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ABSTRACT

Fingerprint recognition performance is affected by many
factors. One of these are defective pixels caused by ageing
effects of the image sensor. We investigate the impact of
these image sensor ageing related pixel defects on the per-
formance of different fingerprint matchers (NBIS, VeriFinger,
FingerCode and Phase Only Correlation). The matchers are
compared against each other to quantify the differences in the
impact. In practice also other influences besides image sensor
ageing related effects are present. As we aim to evaluate the
impact of the defective pixels only, disregarding template
ageing and other external influences, it is not possible to use
real image data. Instead an experimental study using an age-
ing simulation algorithm including hot and stuck pixels is
conducted on the FVC2002 and FVC2004 data sets.

Index Terms— Image sensor ageing, hot pixels, stuck
pixels, template ageing, fingerprint recognition performance

1. INTRODUCTION

Fingerprint recognition systems are well established nowadays
because of their advantages over password or token based au-
thentication. Most fingerprint scanners are using an optical
image sensor. The quality of a fingerprint image can be de-
graded by many factors, e.g. finger surface conditions, dirt on
the sensor’s surface, external noise and misplacement. An-
other type of distortion impacting the image quality are image
sensor defects caused by ageing effects. This leads to isolated
defective pixels, appearing as point like, spiky shot noise in
the output images. Image sensor ageing and its impact on the
output images belongs to image and video forensics.

Although there is some related work on finger vein and
hand vein recognition systems [1, 2], to the best of our know-
ledge the impact of these pixel defects on the performance of
fingerprint recognition systems has not yet been studied. The
contribution of this work is to investigate the impact of sensor
ageing related pixel defects on the recognition performance
of different fingerprint matchers in terms of the EER (Equal
Error Rate), the FMR1000 and ZeroFMR. Different types of
feature extraction and matching schemes may react differ-
ently. Thus two minutiae-based matchers, one ridge feature

based matcher and one correlation based matcher are evalu-
ated. Actually this corresponds to investigating the robustness
of these matchers against spiky shot noise.

At first, based on the technical data of a real fingerprint
scanner, the DigitalPersona U.are.U 4000B, the defect growth
rate is estimated using an empirical formula. Sensor ageing
belongs to the template ageing effect in biometrics. Other
reasons for template ageing are biological ageing of the sub-
ject, changes in subject behaviour and changes in the acquis-
ition conditions. All these lead to a lower recognition per-
formance. Our aim is to isolate the impact of image sensor
ageing and to find out which role it plays in biometric tem-
plate ageing. Using real world fingerprint images is not pos-
sible because there are always other effects in addition to im-
age sensor ageing present like subject ageing and changes in
environmental conditions, which further degrade the recogni-
tion performance. In order to be able to quantify the impact
of image sensor ageing related pixel defects exclusively, we
use an ageing simulation algorithm based on our simplified
pixel model to create several sets of aged images. For the
simulations and the subsequent evaluations the FVC2002 [3]
and FVC2004 [4] fingerprint data sets are used. For the two
minutiae-based matchers on the FVC2004 data set the evalu-
ations are repeated with templates aged.

The rest of this paper is organized as follows: Section
2 gives a brief overview on image sensor ageing, presents
the pixel defect model and explains the ageing simulation
algorithm. Section 3 outlines the four fingerprint matchers.
Section 4 describes the experimental setup and provides the
results. Section 5 concludes this work.

2. IMAGE SENSOR AGEING

Most biometric sensors contain some kind of image sensor,
especially optical fingerprint scanners. An image sensor is an
analogue device, which basically consists of an array of pho-
tosensitive cells, called pixels. Like every human being and
every electronic device also an image sensor ages. Ageing
becomes noticeable in form of defective pixels, showing dif-
ferent characteristics than at manufacturing time, even if the
sensor is not in use. They appear as spiky shot noise in the
output image and thus degrade the image quality.



2.1. Mechanism Causing the Defects

Pixel defects are permanent, inter-defect times follow an ex-
ponential distribution, indicating a constant defect rate and
they are randomly distributed over the sensor area. Accord-
ing to the literature [5] the main defect causing source is cos-
mic ray radiation, actually the neutrons of the cosmic rays.
Leung et al. [6] applied statistical analysis to the spatial and
temporal distribution of defects. They showed that the spa-
tial distribution of defects across the sensor area follows a
normal random distribution with no significant bias towards
short or long distances, i.e. no defect clustering. They also
showed that inter-defect times follow an exponential distribu-
tion, indicating a constant defect rate. Both is in contradic-
tion to material degradation as defect source. We focus on
in-field defects only. Manufacture time defects occur during
the fabrication process and may also include stuck and ab-
normal sensitivity pixels but are usually corrected by factory
calibration, i.e. simply masked out.

