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Abstract—Authentication based on vein patterns is a very
promising biometric technique. The most important step is the
accurate extraction of the vein pattern from sometimes low
quality input images. A single feature extraction technique may
fail to correctly extract the vein pattern, entailing bad recognition
performance. One of the solutions that can be used to improve
recognition results is biometric fusion. A possible fusion strategy
is feature level fusion, that is the fusion of several feature
extractors’ outputs. In our work, we exploited the feature level
fusion to improve the quality of the extracted vein patterns
and thus the feature extraction accuracy. An experimental
study involving different feature extraction techniques (maximum
curvature, repeated line tracking, wide line detector, ...) and
different fusion techniques (majority voting, weighted average,
STAPLE, ...) is conducted on the UTFVP finger-vein data set.
The results show that feature level fusion is able to improve the
recognition accuracy in terms of the EER over the single feature
extraction techniques.

I. INTRODUCTION

Biometric recognition devices are widely used nowadays

for different authentication and identification purposes. Vein

based recognition systems are one of the more recent bio-

metric techniques, relying on the pattern of the blood vessels

inside the human body. Finger vein recognition utilizes the

vein pattern inside the fingers of a human and has several

advantages compared to the recognition based on traditional

biometric traits, such as fingerprint, face or iris. The veins are

underneath the skin and only visible in infrared light, thus the

vein pattern is more resistant to forgery. The vein pattern is

neither sensitive to finger surface conditions nor to abrasion.

In addition, liveness detection is easily possible. The major

disadvantage of finger vein recognition are the low contrast

and low quality vein images. Therefore, suitable preprocessing

and feature extraction techniques are vital to achieve good

recognition results.

A single feature extraction technique may fail in correctly

extracting the vein pattern which leads to bad matching

results and thus bad recognition performance. One approach

to improve the performance is biometric fusion. Several fusion

techniques have been investigated in literature. Fusion of

several fingers is one possibility [1], [2]. Score level fusion is

another option where multiple features extracted from a single

image are then fused after score calculation [3] which showed

promising results. Liu et al. [4] fused the scores of pixel and

super-pixel level features using weighted sum and were able

to improve the recognition rates. In [5] the authors tested

several pre-processing methods in combination with score

level fusion of different feature extraction schemes, improving

the matching performance. Yang et al. [6] combined features

extracted from fingervein and fingerprint images utilizing a

Gabor filter approach into one single feature vector. Yang

and Zhang [7] did a feature level fusion, where the extracted

vein pattern images are fused before score calculation using

global and local vein features combining them using CCA

and a weighted fusion scheme. In contrast to their work we

investigate advanced feature level fusion techniques for global

features using a set of different feature extractors all outputting

binary vein images and several different fusion strategies.

These are evaluated and compared against the performance

results of the single feature extraction techniques in terms of

EER (equal error rate). We also perform a runtime analysis

in order to find the best tradeoff between improvement of the

recognition accuracy vs. increased complexity.

The rest of this paper is organised as follows: Section

2 describes finger vein recognition, including preprocessing,

feature extraction and matching techniques. In section 3 a

brief introduction to biometric fusion and the used feature level

fusion techniques is given. Section 4 explains the setup of our

experimental study and provides the results with respect to

the different feature extraction and fusion schemes. Section 5

concludes this paper and gives an outlook on future research.

II. FINGER VEIN RECOGNITION

In this section the finger-vein preprocessing, feature extrac-

tion and matching approaches evaluated during our experi-

ments are described.



A. Preprocessing

The first preprocessing step is to mask out the background

region, setting background pixels to 0. We selected the region

of the finger according to the method proposed by Lee et

al. [8]. A normalization step, i.e. a rotation compensation,

is later performed, following the approach proposed in [9].

Afterwards the image contrast is improved by using CLAHE

[10], an adaptive histogram equalization technique.

