 nm, where it performs

best with an EER as low as 0.093%. This is due to the vis-
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MC PC SIFT GF

Transillum.

EER [%] 0.255 0.329 0.979 0.411

FMR1000 [%] 0.41 0.329 5.164 0.411

ZeroFMR [%] 0.574 0.656 8.852 0.411

Refl. Light

EER [%] 0.969 0.788 1.402 3.047

FMR1000 [%] 1.655 0.958 4.268 4.53

ZeroFMR [%] 2.885 2.0 5.923 6.36

Table 2. VeinPLUS recognition performance results

MC PC SIFT GF

Transillum.

EER [%] 1.496 3.741 4.707 1.621

FMR1000 [%] 2.114 15.79 12.94 1.866

ZeroFMR [%] 2.239 19.65 12.94 1.866

Reflected 850

EER [%] 0.253 0.253 3.377 0.253

FMR1000 [%] 0.254 0.373 8.085 0.373

ZeroFMR [%] 0.254 0.373 8.582 0.746

Reflected 950

EER [%] 0.124 0.373 0.093 0.249

FMR1000 [%] 0.248 0.373 0.1 0.371

ZeroFMR [%] 0.248 0.373 0.495 0.495

Table 3. PROTECTVein IDS recognition performance results

MC PC SIFT GF

Transillu-

mination

EER [%] 3.134 2.759 7.899 26.77

FMR1000 [%] 17.73 5.535 24.91 59.25

ZeroFMR [%] 19.75 7.925 29.43 59.75

Reflected

Light 850

EER [%] 5.41 3.752 19.61 34.65

FMR1000 [%] 12.39 14.64 54.19 78.6

ZeroFMR [%] 15.27 16.9 60.58 81.85

Reflected

Light 950

EER [%] 6.572 8.113 12.14 40.88

FMR1000 [%] 30.13 26.71 44.68 89.87

ZeroFMR [%] 30.5 31.27 53.92 92.03

Table 4. PROTECTVein Nexus 5 recognition performance results

ibility of both, the vein pattern and detailed skin texture of

the hand surface in the images. SIFT extracts keypoints and

information from all the visible texture, thus there is more

distinguishable information in this case, which increases its

recognition performance. MC achieves the best recognition

performance using reflected light 950 nm with an EER of

0.124%. Reflected light 850 nm performs better when us-

ing GF but not for the other recognition schemes. This time

transillumination performs by far worse than both reflected

light illumination scenarios, which is in contrast to the Vein-

PLUS results, where transillumination outperformed reflec-

ted light. See Section 4.3 for a discussion on this finding.

Table 4 lists the results for the second subset (Nexus 5

Smartphone) of the PROTECTVein data set. Compared to

the first subset (IDS camera), the recognition performance

is clearly inferior. The Nexus 5 camera has its IR block-

ing filter removed but is not especially designed for NIR

light, i.e. the higher the wavelength the lower the sensitiv-

ity. Thus, reflected light 950 nm performs worst, followed

by reflected light 850 nm. Transillumination works best,

simply due to the higher light intensity. PC performs best

(except for reflected light 950 nm), followed by MC and

SIFT. GF performs by far worst for the Nexus 5 images.

MC PC SIFT GF

EER [%] 49.47 49.98 55.79 55.96

FMR1000 [%] 99.29 99.91 99.91 99.55

ZeroFMR [%] 99.91 99.91 99.91 99.64

Table 5. VeinPLUS reflected light against transillumination match-

ing recognition performance results

Figure 6. Two example comparisons (left part and right part)

between reflected light (top right) and transillumination (top left)

for VeinPLUS. The second row shows the corresponding MC fea-

ture extraction and the third row an overlay of both (green is trans-

illumination, red is reflected light).

4.2. Cross-spectrum and cross-illumination results

Table 5 shows the cross-illumination matching results for

VeinPLUS. The EER values are around 50% or even above

and the FMR1000/ZeroFMR are almost 100%. This clearly

points out that cross-illumination matching between transil-

lumination and reflected light is not possible, at least not in

a straightforward manner.

The cross-illumination matching results for the IDS cam-

era sub set of PROTECTVein are listed in Table 6. MC

and PC perform well for reflected light 850 nm against

reflected light 950 nm. Thus cross-spectrum matching

between the different wavelengths of reflected light is pos-

sible. SIFT does not perform well, i.e. it is not suitable

for cross-spectrum matching in this case. The performance

for transillumination - reflected light is more than 50 times

worse than for reflected light, indicating that again cross-

illumination matching is not feasible in this case.

The results for the Nexus 5 subset of the PROTECT-

Vein data set in Table 7 are in line with the ones for the

IDS camera subset meaning that cross-illumination match-

ing performs worse compared to the single illumination one

in each test case.