2.2. Defect Types

The most prominent defect types that are developed over a
sensor’s lifetime are hot and stuck pixels.

A hot pixel is a defect that has an illumination independ-
ent component, which increases linearly with exposure time.
It appears as a bright spot with a fixed location in the out-
put image. A partially-stuck hot pixel has an additional com-
ponent (offset) that is independent from the illumination and
exposure time.

The output of a stuck pixel is always the same arbitrary
but fixed value c in the range 0 ≤ c ≤ 255 (assuming an 8
bit image). Thus, its output is constant under all illuminations
and exposure time independent. Stuck pixels mainly appear
as factory time defects and Leung et al. [6] claim that they
never found a true stuck pixel in field.

2.3. Pixel Defect Model

A pixel model describes either the raw output of a single pixel
or the whole sensor considering the incoming illumination
and the impact of pixel defects. For this work we adopted
the pixel model of Bergmüller et al. [7], which is a simplified
version of Jessica Fridrich’s pixel model [8]. As we aim for
reproducible tests, modelling noise and environmental influ-
ences should be minimised. In fact, they can be eliminated
completely in a simulation. All images are taken with the
same sensor using the same exposure settings, thus the ex-
posure time is constant and the PRNU can be eliminated. The
dark current level is usually low for short exposure times used
for capturing fingerprint images. This yields the simplified
pixel model (y is the output of a single pixel, i is the incident
illumination):

y = i+ d+ c with y, i, c, d ∈ R (1)

If the dark current d of a pixel is extremely high, it is
often denoted as hot pixel. Whereas if the offset c is high, this
results in a saturated pixel and is sometimes denoted as stuck
pixel. As the definitions in the literature are not consistent,
we define the following pixel model for our experiments:

y = c y = i+ d (2)

where the first one is light independent and has a constant
value c, denoted as stuck pixel. The second one adds an offset
to the incident illumination and is referred as hot pixel. The
pixel model for 8 bit grey-scale images is:

Y (x, y) =

{
C(x, y) if C(x, y) 6= 0

I(x, y) +D(x, y) otherwise
(3)

with Y,C, I,D ∈ (Z : [0; 255]w×h)

where C and D are the defect matrices (same size as the
image, storing the stuck pixel value or hot pixel offset value,
respectively), I is the incident illumination and x and y are
the pixel’s coordinates. A pixel’s output Y (x, y) saturates at
0 and 255 if interval borders are exceeded. This pixel model
is the basis for the ageing simulation algorithm.

2.4. Image Ageing Simulation Algorithm

Our aim is to investigate solely the role image sensor age-
ing related effects play within the biometric template ageing
effect and thus its impact on the recognition performance,
disregarding additional effects like capturing conditions and
subject ageing. Therefore we simulate the pixel defects. Al-
though some researchers [9, 6] never found a true stuck pixel,
we include it in our simulations. We use the same simula-
tion algorithm as in [1], which is an extended version of the
original algorithm proposed by Bergmüller et al. [7]. The
algorithm takes an (unaged) image sequence as input and out-
puts several aged versions of this image sequence. At first it
calculates the defect matrices C and D according to the pixel
model. These are then applied to the input images to generate
the aged versions. Actually the incident illumination I should
be used according to our pixel model. Since it is not known,
the sensor ageing related hot and stuck pixels are directly ad-
ded to the unaged images, i.e. an offset d is added to a pixel’s
value for hot pixels and its value is replaced by c for stuck
pixels. C andD are calculated recursively to comply with the
once defective - always defective principle.

2.5. Empiric Formula for Estimating Defect Growth Rate

Chapman et al. [9] derived an empirical formula for estim-
ating the defect growth rate based on the sensor technology
(CCD or APS) and on sensor design parameters like sensor
area, pixel size and gain (adjusted by the ISO setting):

D = A · SB · ISOC (4)



where D is the defect density (defects/year/mm²), A is the
number of defects/year/mm² if the pixel size is 1µm, S is the
pixel size, ISO is the ISO value according to the ISO setting
of the image sensor and B and C are constants depending on
the sensor type. For a CCD sensor A = 0.0141, B = −2.25
and C = 0.69 and for an APS sensor A = 0.0742, B =
−3.07 and C = 0.5.