B. Feature Extraction

To be able to fuse the different extracted features at feature

level all features must be of the same type. Thus we evaluate

only feature extraction techniques producing a binary vein

output image by trying to separate the vein pattern from the

background.

Maximum Curvature (MC [11]) aims to emphasise only

the centre lines of the veins and is insensitive to varying vein

width. The first step is the extraction of the centre positions

of the veins. For this purpose the local maximum curvature

in the cross-sectional profiles, based on the first and second

derivatives, is determined. Afterwards each profile is classified

as being concave or convex where only local maxima in

concave profiles indicate valid centre positions of the veins.

Then a score according to the width and curvature of the vein

region is assigned to each centre position, which is recorded in

a matrix called locus space. Due to noise or other distortions

some pixels may not have been classified correctly at the first

step, thus the centre positions of the veins are connected using

a filtering operation. Finally thresholding using the median of

the locus space is applied.

Repeated Line Tracking (RLT [12]) tries to track the veins

as dark lines inside the image. Veins appear as valleys in

the cross-sectional profile of the image. The tracking point

is repeatedly initialised at random positions and then moved

pixel by pixel along the dark line, where the depth of the valley

indicates the movement direction. If no ”valley” is detected,

a new tracking operation is started. The number of times a

pixel is tracked is recorded in a matrix. Pixels that are tracked

multiple times as belonging to a line statistically have a high

likelihood of belonging to a blood vessel. Thus, binarisation

using thresholding is applied to this matrix to get the binary

output image.

Wide Line Detector (WLD [9]) is essentially an adaptive

thresholding technique using isotropic non-linear filtering,

i.e. thresholding inside a local neighbourhood region. The

difference of the centre pixel to its neighbours inside a

circular neighbourhood and the number of pixels inside this

neighbourhood with a difference smaller than a predefined

threshold are determined. This number is again thresholded

to get the final vein image.

Principal Curvature (PC [13]): At first the gradient field of

the image is calculated. Hard thresholding is done to filter out

small noise components and then the gradient at each pixel

is normalised to 1 to get a normalised gradient field. This

is smoothed by applying a Gaussian filter. The next step is

the actual principal curvature calculation. It is obtained from

the Eigenvalues of the Hessian matrix at each pixel. The two

Eigenvectors of the Hessian matrix represent the directions of

the maximum an minimum curvature and the corresponding

Eigenvalues are the principal curvatures. Only the bigger one

which corresponds to the maximum curvature is used. The last

step is again a binarization of the principal curvature values

using Otsu’s [14] method to get the binary vein output image.

Gabor Filter (GF [15]): A filter bank consisting of several

2D even symmetric Gabor filters with different orientations in
π

Ω
steps, where Ω is the number of orientations, is created.

Several feature images are extracted by filtering the vein image

using the different filter kernels of the Gabor filter bank.

The final feature image is obtained by fusing all the single

images from the previous step. This final vein output image is

then post-processed using morphological operations to remove

noise.

Isotropic Undecimated Wavelet Transform (IUWT [16]):

The IUWT is a redundant wavelet transform that is easy to

implement. The scaling coefficients are computed by low-

pass filtering and the wavelet coefficients by subtraction.

Scaling coefficients preserve the mean while wavelet coeffi-

cients encode information corresponding to different spatial

scales. Levels 2 and 3 of the transform are exhibiting the

best contrast for the blood vessels, thus the feature image is

obtained by adding wavelet levels 2 and 3. The final binary

vein output image is obtained by thresholding the feature

image followed by applying morphological post-processing

operations to remove small noise in the image.

The several different kinds of feature extraction methods

considered have one thing in common: they all output a binary

vein image. An example of the output binary images of the

different algorithms considered is shown in Fig. 1. For MC,

PC, RLT and WLD we utilized the MATLAB implementation

of B.T. Ton1. For IUWT we used the implementation from

ARIA2. For GF we used a custom implementation similar to

the one used in [17].3.

