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ABSTRACT

Fingerprint recognition performance is affected by many

factors. One of these are defective pixels caused by ageing

effects of the image sensor. We investigate the impact of

these image sensor ageing related pixel defects on the per-

formance of different fingerprint matchers (NBIS, VeriFinger,

FingerCode and Phase Only Correlation). The matchers are

compared against each other to quantify the differences in the

impact. In practice also other influences besides image sensor

ageing related effects are present. As we aim to evaluate the

impact of the defective pixels only, disregarding template

ageing and other external influences, it is not possible to use

real image data. Instead an experimental study using an age-

ing simulation algorithm including hot and stuck pixels is

conducted on the FVC2002 and FVC2004 data sets.

Index Terms— Image sensor ageing, hot pixels, stuck

pixels, template ageing, fingerprint recognition performance

1. INTRODUCTION

Fingerprint recognition systems are well established nowadays

because of their advantages over password or token based au-

thentication. Most fingerprint scanners are using an optical

image sensor. The quality of a fingerprint image can be de-

graded by many factors, e.g. finger surface conditions, dirt

on the sensor’s surface, external noise and misplacement.

Another type of distortion impacting the image quality are

image sensor defects caused by ageing effects. This leads to

isolated defective pixels, appearing as point like, spiky shot

noise in the output images. Some example fingerprint images

containing hot and stuck pixel defects can be seen in figure

1. Image sensor ageing and its impact on the output images

belongs to image and video forensics.

Although there is some related work on finger vein and

hand vein recognition systems [1, 2], to the best of our know-

ledge the impact of these pixel defects on the performance of

fingerprint recognition systems has not yet been studied. The

contribution of this work is to investigate this impact on dif-

ferent fingerprint matchers in terms of the EER (Equal Error
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Fig. 1: Example aged fingerprint images

Rate), the FMR1000 and ZeroFMR. Different types of fea-

ture extraction and matching schemes may react differently.

Thus two minutiae-based matchers, one ridge feature based

matcher and one correlation based matcher are evaluated. Ac-

tually this corresponds to investigating the robustness of these

matchers against spiky shot noise.

At first the defect growth rate is exemplarily calculated for

the the DigitalPersona U.are.U 4000B based on the technical

data of a the fingerprint scanner using an empirical formula.

Sensor ageing belongs to the template ageing effect in biomet-

rics. Other reasons for template ageing are biological ageing

of the subject, changes in subject behaviour and changes in

the acquisition conditions. All these lead to a lower recogni-

tion performance. Our aim is to isolate the impact of image

sensor ageing and to find out which role it plays in biometric

template ageing. Using real world fingerprint images is not

possible because there are always other effects in addition to

image sensor ageing present like subject ageing and changes

in environmental conditions, which further degrade the recog-

nition performance. In order to be able to quantify the impact

of image sensor ageing related pixel defects exclusively, we

use an ageing simulation algorithm based on our simplified

pixel model to create several sets of aged images. For the

simulations and the subsequent evaluations the FVC2002 [3]

and FVC2004 [4] fingerprint data sets are used. For the two

minutiae-based matchers on the FVC2004 data set the evalu-

ations are repeated with templates aged.

The rest of this paper is organized as follows: Section

2 gives a brief overview on image sensor ageing, presents

the pixel defect model and explains the ageing simulation

algorithm. Section 3 outlines the four fingerprint matchers.

Section 4 describes the experimental setup and provides the

results. Section 5 concludes this work.
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2. IMAGE SENSOR AGEING

Most biometric sensors contain some kind of image sensor,

especially optical fingerprint scanners. An image sensor is

an analogue device, which basically consists of an array of

photosensitive cells, called pixels. Like every other electronic

device also an image sensor ages. Ageing becomes noticeable

in form of defective pixels, showing different characteristics

than at manufacturing time, even if the sensor is not in use.

They appear as spiky shot noise in the output image and thus

degrade the image quality.

2.1. Mechanism Causing the Defects

Pixel defects are permanent, inter-defect times follow an ex-

ponential distribution, indicating a constant defect rate and

they are randomly distributed over the sensor area. Accord-

ing to the literature [5] the main defect causing source is cos-

mic ray radiation, actually the neutrons of the cosmic rays.