3. FINGERPRINT RECOGNITION

Different types of fingerprint recognition schemes react dif-
ferently to image degradations. Therefore, we consider fun-
damentally different types of fingerprint feature extraction
and matching schemes:
Correlation-Based Matcher: These approaches use the fin-
gerprint images in their entirety, the global ridge and furrow
(i.e. valley) structure of a fingerprint is decisive. Images are
correlated at different rotational and translational alignments,
image transform techniques may be utilised for that purpose.
As a representative of this class, we use a custom implement-
ation of the phase only correlation (POC) matcher [10].
Ridge Feature-Based Matcher: Matching algorithms in this
category deal with the overall ridge and furrow structure in
the fingerprint, yet in a localised manner. Characteristics like
local ridge orientation or local ridge frequency are used to
generate a set of appropriate features representing the indi-
vidual fingerprint. As a representative of the ridge feature-
based matcher type we use a custom implementation of the
fingercode approach (FC) [11].
Minutiae-Based Matcher: The set of minutiae within each
fingerprint is determined and stored as list, each minutia be-
ing represented (at least) by its location and direction. The
matching process then basically tries to establish an optimal
alignment between the minutiae sets of two fingerprints to
be matched, resulting in a maximum number of pairings
between minutiae from one set with compatible ones from
the other set. As the first representative of the minutiae-
based matcher type we use mindtct and bozorth3 from the
“NIST Biometric Image Software” (NBIS) package (avail-
able at http://fingerprint.nist.gov/NBIS/) for
minutiae detection and matching, respectively. The second
minutiae-based matcher type we use is VeriFinger, developed
by Neurotechnology ( available in form of the VeriFinger
SDK 7.0 at http://www.neurotechnology.com/
verifinger.html), denoted as VF. For more details on
the SDK and the FC and POC approach the interested reader
is referred to recent work [12].

4. EXPERIMENTS

The images of the FVC2002/FVC2004 DB1 and DB2 are
used as ground truth during our evaluations. DB3 is not used
because these images were captured using a thermal sensor
and we only focus on optical image sensors. DB4 contains

Fig. 1: Image sensor inside the U.are.U4000B fingerprint scanner

synthetically generated images and thus is not used either.
FVC2004’s test procedure to determine the EER, FMR1000
and ZeroFMR, is adopted. For details on the databases itself
and the test protocol please refer to [4].

4.1. Experimental Settings

Bergmüller et al. [7] had two iris data sets available, captured
with a time span of four years in between. They estimated the
relative growth in the number of defective pixels, resulting
in a defect rate of 0.6659 defects/MP/year. We have no
two fingerprint data sets with a time lapse in between, taken
with the same sensor. Thus, we use the formula of Chap-
man et al. [9] to estimate the defect growth rate based on the
sensor data. There is no data concerning the image sensor
used in the U.are.U 4000B fingerprint scanner available, thus
we disassembled the device and measured the sensor area (see
figure 1). The outside dimensions (dark yellow square) are
10.6× 10.6mm or about 410× 410 pixels in the image. The
actual image sensor area (red to yellow rectangle in the left
and blue rectangle in the right picture) is about 77×66pixels.
This means that the sensor’s dimensions are 1.99× 1.71mm
which corresponds to a sensor area of 3.404mm2.

The images captured by the U.are.U 4000B and the
U.are.U 4500 have a resolution of 356 × 328 pixels. Based
on the measured sensor size of 3.404mm2 the pixel size is:
1.99
356 × 1.71

328 = 5.59× 5.21 µm. We assume a quadratic pixel
size of 5.4 µm. Moreover there is no information available
at which ISO level the FVC2002/FVC2004 images were cap-
tured, therefore we assume ISO level 400. Based on these
specifications we get a defect rate of:

D = 3.404 · 0.0742 · 5.4−3.07 · 4000.5 = (5)
0.0285 defects/year = 0.244 defects/MP/year

According to Chapman et al. [9] and Theuwissen [5] the
additional offset of hot pixels or the dark current value, re-
spectively, follows an exponential distribution, i.e. lower val-
ues are more likely to occur. The exponential distribution’s
parameter µ = 0.15 was estimated based on their data.