C. Matching

The approach of Miura et al. [12] is adopted for match-

ing the binary vein images. As the input images are not

registered to each other and only coarsely aligned (rotation

is compensated), the correlation between the input image

and in x- and y-direction shifted versions of the reference

image is calculated. The maximum of these correlation values

is normalised and then used as final matching score. Due

to the calculation of the correlation the matching time is

proportional to the number of 1 values in the images. A

MATLAB implementation of the matching method is provided

by B.T. Ton 4.

1Publicly available on MATLAB Central: http://www.mathworks.nl/
matlabcentral/fileexchange/authors/57311

2MATLAB Code available: https://sourceforge.net/projects/aria-vessels/
3Can be downloaded from our website: http://www.wavelab.at/sources/

Kauba16e/
4Publicly available on MATLAB Central: http://www.mathworks.com/

matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods



Figure 1: (a) Original vein image. Features extracted using the (b) MC, (c) RLT, (d) WLD, (e) PC, (f) GF and (g) IUWT

methods.

III. FEATURE LEVEL FUSION

Biometric fusion [18] is a means of improving biometric

system performance by the use of multiple biometric inputs

or methods. Biometric fusion is able to improve applicability,

robustness and system accuracy. According to the different

stages of a biometric recognition system, several types of

fusion can be distinguished: sensor level, feature level, score

level and decision level fusion. The latter in the biometric

processing chain fusion is applied the more complex the fusion

is.

In this paper we investigate the advantages of feature level

fusion in the context of finger vein recognition. In feature level

fusion multiple feature representations of the same biometric

input data are combined to a new, single feature by using

a certain fusion strategy. Feature level fusion is situated at

the second step in the processing toolchain and thus less

complex than score or decision level fusion but nevertheless

able to greatly improve the recognition performance [4], [7].

Depending on the fusion strategy, fusion is able to mitigate

erroneous feature extraction results from single feature extrac-

tion methods. To enable feature level fusion we use different

finger vein feature extractors which all output a binary vein

image. These binary feature images are fused into a new

representation which is subsequently used for the task of

recognition.

A. Fusion Strategies

We investigate two different strategies of fusion. In the

first fusion strategy only a single feature extraction technique

is applied several times on the same input image, varying

each time the parameters of the algorithm. Tab. I shows the

parameters that can be adjusted for each of the considered

feature extraction techniques and their range of values. The

block diagram for this kind of fusion is presented in Fig. 2

left.

The second fusion strategy (see Fig. 2 right) combines

features obtained by applying different algorithms in order to

obtain a single feature, later used in the matching stage. The

fusion strategies exploited in both the proposed scenarios are

summarised hereafter.

One of the simpler fusion strategies is majority voting

(MV): in our context the decision if a pixel is a vein or

not is based on the majority vote/decision of all the feature

extractors involved. If more then k of the extractors agree that

a pixels belongs to a vein, it is marked as a vein in the final

fused output, else it is marked as background pixel. Additional

weighting can be applied to the single votes.

Another basic strategy is weighted average (WA): The

individual feature extraction results are weighted according

to predefined weights and the fused output is the weighted

average (or sum) of all the single outputs. This output is not

a binary one at first, but it can be thresholded to get a binary

output again.

STAPLE (Simultaneous Truth And Performance Level Es-

timation [19]) is an algorithm for performance analysis of

image segmentation approaches in medical imaging based

on expectation-maximisation. It considers a collection of

segmentations and computes a probabilistic estimate of the

true segmentation and a measure of the performance level

represented by each segmentation. The probabilistic estimate

is obtained by an optimal combination of the different input

segmentations. Each segmentation is weighted depending upon

the estimated performance level and by incorporating a prior

model for the spatial distribution of the segmented structures

as well as spatial homogeneity constraints.