Leung et al. [6] applied statistical analysis to the spatial and

temporal distribution of defects. They showed that the spatial

distribution of defects across the sensor area follows a normal

random distribution with no significant bias towards short or

long distances, i.e. no defect clustering. They also showed

that inter-defect times follow an exponential distribution, in-

dicating a constant defect rate. Both is in contradiction to

material degradation as defect source. For more details the

interested reader is referred to their original papers [5, 6]. We

focus on in-field defects only. Manufacture time defects oc-

cur during the fabrication process and may also include stuck

and abnormal sensitivity pixels but are usually corrected by

factory calibration, i.e. simply masked out.

2.2. Defect Types

The most prominent defect types that are developed over a

sensor’s lifetime are hot and stuck pixels.

A hot pixel is a defect that has an illumination independ-

ent component, which increases linearly with exposure time.

It appears as a bright spot with a fixed location in the out-

put image. A partially-stuck hot pixel has an additional com-

ponent (offset) that is independent from the illumination and

exposure time.

The output of a stuck pixel is always the same arbitrary

but fixed value c in the range 0 ≤ c ≤ 255 (assuming an 8

bit image). Thus, its output is constant under all illuminations

and exposure time independent. Stuck pixels mainly appear

as factory time defects and Leung et al. [6] claim that they

never found a true stuck pixel in field.

2.3. Pixel Defect Model

A pixel model describes either the raw output of a single pixel

or the whole sensor considering the incoming illumination

and the impact of pixel defects. For this work we adopted

the pixel model of Bergmüller et al. [7], which is a simplified

version of J. Fridrich’s pixel model [8]. As we aim for repro-

ducible tests, modelling noise and environmental influences

should be minimised. In fact, they can be eliminated com-

pletely in a simulation. All images are taken with the same

sensor using the same exposure settings, thus the exposure

time is constant and the PRNU can be eliminated. The dark

current level is usually low for short exposure times used for

capturing fingerprint images. This yields the simplified pixel

model (y is the output of a single pixel, i is the incident illu-

mination):

y = i+ d+ c with y, i, c, d ∈ R (1)

If the dark current d of a pixel is extremely high, it is

often denoted as hot pixel. Whereas if the offset c is high, this

results in a saturated pixel and is sometimes denoted as stuck

pixel. As the definitions in the literature are not consistent,

we define the following pixel model for our experiments:

y = c y = i+ d (2)

where the first one is light independent and has a constant

value c, denoted as stuck pixel. The second one adds an offset

to the incident illumination and is referred as hot pixel. The

pixel model for 8 bit grey-scale images is:

Y (x, y) =

{

C(x, y) if C(x, y) 6= 0

I(x, y) +D(x, y) otherwise
(3)

with Y,C, I,D ∈ (Z : [0; 255]w×h)

where C and D are the defect matrices (same size as the

image, storing the stuck pixel value or hot pixel offset value,

respectively), I is the incident illumination and x and y are

the pixel’s coordinates. A pixel’s output Y (x, y) saturates at

0 and 255 if interval borders are exceeded. This pixel model

is the basis for the ageing simulation algorithm.

2.4. Image Ageing Simulation Algorithm

We use the same simulation algorithm as in our previous work

[1], which is an extended version of the original algorithm

proposed by Bergmüller et al. [7]. It simulates hot and stuck

pixel defects. The algorithm takes an (unaged) image se-

quence as input and outputs several aged versions of this im-

age sequence. At first it calculates the defect matrices C and

D according to the pixel model. These are then applied to

the input images to generate the aged versions. Actually the

incident illumination I should be used according to our pixel

model. Since it is not known, the sensor ageing related hot

and stuck pixels are directly added to the unaged images, i.e.

an offset d is added to a pixel’s value for hot pixels and its

value is replaced by c for stuck pixels. The defect matrices

C and D are calculated recursively to comply with the once

defective - always defective principle.



2.5. Empiric Formula for Estimating Defect Growth Rate

Chapman et al. [9] derived an empirical formula for estim-

ating the defect growth rate based on the sensor technology

(CCD or APS) and on sensor design parameters like sensor

area, pixel size and gain (adjusted by the ISO setting):

ρ = A · SB · ISOC (4)

where ρ is the defect density (defects/year/mm²), A is the

number of defects/year/mm² if the pixel size is 1µm, S is the

pixel size, ISO is the ISO value according to the ISO set-

ting of the image sensor and B and C are constants depend-

ing on the sensor type (CCD: A = 0.0141, B = −2.25 and

C = 0.69, APS: A = 0.0742, B = −3.07 and C = 0.5).