In practice only very few defective pixels occur under nor-
mal conditions. At first we started the simulation with a defect
rate of 1 defect/MP/year. In conditions with higher radi-
ation like high altitudes or if electrical stress is imposed to the



sensor, the defect rates can become much higher. To account
for such scenarios where higher defect rates might occur and
as such a low number of defects had no impact on the recog-
nition accuracy, we then decided to run our simulations with a
rate of 4000 defects/MP/year, a time span of 10 years and
time steps of 1 year.

We run the simulations for hot pixels only, stuck pixels
only and combined stuck and hot pixels. To mitigate statist-
ical fluctuations due to the random locations and amplitudes
of the hot and stuck pixels, all tests were run 5 times (except
for FC and POC due to time constraints) and the mean of the
EER/ZeroFMR/FMR1000 is the final result. Only the probe
images were aged but some of the experiments were conduc-
ted with aged template images (using the same pixel defects
as the probe images), denoted as TA. An application scenario
where not only the probe but also the template image are aged
is establishing a biometric database using an old sensor which
already suffers from ageing effects.

4.2. Experimental Results

Table 1 shows the EER, FMR1000 and ZeroFMR results for
FVC2004 DB1. First of all the baseline values are given, fol-
lowed by the values at a defect density of 40000 hot pixels per
MP, 40000 stuck pixels per MP and 40000 combined hot and
stuck pixels per MP. In addition a linear trend line is fitted to
the EER data. The slope of this straight line is given as EER
Slope in the table. The slope values given have to be multi-
plied by 10−8, e.g. a value of 0.5 means 0.5 ·10−8 = 5 ·10−9.
According to the baseline EER, FMR1000 and ZeroFMR val-
ues, VF is by far the best performing matcher, followed by
FC, closely followed by NBIS. The worst performing matcher
is POC. Figure 2 shows the EER for combined hot and stuck
pixels. It can be seen that the ranking of the matchers does
not change across the whole tested range. Looking at the in-
creases in EER and their slopes, VF is influenced least, fol-
lowed by POC and FC. NBIS is influenced most. This is
in agreement with the FMR1000 and ZeroFMR values. FC
shows a negative EER slope which indicates that its perform-
ance increases with an increasing number of defective pixels.
In general the matching performance drops with an increasing
defect rate but the highest increase in EER is only about 15%.

The results for FVC2004 DB2 are shown in Table 2 and
Figure 3. Again on the unaged images VF performs best, fol-
lowed by NBIS, then FC and POC performing worst. On
DB2 both minutiae based matchers perform better than the
correlation- and the ridge feature-based one. VF again per-
forms best across the whole range tested and FC performs
worst. No general decision if POC or NBIS performs bet-
ter can be made. On DB2 VF is influenced least by all of
the tested defect types. POC is influenced more than VF but
not as much as NBIS and FC is influenced most. In gen-
eral on DB2 hot pixels cause the least decrease in recogni-
tion performance, followed by hot and stuck pixels combined

EER / Matcher FC POC NBIS NBIS TA VF VF TA

Base EER 0.126 0.216 0.136 0.136 0.025 0.025
Base FMR1000 0.703 0.637 0.359 0.359 0.056 0.056
Base ZeroFMR 0.728 0.686 0.473 0.473 0.086 0.086

Hot EER 0.125 0.223 0.15 0.152 0.027 0.027
EER Slope -2.55 24 45.4 40.8 1.52 4.52

Hot FMR1000 0.669 0.634 0.364 0.366 0.057 0.056
Hot ZeroFMR 0.721 0.673 0.491 0.515 0.09 0.091

Stuck EER 0.13 0.204 0.156 0.153 0.027 0.029
EER Slope -37.3 4.87 40.4 30.8 6.09 8.51

Stuck FMR1000 0.648 0.669 0.438 0.442 0.064 0.067
Stuck ZeroFMR 0.776 0.735 0.599 0.549 0.098 0.105

H+S EER 0.137 0.199 0.157 0.155 0.025 0.027
EER Slope -15.3 5.27 22.7 17.2 2.63 7.18

H+S FMR1000 0.659 0.644 0.422 0.426 0.059 0.062
H+S ZeroFMR 0.831 0.697 0.582 0.537 0.096 0.097