STAPLER (Simultaneous Truth And Performance Level

Estimation with Robust extensions [20]) is an extension of

STAPLE which is able to deal with missing and repeated

segmentations. The estimation of the ground truth and per-

formance parameters is improved by using training data.

COLLATE (COnsensus Level, Labeler Accuracy and Truth

Estimation [21]), another extension of STAPLE, follows a

different strategy for the performance estimation. Confusion



Feature Parameters Ranges for

Extractor parameters

MC parameter of the filter used for determining derivatives sigma ∈ [1.9, 2.5]
used to compute curvatures (sigma)

RLT number of random starting points (N), N ∈ [3000, 4000]
valley width (W), search radius (r) W ∈ [15, 21], r ∈ [1, 5]

WLD radius of the circular neighbourhood region (r), r ∈ [6, 10]
thresholds used for binarisation (t), t ∈ [0.5, 1], g ∈ [45, 160]
sum of neighbourhood threshold (g)

PC parameter of the Gaussian kernel used to filter the sigma ∈ [1, 3]
image (sigma), threshold used for thresholding the gradient (t) t ∈ [0.3, 1]

GF number of rotations (N), wavelength (λ) and bandwidth (bw) N ∈ [8, 16], bw ∈ [0.5, 1.5]
of the filter, size of the kernel (sz), sz ∈ [10, 15]

aspect ratio of the Gaussian part of the filter (γ) γ ∈ [0.3, 0.9]
IUWT wavelet levels considered (levels) levels ∈ [1, 4]

Table I: Parameters used in the fusion stage.
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Figure 2: Feature level fusion, top: considering the com-

bination of features returned by a single algorithm, bottom:

considering features obtained by applying different algorithms.

regions based on differences in labelling of aligned images are

defined, leading to different performance estimates depending

on the degree of consensus in the initial labelling.

Considering the fusion output there are two options:

the binary vein images can be regarded as segmentations

(veins and background) and are simply used as input for

STAPLE/STAPLER/COLLATE to get a fused output image.

In addition, the probabilistic estimate can be used as fusion

results and during matching. Results obtained using the prob-

ability map output are denoted as Prob in the results section.

IV. EXPERIMENTS

The experiments were conducted on the University of

Twente Finger Vascular Pattern Database (UTFVP) [22]. It

consists of 1440 images in total, taken from 60 subjects, 6

fingers per subject and 4 images per finger. Each image depicts

exactly one finger. The images have a resolution of 672×380

pixels, a density of 126 pixels/cm and the width of the visible

blood vessels is 4− 20 pixels.

To determine the EER we followed the original procedure

suggested by Ton et al. [22]. They used 10% of the images

for training and parameter tuning and the remaining 90% for

testing and EER determination, that is one finger of the first

35 users is used as a training set and the remaining 1300

images of the database are used for matching tests. The images

of the testing set are matched between each other, avoiding

symmetric matching. This procedure leads to a total of 1950

genuine matches and 842400 impostor matches. The genuine

scores and impostor scores are used to obtain FMR and

FNMR, respectively, and to compute the EER, which is used

in this paper as an indicator of the recognition performance.

The training set is used for parameter optimisation of

the feature extraction and fusion schemes (finding the best

performing combinations) while the actual evaluations are

performed on the testing set (842400 matches).

The evaluation scripts including a detailed listing of all the

parameter combinations for the best fusion results stated in

the following results section can be downloaded from: http:

//www.wavelab.at/sources/Kauba16e/

A. Results

Tab. II shows the baseline EER results for the single feature

extractors, without performing any fusion (EERBaseline), and

the results obtained by fusing the features returned from a

single feature extraction scheme applied several times on the

same input image, varying each time its parameters according
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Figure 3: ROC curves representing the impact on performance of the fusion of features obtained from the same algorithm.

to Tab. I. Different fusion techniques have been tested and

the best performing parameter combination (in terms of EER

using the aforementioned testing procedure) is stated.