3. FINGERPRINT RECOGNITION

Today minutiae based matchers are the most widely used. Our

aim is to test different classes of fingerprint recognition al-

gorithms as different types of fingerprint recognition schemes

react differently to image degradations. Therefore, we con-

sider three fundamentally different types of fingerprint feature

extraction and matching schemes:

Correlation-Based Matcher: These approaches use the fin-

gerprint images in their entirety, the global ridge and furrow

(i.e. valley) structure of a fingerprint is decisive. Images are

correlated at different rotational and translational alignments,

image transform techniques may be utilised for that purpose.

As a representative of this class, we use a custom implement-

ation of the phase only correlation (POC) matcher [10].

Ridge Feature-Based Matcher: Matching algorithms in this

category deal with the overall ridge and furrow structure in

the fingerprint, yet in a localised manner. Characteristics like

local ridge orientation or local ridge frequency are used to

generate a set of appropriate features representing the indi-

vidual fingerprint. As a representative of the ridge feature-

based matcher type we use a custom implementation of the

fingercode approach (FC) [11].

Minutiae-Based Matcher: The set of minutiae within each

fingerprint is determined and stored as list, each minutia be-

ing represented (at least) by its location and direction. The

matching process then basically tries to establish an optimal

alignment between the minutiae sets of two fingerprints to

be matched, resulting in a maximum number of pairings

between minutiae from one set with compatible ones from

the other set. As the first representative of the minutiae-

based matcher type we use mindtct and bozorth3 from the

“NIST Biometric Image Software” (NBIS) package (avail-

able at http://fingerprint.nist.gov/NBIS/) for

minutiae detection and matching, respectively. The second

minutiae-based matcher type we use is VeriFinger, developed

by Neurotechnology (available in form of the VeriFinger

SDK 7.0 at http://www.neurotechnology.com/

verifinger.html), denoted as VF. For more details on

Fig. 2: Image sensor inside the U.are.U4000B fingerprint scanner

the SDK and the FC and POC approach the interested reader

is referred to recent work [12].

4. EXPERIMENTS

The images of the FVC2002/FVC2004 DB1 and DB2 are

used as ground truth during our evaluations. DB3 is not used

because these images were captured using a thermal sensor

and we only focus on optical image sensors. DB4 contains

synthetically generated images and thus is not used either.

FVC2004’s test procedure to determine the EER, FMR1000

and ZeroFMR, is adopted. For details on the databases itself

and the test protocol please refer to [3, 4].

4.1. Experimental Settings

Bergmüller et al. [7] had two iris data sets available, captured

with a time span of four years in between. They estimated the

relative growth in the number of defective pixels, resulting in

a defect rate of 0.6659 defects/MP/year. We have no two

fingerprint data sets with a time lapse in between, taken with

the same sensor. Thus, we use the formula of Chapman et

al. [9] to estimate the defect growth rate based on the sensor

data. We take the U.are.U 4000B fingerprint scanner as a rep-

resentative of commonly used fingerprint scanners. Of course

the defect growth rates of similar sensors might differ, but

they should be in the same range. There is no data concern-

ing the image sensor used in the U.are.U 4000B fingerprint

scanner available, thus we disassembled the device and meas-

ured the sensor area (see figure 2). The outside dimensions

(dark yellow square) are 10.6 × 10.6mm. The actual image

sensor area (red to yellow rectangle in the left and blue rect-

angle in the right picture) is about 77× 66 pixels. In relation

to 410 × 410 pixels this yields the image sensor dimensions

of 1.99× 1.71mm.

The images captured by the U.are.U 4000B have a res-

olution of 356 × 328 pixels. Thus the pixel size is: 1.99
356

×
1.71
328

= 5.59 × 5.21 µm. We assume a quadratic pixel size

of 5.4 µm and ISO level 400 as there is no information avail-

able at which ISO level the FVC2002/FVC2004 images were

captured. The resulting defect rate is:



ρ = 3.404 · 0.0742 · 5.4−3.07 · 4000.5 = (5)

0.0285 defects/year = 0.244 defects/MP/year

According to Chapman et al. [9] and Theuwissen [5]

the additional offset IOffset of hot pixels or the dark cur-

rent value, respectively, follows an exponential distribution,

i.e. hot pixels with a lower amplitude are more likely to oc-

cur. The exponential distribution’s parameter µ = 0.15 was

estimated based on their data.