Table 1: FVC2004 DB1 EER/FMR1000/ZeroFMR Summary
EER / Matcher FC POC NBIS NBIS TA VF VF TA

Base EER 0.101 0.104 0.093 0.093 0.025 0.025
Base FMR1000 0.358 0.363 0.266 0.266 0.044 0.044
Base ZeroFMR 0.471 0.565 0.358 0.358 0.053 0.053

Hot EER 0.103 0.104 0.099 0.109 0.025 0.027
EER Slope 8.48 6.3 21.8 44.1 -2.48 3.21

Hot FMR1000 0.36 0.299 0.288 0.295 0.043 0.045
Hot ZeroFMR 0.438 0.595 0.369 0.35 0.055 0.051

Stuck EER 0.177 0.116 0.119 0.133 0.029 0.03
EER Slope 162 40.5 70.5 112 6.43 13.2

Stuck FMR1000 0.445 0.373 0.351 0.397 0.046 0.055
Stuck ZeroFMR 0.518 0.556 0.431 0.459 0.057 0.071

Hot+Stuck EER 0.155 0.111 0.109 0.119 0.027 0.028
EER Slope 82 27.2 42.5 51.3 7.12 8.13

H+S FMR1000 0.418 0.345 0.307 0.315 0.046 0.051
H+S ZeroFMR 0.466 0.702 0.416 0.37 0.059 0.064

Table 2: FVC2004 DB2 EER/FMR1000/ZeroFMR Summary

and stuck pixels lead to the highest decrease.On DB1, hot and
stuck pixels combined lead to the most severe effects.

Comparing Table 1 and Table 2 shows that the influence of
pixel defects on DB2 is higher than on DB1 in general. Com-
paring DB1 and DB2 images shows that the absolute area in
pixels covered by the fingerprint in DB1 images is larger than
in DB2 images. Consequently the ridges and valleys are wider
and thus less affected by single pixel defects. Hot pixels have
less influence on DB1 than on DB2. This is also quite obvi-
ous as the background in the DB1 images is all white. A hot
pixel simply adds an offset to the pixel value and if the pixel
is already white, it stays white, i.e. no change. Moreover also
stuck pixels have less influence on DB1. This is due to the
higher contrast in general compared to DB2 images, i.e. the
ridge lines appear darker and combined with the bright back-
ground this mitigates the influence of the single pixel defects.

Figure 4 shows the comparison between only probe im-
ages aged and probe and template images aged for the two
minutiae based matchers on DB2. Looking at VF there is no
clear trend if VF TA or VF performs better. On DB1 also
NBIS TA and NBIS perform equally for hot pixels. However
for stuck and combined hot+stuck pixels NBIS TA performs
better than NBIS which is in a way the expected behaviour.
If the templates are aged, the images will be more similar
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Fig. 2: FVC2004 DB1 EER Hot and Stuck Pixels
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Fig. 3: FVC2004 DB2 EER Hot and Stuck Pixels

again and this should lead to improved matching results. On
DB2 the situation is completely different. NBIS clearly out-
performs NBIS TA with increasing defect density. Again the
images start to look more similar which this time leads to an
increase in the FMR and results in an increased EER.

The results for FVC2002 DB1 are shown in table 3, which
has the same structure as table 1 for the FVC2004 results.
Looking at the baseline values, it can be seen that VF again
clearly performs best, followed by NBIS and then by FC.
POC performs worst. The values in the table and also in fig-
ure 5 show that VF is influenced least by defective pixels, fol-
lowed by NBIS and FC and POC is influenced most. VF has
consistently low EER slope values, indicating that its EER
remains almost constant even up to 40000 defects/MP. The
influence on NBIS is also rather low. The two non-minutiae
based matchers are influenced more but for a realistic number
of defective pixels there is no significant drop in their per-
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Fig. 4: FVC2004 DB2 EER NBIS + VF, Hot + Stuck Pixels

EER / Matcher FC POC NBIS VF

Baseline EER 0.133 0.164 0.034 0.006
Baseline FMR1000 0.538 0.455 0.086 0.01
Baseline ZeroFMR 0.661 0.623 0.113 0.008