Feature Extractor MC RLT WLD PC GF IUWT

EERBaseline(%) 0.47 1.54 0.51 1.33 1.18 1.63
EERMajorityV oting(%) 0.36 1.23 0.46 0.46 1.12 1.47

EERAverage(%) 0.31 1.55 0.66 0.46 1.39 1.54
EERSTAPLE (%) 0.36 2.05 0.76 0.56 0.55 1.53

EERSTAPLE_Prob(%) 0.41 1.23 0.71 0.56 0.55 1.67
EERSTAPLER(%) 0.35 1.71 0.71 0.56 0.60 1.48

EERSTAPLER_Prob(%) 0.36 1.53 0.71 0.56 0.64 1.69
EERCOLLATE (%) 0.29 1.69 0.46 0.51 0.61 1.83

EERCOLLATE_Prob(%) 0.51 2.41 1.37 1.02 1.53 3.18

Table II: Performance obtained fusing the features returned by

a single feature extractor

It can be clearly seen that the MV technique is always able

to improve the results for all feature extraction schemes. Most

of the fusion schemes are able to improve the results for MC,

PC and GF. Neither using STAPLE/STAPLER/COLLATE nor

using Prob values has a clear advantage over the much simpler

MV and WA fusion schemes. The best fusion results for each

technique are also shown in the ROC curves of Fig. 3. The

best result, i.e. an EER of 0.29%, is obtained for MC using

COLLATE fusion. The FMR1000 values for the different

combinations can be seen in the figures too.

The results for the second fusion strategy (combination of

distinct feature extraction schemes) are listed in Tab. III. It can

be seen that increasing the number of features considered does

not always improve the recognition performance. However,

with a few exceptions fusion is always able to improve the

results compared to the best single feature extractor (MC with

an EER of 0.5%). S_Prob and SR_Prob are the best fusion

strategies with regard to all tested combinations while the

feature combination in the second last row is the best with

regard to all fusion schemes. The best performance is achieved

when all 6 features (MC, PC, WLD, GF, RLT and IUWT) are

fused using the COLLATE, resulting in an EER of 0.185%.

An ROC curve containing the best results obtained can be seen

in Fig. 4.

Kauba et al. [5] did their score level fusion evaluations also

on the UTFVP dataset using the evaluation methodology of

Ton et al. [22]. The best EER they were able to achieve is

0.25% for a combination of LBP, MC and AB. The second

best result they achieved is an EER of 0.27% fusing the scores

of MC, LBP and SIFT. As LBP and SIFT do not output binary
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Figure 4: ROC curves representing the impact on performance of the fusion of features obtained from the different algorithms.

(a) Results for the majority voting fusion strategy. (b) Results of the best performing features combination.

Feature Combination MV Av S S_Prob SR SR_Prob C C_Prob mean F

MC + RLT +
PC + WLD 0.41 0.67 0.46 0.31 0.56 0.56 1.64 1.38 0.75
MC + PC +
WLD + GF 0.45 0.21 0.26 0.26 0.26 0.24 0.41 1.57 0.46
MC + PC +

WLD + IUWT 0.46 0.32 0.31 0.32 0.27 0.32 0.42 1.68 0.51
MC + RLT + PC +

WLD + GF 0.41 0.25 0.56 0.60 0.61 0.26 0.87 0.28 0.48
MC + RLT + PC +

WLD + IUWT 0.37 0.46 0.31 0.25 0.35 0.31 0.61 0.46 0.39
MC + RLT + PC

WLD + IUWT + GF 0.26 0.41 0.28 0.23 0.34 0.32 0.28 0.19 0.29
2* MC + RLT + PC
WLD + IUWT + GF 0.25 0.26 0.36 0.26 0.31 0.26 0.46 1.32 0.44

mean value over
all combinations 0.37 0.37 0.36 0.32 0.39 0.32 0.67 0.98

Table III: Results obtained when features returned by different feature extractors are considered. The fusion strategies considered

are majority voting (MV), weighted average (Av), STAPLE (S), STAPLER (SR) and COLLATE (C).

images, we cannot test these combinations using feature level

fusion. But our results indicate that feature level fusion even

improves the results over score level fusionon the UTFVP

dataset.