In practice only very few defective pixels occur under nor-

mal conditions. At first we started with 1 defect/MP/year.

In conditions with higher radiation like high altitudes or if

electrical stress is imposed to the sensor, the defect rates can

become much higher. To account for such scenarios where

higher defect rates might occur and as such a low defect rate

had no impact on the recognition accuracy, we then decided to

run our simulations with a rate of 4000 defects/MP/year,

a time span of 10 years and time steps of 1 year.

We run the simulations for hot pixels only, stuck pixels

only and combined stuck and hot pixels. To mitigate statist-

ical fluctuations due to the random locations and amplitudes

of the defects, all tests were run 5 times (except for FC and

POC due to time constraints) and the mean is the final res-

ult. Only the probe images are aged but for NBIS and VF the

experiments are also conducted with aged template images

(using the same pixel defects as the probe images), denoted

as TA. An application scenario where the template image are

also aged is establishing a biometric database using an old

sensor which already suffers from ageing effects.

The results are evaluated in terms of the relative difference

between the aged and the baseline EER/ZeroFMR/FMR1000

value. These relative differences are calculated as follows:

ra =
Vi(DBa)− Vi(DB0)

Vi(DB0)
(6)

where ra denotes the relative increase/decrease for a given

year a and evaluated on the database DB, Vi is the perform-

ance indicator for the i − th recognition algorithm, DB0 is

the original database and DBa is the aged database at age a.

4.2. Experimental Results

Table 1 shows the results for FVC2004 DB1. First of all the

baseline values are given as absolute values, followed by the

relative increases at a defect density of 40000 hot pixels per

MP, 40000 stuck pixels per MP and 40000 combined hot and

stuck pixels per MP. According to the baseline values, VF is

by far the best performing matcher, followed by FC, closely

followed by NBIS. The worst performing matcher is POC.

This ranking is not changed across the whole tested range.

Looking at figure 3, showing the EER increases for combined

hot and stuck pixels, NBIS is influenced most, followed by

ra/ Matcher FC POC NBIS NBIS TA VF VF TA

Baseline EER 0.126 0.216 0.136 0.136 0.025 0.025

Base FMR1000 0.703 0.637 0.359 0.359 0.056 0.056

Base ZeroFMR 0.728 0.686 0.473 0.473 0.086 0.086

Hot EER -0.61 3.65 10.6 12.13 7.35 10.36

Hot FMR1000 -4.78 -0.39 1.49 1.89 2.05 0.85

Hot ZeroFMR -0.98 4.27 3.81 9.09 4.55 5.65

Stuck EER 2,78 -5.2 14.89 12.97 10.58 16.48

Stuck FMR1000 -7.77 4.99 21.95 23.18 13.97 20.73

Stuck ZeroFMR 6.62 7.18 26.97 16.15 13.47 21.49

H+S EER 8.72 -7.88 15.34 13.77 2.59 7.49

H+S FMR1000 -6.2 1.07 17.59 18.73 5.38 11.32

H+S ZeroFMR 14.08 1.56 23.2 13.58 10.74 12.67

Table 1: FVC2004 DB1 EER/FMR1000/ZeroFMR summary

FC and VF. POC is influenced least. This is in agreement with

the FMR1000 and ZeroFMR values. POC shows a negative

EER trend which indicates that its performance increases with

an increasing number of defective pixels which might be due

to an amplification of the frequency ranges where the finger-

print information is contained relative to the noise introduced

by the defective pixels. In general the matching performance

drops with an increasing defect rate but the highest increase

in EER is only about 16.5%.

The results for FVC2004 DB2 are shown in table 2 and

figure 4. On the unaged images VF performs best, followed

by NBIS, then FC and POC performing worst. On DB2 both

minutiae based matchers perform better than the correlation-

and the ridge feature-based one. POC is again most stable,

followed by VF and NBIS. All three are nearly influenced to

the same extent. FC is heavily influenced on DB2. In gen-

eral on DB2 hot pixels cause the least decrease in recognition

performance, followed by hot and stuck pixels combined and

stuck pixels lead to the highest decrease. On DB1, hot and

stuck pixels combined lead to the most severe effects.