4.3. Results Discussion

The hand-vein specific feature extraction methods (MC

and PC) outperformed the more general purpose SIFT ap-
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MC PC SIFT GF

Trans. -

Ref. 850

EER [%] 7.61 23.32 46.49 14.08

FMR1000 [%] 40.72 81.69 99.75 49.07

ZeroFMR [%] 58.41 87.17 99.86 50.81

Trans. -

Ref. 950

EER [%] 8.58 19.06 43.35 13.66

FMR1000 [%] 33.25 63.14 99.88 40.35

ZeroFMR [%] 39.1 65.13 99.88 54.17

Ref. 850 -

Ref. 950

EER [%] 0.593 3.37 34.11 0.874

FMR1000 [%] 1.733 8.787 96.78 1.98

ZeroFMR [%] 1.856 9.9 98.51 3.094

Table 6. PROTECTVein cross-illumination matching IDS results

Figure 7. Example comparison 1 between transillumination (left),

reflected light 850 (middle) and reflected light 950 (right) for PRO-

TECTVein. The first row shows the ROI images, the second row

the corresponding MC feature extraction images. Basically the

same veins are visible in the MC feature images, but there are not

in the exact same positions (see Figure 9).

Figure 8. Example comparison 2 between transillumination and

reflected light for PROTECTVein. Cf. Figure 7.

proach. They steadily exhibit good recognition rates in

terms of EER/FMR1000/ZeroFMR across the different illu-

mination settings and sensors except for the Nexus 5 sensor.

Image sensor The modified Nexus 5 smartphone is not

able to keep up with industrial NIR enhanced cameras.

It achieved a significantly lower recognition performance

compared to the IDS camera.

Figure 9. MC features overlay for Figure 7 (left) and 8 (right). Red

is reflected light 850 nm, green is reflected light 950 nm and blue

is transillumination. For example subject 1 there is only little dis-

placement between the different illuminations while there is more

displacement for example subject 2.

MC PC SIFT GF

Trans. -

Ref. 850

EER [%] 20.5 23.34 48.13 48.97

FMR1000 [%] 57.86 72.7 99.5 99.62

ZeroFMR [%] 59.12 80.0 99.85 99.74

Trans. -

Ref. 950

EER [%] 19.12 23.3 49.97 45.72

FMR1000 [%] 59.62 78.35 99.87 98.61

ZeroFMR [%] 62.15 83.04 99.87 99.37

Ref. 850 -

Ref. 950

EER [%] 13.2 13.2 49.41 46.18

FMR1000 [%] 37.74 42.77 99.87 96.86

ZeroFMR [%] 41.76 58.99 99.87 97.48

Table 7. PROTECTVein cross-illumination matching Nexus 5 res-

ults

Reflected light 850 nm vs. 950 nm The PROTECTVein

data set results confirm that 950 nm improves the perform-

ance compared to 850 nm reflected light if the camera is a

dedicated NIR one (improvement for the IDS subset but not

for the Nexus 5 one).

Reflected light vs. transillumination Concerning

the PROTECTVein IDS camera subset, transillumination

achieved a lower performance than reflected light due to

the following reasons: In contrast to the VeinPLUS scanner,

which has a diffuse illuminator directed at the inside walls

of the box with fixed light intensity only, the reflected light

illuminator of the PROTECTVein scanner is directed at the

hand surface and has an automatic intensity control, which

improves the illumination. Second, transillumination needs

a high light intensity to shine through the whole hand. The

light intensity of the NIR LED board was not high enough

to shine through some thicker hands, which can be seen in

the images (the lower parts are almost dark) in top left of

Figure 7 and 8. Analysing the images of the PROTECT-

Vein IDS subset using 3 image contrast metrics, GCF [14],

and two information entropy based ones GLES (Grey Level

Entropy Score) and ES (Entropy Score) (section 5.1 and 2.4

in [5])) (see Table 8 for the results), reveals that the reflected

light images exhibit higher image contrast and quality than

the transillumination ones. Therefore, reflected light, espe-

cially the 950 nm one is favourable in the PROTECTVein

set-up. However, transillumination achieved better results

then reflected light for VeinPLUS which is supported by the
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GCF GLES ES

PROTECTVein

IDS

Refl. 850 2.211 0.991 7.015

Refl. 950 2.8 0.988 6.57

Transillum. 1.889 0.959 6.004

VeinPLUS
Refl. light 0.358 0.891 3.461

Transillum. 1.392 0.989 6.869

Table 8. Image quality metric results. GCF values are in the range

of [0, 8], GLES values are in the range of [0, 1] and ES values are

in the range of [0, 8]. Higher values correspond to higher image

contrast.

image contrast metrics as the transillumination images have

higher metrics scores.

In general, transillumination is more robust against hand

surface conditions and the influence of ambient light, but

requires a higher light intensity compared to reflected light,

thus consuming more power. Due to the illuminant po-

sitioning on the opposite side of the camera, hand-vein

sensors based on transillumination are bigger and not suit-

able for mobile application.