Tab. IV shows the runtimes of the MATLAB implement-

ations of all the feature extraction schemes and Tab. V for

the different fusion approaches (2nd fusion scheme) on the

training set (140 images). The runtimes for the first fusion

scheme can be estimated by taking the runtime of the single

feature extraction stage multiple times according to the number

of different parameters used during feature extraction and then

adding the time for the fusion and matching process from

Tab. V. Each process was run 30 times and the values in the

tables are the mean values of all runs. Note that matching the

Prob values takes longer because decimal number are matched

instead of binary values. The feature extraction times (FE) for

the fusion approaches include the times for extraction of the

single features as well as the matching times for score level

fusion (SLF) include matching times of all included features. 4

Feat means a combination of MC, PC, GB and WLD features.

The combination achieving the best EER found so far (h) takes

about 31 times longer than MC. The simpler (b) approach

takes more than 8 times longer, which is in the same range as

score level fusion, while cutting down the EER to 0.21. For the

combinations including all 6 features RLT feature extraction

takes a considerable amount of the total time. Comparing the

runtimes and EERs of (b) and (h) does not justify the increased

processing time for the small EER improvement over (b). Thus

the simpler and especially faster feature level fusion schemes

should be preferred. The advantage of feature level fusion over

score level fusion is that the fusion is done only once at feature

extraction stage before storing the biometric template, thus

the increased processing time does not affect each matching

(except if values are not binary any longer) operation which

is of particular interest if it comes to identification.



Method
Runtime (s)

MC RLT WLD GF IUWT PC

Feature Extraction 85.6 2639.8 65.56 143.66 132.14 7.32
Matching 97.31 413.5 193.2 1184.3 445.5 552.7

Table IV: Runtimes for single feature extraction variants

Method
Runtime (s)

EER (%)
FE FLF Matching SLF Total

(a) MC 85.6 - 97.31 - 182.91 0.5
(a) MV 4 Feat 302.13 0.69 167.6 - 470.42 0.45
(b) Av 4 Feat 302.13 1.06 1217.67 - 1520.9 0.21

(c) MV 6 Feat 3064.1 0.79 240.99 - 3305.9 0.25
(d) Av 6 Feat 3064.1 1.18 1401.4 - 4466.7 0.26
(e) S 4 Feat 302.13 100.93 226.8 - 629.82 0.26

(f) S 4 Feat Prob 302.13 100.93 1193 - 1596 0.26
(g) C 6 Feat 3064.1 86.07 319.29 - 3469.4 0.28

(h) C 6 Feat Prob 3064.1 86.07 2561.3 - 5711.4 0.19

(i) SLF 1 87.88 - 1870.9 0.26 1959 0.25
(j) SLF 2 148.75 - 1268.7 0.26 1417.7 0.27

Table V: Runtimes for different fusion variants (FLF... Feature

Level Fusion)

V. CONCLUSION

We showed that feature level fusion is able to improve

the recognition performance in terms of the EER. It turned

out that even the simple fusion schemes including only one

feature extractor improved the recognition performance lead-

ing to better EERs compared to the best EER of the single

feature extractors. Fusion methods using a combination of

different feature extraction schemes were able to improve the

performance considerably.

Feature level fusion does neither add time, nor complexity

or costs to collect additional biometric data, but the necessity

to use different feature extraction methods adds computational

complexity to the whole system. However the matching com-

plexity is not inherently increased which is a crucial point if

it comes to identification. We showed that the simple fusion

schemes are able to improve recognition performance while

maintaining a lower runtime compared to the more complex

schemes.

Our future work will include tests with different finger

vein databases in order to assess the generalizability of our

approach.
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