Comparing table 1 and table 2 shows that the influence

of pixel defects on DB2 is higher than on DB1 in general.

Comparing DB1 and DB2 images shows that the absolute area

in pixels covered by the fingerprint in DB1 images is larger

than in DB2 images. Consequently the ridges and valleys are

wider and thus less affected by single pixel defects. Hot pixels

have less influence on DB1 than on DB2. This is also quite

obvious as the background in the DB1 images is all white.

A hot pixel simply adds an offset to the pixel value and if the

pixel is already white, it stays white, i.e. no change. Moreover

also stuck pixels have less influence on DB1. This is due to

the higher contrast compared to DB2 images, i.e. the ridge

lines appear darker and combined with the bright background

this mitigates the influence of the single pixel defects.

The dashed lines in figures 3 and 4 show the results if the

template images are aged for the two minutiae based match-

ers. Looking at VF there is no clear trend if VF TA or VF

performs better. On DB1 NBIS TA and NBIS perform nearly

equally for hot pixels. However for stuck and hot+stuck

pixels NBIS TA performs better than NBIS which is in a way



ra/ Matcher FC POC NBIS NBIS TA VF VF TA

Baseline EER 0.101 0.104 0.093 0.093 0.025 0.025

Base FMR1000 0.358 0.363 0.266 0.266 0.044 0.044

Base ZeroFMR 0.471 0.565 0.358 0.358 0.053 0.053

Hot EER 2.55 0.47 6.47 16.79 -1.76 9.32

Hot FMR1000 0.6 -17.8 8.35 10.74 -2.11 2.17

Hot ZeroFMR -6.9 5.18 3.23 -2.16 5.58 -2.72

Stuck EER 76.09 11.92 27.64 43.09 15.62 20.4

Stuck FMR1000 24.35 2.65 31.97 49.05 3.74 26.02

Stuck ZeroFMR 10.02 -1.58 20.5 28.24 8.98 36.05

H+S EER 54.06 7.53 17.3 27.41 9.07 13.42

H+S FMR1000 16.67 -5.11 15.38 18.28 5.2 15.72

H+S ZeroFMR -0.91 24.19 16.23 3.45 11.43 22.45

Table 2: FVC2004 DB2 EER/FMR1000/ZeroFMR summary
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Fig. 3: FVC2004 DB1 EER Hot and Stuck Pixels

the expected behaviour. If the templates are aged, the images

will be more similar and this should lead to improved match-

ing results. On DB2 the situation is completely different.

NBIS clearly outperforms NBIS TA with increasing defect

density. This time the images looking more similar leads to

an increase in the FMR and results in an increased EER.

The results for FVC2002 DB1 are shown in table 3. Look-

ing at the baseline values, it can be seen that VF again clearly

performs best, followed by NBIS and then by FC. POC per-

forms worst. The values in the table and also in figure 5 show

that FC and POC are influenced least by defective pixels while

NBIS and VF are influenced more. VF consistently shows the

highest relative EER increases but its EER values remain the

best ones compared to the other matchers across the whole

tested range. The two minutiae based matchers have a better

performance than FC and POC but are also more sensitive to

defective pixels. Like for FVC2004 DB2, hot pixels have the
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Fig. 4: FVC2004 DB2 EER Hot and Stuck Pixels