40000 Hot EER 0.137 0.168 0.034 0.007
EER Slope 10.6 6.38 0.937 1.64

40000 Hot FMR1000 0.546 0.454 0.085 0.009
40000 Hot ZeroFMR 0.673 0.606 0.123 0.011

40000 Stuck EER 0.137 0.182 0.04 0.006
EER Slope 11.6 39.6 14 0.621

40000 Stuck FMR1000 0.603 0.448 0.103 0.008
40000 Stuck ZeroFMR 0.711 0.564 0.149 0.01

40000 Hot+Stuck EER 0.134 0.167 0.039 0.007
EER Slope 3.46 17 9.97 -0.767

40000 Hot+Stuck FMR1000 0.562 0.501 0.102 0.008
40000 Hot+Stuck ZeroFMR 0.722 0.593 0.127 0.01

Table 3: FVC2002 DB1 EER/FMR1000/ZeroFMR Summary

EER / Matcher FC POC NBIS VF

Baseline EER 0.108 0.162 0.026 0.007
Baseline FMR1000 0.267 0.401 0.051 0.007
Baseline ZeroFMR 0.29 0.525 0.069 0.007

40000 Hot EER 0.107 0.168 0.027 0.006
EER Slope 0.373 15.1 0.566 -1.29

40000 Hot FMR1000 0.259 0.399 0.058 0.007
40000 Hot ZeroFMR 0.287 0.559 0.085 0.007

40000 Stuck EER 0.119 0.178 0.03 0.005
EER Slope 29.6 40 11.8 -2.74

40000 Stuck FMR1000 0.296 0.439 0.061 0.006
40000 Stuck ZeroFMR 0.366 0.55 0.072 0.007

40000 Hot+Stuck EER 0.111 0.171 0.026 0.005
EER Slope 13.5 13.9 4.85 -4.46

40000 Hot+Stuck FMR1000 0.27 0.454 0.067 0.006
40000 Hot+Stuck ZeroFMR 0.349 0.557 0.081 0.007

Table 4: FVC2002 DB2 EER/FMR1000/ZeroFMR Summary

formance. Again hot pixels have the least influence, followed
by hot and stuck pixels combined and stuck pixels have the
highest influence. In contrast to the other matchers, VF is
influenced more by hot pixels than by stuck ones.

Table 4 and figure 6 show the results on FVC2002 DB2.
Similar to DB1, VF clearly outperforms all other matchers.
NBIS is ranked second, followed by FC and POC again per-
forms worst. The performance of VF even increases with an
increasing number of defects. Again the two minutiae based
matchers are influenced less than FC and POC. VF and NBIS
are not influenced at all for a reasonable number of defective
pixels and the influence on FC and POC is negligible as well.
By comparing the FVC2002 and FVC2004 results it can be
seen that the minutiae-based matchers not only perform bet-
ter than the non minutiae-based ones for high quality finger-
prints but they are also less influenced by defective pixels for
high quality fingerprints. The influence of image sensor age-
ing related pixel defects is lower if the baseline performance
is higher, i.e. fingerprint images have higher quality.
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Fig. 5: FVC2002 DB1 EER Hot and Stuck Pixels
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Fig. 6: FVC2002 DB2 EER Hot and Stuck Pixels

5. CONCLUSION

We investigated the influence of image sensor ageing re-
lated pixel defects within the biometric template ageing phe-
nomenon on fingerprint recognition systems. We estimated
the defect growth rate based on real sensor characteristics. On
the one hand this estimated rate is quite low and does not lead
to any influence on the recognition accuracy. On the other
hand the model of Chapman et al. and Jessica Fridrich are
only theoretical and not able to cover all the effects occuring
inside a sensor in real-world applications leading not only
to higher defect growth rates but also other effects having a
negative imact on the image quality. To account for these
other external influences and higher growth rates we used a
much higher defect rate during our experiments.

Although there is a noticeable drop in the recognition per-
formance for the unrealistic number of 20000 pixel defects
per MP, most matchers are quite stable. Higher defect rates
then 0.0285 defects/year are likely to occur in practice be-
cause other external influences are present, but this would still
only lead to a few defective pixels over a reasonable long
sensor lifetime of 10 years. We showed that less than 1000
defects per MP have no impact on the recognition accuracy.
In addition simple image denoising techniques were able to
reduce the effect of defective pixels for finger and hand veins
so the same should be true for fingerprints. Thus the contri-
bution of defective pixels caused by image sensor ageing to
the template ageing effect in fingerprinting is neglibile.

In conclusion defective pixels caused by image sensor
ageing do not seem to be a problem in practical applications

of fingerprint recognition.
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