Reflected light requires much lower light intensities than

transillumination and consequently consumes less power,

which is important for battery operated devices. The main

advantage of reflected light is that it enables a smaller

design of the overall hand-vein sensor. Due to the lower

light intensities, a reflected light based scanner requires a

dedicated NIR enhanced camera and an enclosing box or an

IR pass-through filter to block the ambient light, in order to

achieve good recognition performances (cf. PROTECTVein

results).

Cross-Illumination/cross-spectrum matching At first

sight the extracted vein patterns for the different illumin-

ations look identical. However, the experimental results

clearly show that cross-illumination matching between re-

flected light and transillumination achieves a low recog-

nition performance or is not possible at all on the tested

data sets. This indicates that the visible vein patterns dif-

fer between the illumination conditions. Cross-spectrum

matching is feasible between different wavelengths of re-

flected light, however the performance is lower compared

to the single wavelengths. Figure 6 and Figures 7, 8 show

some images for VeinPLUS and PROTECTVein, respect-

ively, exhibiting different illumination conditions and the

corresponding MC features. One can see that basically the

same veins are visible, except for smaller ones, which are

more visible for transillumination, but they are not at the ex-

act same positions in the images. For VeinPLUS this might

be caused by some hand movement between the acquisi-

tions, which can be ruled out for PROTECTVein. Moreover,

the displacement is not the same for all subjects. The left

part of Figure 6 corresponds to a subject exhibiting little dis-

placement and the right part to a subject exhibiting a higher

displacement, respectively. Figure 9 shows this overlays for

the PROTECTVein features in Figure 7 and 8. The over-

lays reveal that for some subjects there is more displace-

ment between the different illuminations (Figure 9 right)

while there is less displacement for others (Figure 9 left).

The different vein displacements are caused by the inter-

action between the NIR light and the human tissue. 850 nm

and 950 nm are subject to different refraction and scatter-

ing coefficients of the human tissue [7]. Thus, the refrac-

tion angle is different, explaining the displacement between

850 and 950 nm reflected light. Furthermore, the amount of

displacement depends on the vertical position of the veins

inside the hand due to the light scattering coefficient. The

light is scattered and refracted several times while passing

through the different layers of tissue inside the hand [7].

Depending on the vertical positions of the veins inside the

hand the resulting deviation of the light beams arriving at

the image sensor varies. The IDS camera uses a lens with a

fixed focal length of 9 mm and an aperture of 2.0. The hand

is placed at a distance of about 300 mm from the camera,

which is far away from the focal point. Thus, the lens it-

self introduces distortions increasing with distance from the

image centre. Even small deviations/displacements caused

by varying light scattering inside the tissue result in bigger

ones at the image sensor, finally resulting in significant dis-

placements in the vein images. These displacements cannot

be corrected by rotation and translation and resemble the

main reason for the low cross-illumination performance.

5. Conclusion

We established two dual illumination dorsal hand-vein

data sets, VeinPLUS and PROTECTVein, containing im-

ages captured with reflected light and transillumination.

PROTECTVein is publicly available, while VeinPLUS is

not due to legal issues with the original consent form. Based

on these data sets we evaluated several common hand-vein

recognition algorithms on each of the sub data sets (re-

flected light and transillumination), which enabled a direct

comparison of reflected light and transillumination in terms

of recognition accuracy. Moreover, we matched the images

of both illumination scenarios against each other to evaluate

the cross-illumination matching performance.

The recognition performance in terms of EER,

FMR1000 and ZeroFMR for transillumination outperforms

the reflected light one for 2 of the 3 different sensors. For

the last one reflected light significantly outperforms trans-

illumination due to the optimal set-up of the camera and

illumination. Taking the other advantages of reflected light

into account, reflected light is the preferable illumination

type for hand-vein recognition.

There is only a small difference between 850 nm and

950 nm wavelength for reflected light, however 950 nm im-

proves the performance when using a NIR enhanced cam-
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era. In general, cross-spectrum matching between reflected

light 850 nm and 950 nm is feasible but lowers the recog-

nition performance. Cross-illumination matching between

transillumination and reflected light is impractical due to

vein position displacements caused by light scattering and

refraction effects.

We were able to shed some light on the differences

between reflected light and transillumination in hand-vein

recognition. Our future work will include additional state-

of-the-art vein recognition algorithms to further verify our

findings. Moreover, we will try to further improve our scan-

ner by doing experiments devoted to the optimal distance

between the light source and the hand. Furthermore, we

plan to extend our data set (a second session with existing

subjects as well as additional subjects) in order to be able

to perform gender (e.g. body hair on the dorsal side of the

hand), ethnicity (level of skin pigmentation) and age spe-

cific experiments (sub-groups). Additionally, we will adopt

a model based on the physics of light scattering to restore

the vein images and in order to facilitate cross-illumination

matching. Finally, we will do biometric fusion experiments

to further improve the recognition performance.
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