ra/ Matcher FC POC NBIS NBIS TA VF VF TA

Baseline EER 0.133 0.164 0.034 0.034 0.006 0.006

Base FMR1000 0.538 0.455 0.086 0.086 0.01 0.01

Base ZeroFMR 0.661 0.623 0.113 0.113 0.008 0.008

Hot EER 3.05 2.47 -0.4 -0.09 20.14 32.24

Hot FMR1000 1.59 -0.24 -0.92 -6.5 -13.1 -15.17

Hot ZeroFMR 1.78 -2.8 8.2 -6.18 33.91 30.43

Stuck EER 2.77 11.36 26.39 43.32 7.54 -14.74

Stuck FMR1000 12.15 -1.41 19.58 74.42 -21.38 -30.34

Stuck ZeroFMR 7.62 -9.57 31.8 84.16 17.39 34.78

H+S EER 0.92 2.02 14.79 24.95 18.56 32.24

H+S FMR1000 4.45 10.29 19.25 28.25 -19.31 -23.45

H+S ZeroFMR 9.3 -4.87 11.99 26.25 14.78 18.26

Table 3: FVC2002 DB1 EER/FMR1000/ZeroFMR summary

ra/ Matcher FC POC NBIS NBIS TA VF VF TA

Baseline EER 0.108 0.162 0.026 0.026 0.007 0.007

Base FMR1000 0.267 0.401 0.051 0.051 0.007 0.007

Base ZeroFMR 0.29 0.525 0.069 0.069 0.007 0.007

Hot EER -0.85 4.22 2.74 0.43 -11.68 1.41

Hot FMR1000 -2.94 -0.71 14.55 11.83 -1.05 -7.37

Hot ZeroFMR -1.11 -14.75 23.48 9.12 2 -4

Stuck EER 10.2 10.19 13.86 18 -19.55 -36.86

Stuck FMR1000 10.83 9.43 20.19 25.63 -13.86 -30.53

Stuck ZeroFMR 25.95 4.69 4.15 37.93 -3 -7

H+S EER 3.01 5.7 0.15 -3.49 -20.91 -10.53

H+S FMR1000 1.2 13.17 32.62 15.77 -10.53 -25.26

H+S ZeroFMR 20.42 6.05 17.62 12.33 2 -11

Table 4: FVC2002 DB2 EER/FMR1000/ZeroFMR summary

least influence, followed by hot and stuck pixels combined

and stuck pixels have the highest influence.

Table 4 and figure 6 show the results on FVC2002 DB2.

Similar to DB1, VF clearly outperforms all other matchers.

NBIS is ranked second, followed by FC and POC again per-

forms worst. The performance of VF even increases with

an increasing number of defects. This time the two minu-

tiae based matchers are influenced less than FC and POC. By

comparing the FVC2002 and FVC2004 results it can be seen

that the minutiae-based matchers not only perform better than

the non minutiae-based ones for high quality fingerprints but

they are also less influenced by defective pixels for higher

quality fingerprints. The dashed lines in figures 5 and 6 show

the results for VF TA and NBIS TA. For VF no clear statement

if VF or VF TA performs better, can be made. NBIS performs

better than NBIS TA on DB1 but worse on DB2.

5. CONCLUSION

We investigated the influence of image sensor ageing re-

lated pixel defects within the biometric template ageing

phenomenon on fingerprint recognition systems. As it is

not possible to investigate solely the impact of image sensor

ageing using actual fingerprint images captured by a real fin-

gerprint sensor, disregarding all other template ageing effects

and external influences we used an image sensor ageing simu-

lation algorithm. At first we exemplarily estimated the defect
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Fig. 5: FVC2002 DB1 EER Hot and Stuck Pixels
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Fig. 6: FVC2002 DB2 EER Hot and Stuck Pixels

growth rate based on a real sensor’s characteristics. On the

one hand this theoretical rate is quite low and does not lead to

any influence on the recognition accuracy. On the other hand

the models of Chapman et al. and J. Fridrich are only theor-

etical and not able to cover all the effects occurring inside a

sensor in real-world applications leading not only to higher

defect growth rates but other effects having a negative impact

on the image quality. To account for this we used a much

higher defect rate during our experiments. Our future work

will include tests with real fingerprint scanners of different

age, trying to refine the pixel defect model and taking all the

ageing effects occurring inside a sensor into consideration.

Although there is a noticeable drop in the recognition per-

formance for unrealistic high numbers of pixel defects, most

matchers are quite stable in general. Higher defect rates than

0.0285 defects/year are likely to occur in practice because

other external influences are present, but this would still only

lead to a few defective pixels over a reasonable long sensor

lifetime of 10 years. We showed that less than 1000 de-

fects per MP have no impact on the recognition accuracy.

Moreover the performance of some recognition schemes even

increased if defective pixels are present. In addition simple

image denoising techniques were able to reduce the effect of

defective pixels for finger and hand veins so the same should

be true for fingerprints. Thus the contribution of defective

pixels caused by image sensor ageing to the template ageing

effect in fingerprint recognition is negligible.

In conclusion defective pixels caused by image sensor

ageing do not seem to be a problem in usual practical deploy-

ments of fingerprint recognition.
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