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Abstract

The impact of sensor ageing related pixel defects on the
performance of finger vein based recognition systems in
terms of the EER (Equal Error Rate) is investigated. There-
fore the defect growth rate per year for the sensor used
to capture the data set was estimated. Based on this es-
timation an experimental study using several simulations
with increasing numbers of stuck and hot pixels were done
to determine the impact on different finger-vein matching
schemes. Whereas for a reasonable number of pixel de-
fects none of the methods is considerably influenced, the
performance of several schemes drops if the number of de-
fects is increased. The impact can be reduced using a simple
denoising filter.

1. Introduction

Biometric authentication systems become more and
more widely used and important nowadays because of their
advantages over password or token based ones. Besides
the well established fingerprint recognition systems also
authentication based on finger veins gains more attention.
Finger-vein recognition utilizes the pattern of the blood ves-
sels inside the fingers of a human which is captured using
near infrared light. This has several advantages, e.g. res-
istance against forgery because the veins are underneath the
skin and only visible in infrared light. Liveness detection is
easily possible and the vein patterns are neither susceptible
to abrasion nor finger surface conditions. Disadvantages in-
clude the rather big capturing devices compared to finger-
print sensors and images having low contrast and quality in
general. Moreover, the vein structure can be influenced by
temperature, physical activity and certain injuries and dis-
eases.

Although finger surface conditions do not influence the
results, the images can suffer from other distortions. One of
these distortions are defective pixels due to ageing effects of
the image sensor. These defects are point like, i.e. defects of
single pixels where the most prominent types are hot pixels,

followed by stuck pixels.

To the best of our knowledge, the impact of these pixel
defects on the recognition performance of finger vein based
recognition systems has not yet been studied. The contri-
bution of this work is to investigate the impact of defect-
ive pixels due to sensor ageing on the recognition perform-
ance of different finger vein feature extraction and matching
schemes in terms of the EER (Equal Error Rate). Actu-
ally this corresponds to investigating the robustness against
point like, spiky shot noise.

At first, an estimation of the defect growth rate, based on
the formula of Chapman et al. [4] using real sensor para-
meters of a finger vein scanner, was derived. Based on this
we conducted several experiments using an ageing simula-
tion algorithm. For the experiments the UTFVP [18] finger
vein data set was used.

The rest of this paper is organised as follows: Sec-
tion 2 describes image sensor ageing with its causes and
presents the pixel defect model used for the simulations.
Section 3 gives a brief overview of the finger vein feature
extraction, matching and preprocessing methods. Section
4 describes the experimental settings, the simulation al-
gorithm and provides the results with respect to the different
schemes. Section 5 concludes this work.

2. Image Sensor Ageing

The main part of any digital imager is its image sensor.
Most biometric sensors also contain some kind of image
sensor, especially fingerprint, finger-, hand-vein scanners
and iris scanners. There are two main types of image
sensors, CCD and CMOS (APS). An image sensor is an
analog device which basically consists of an array of pho-
tosensitive cells, called pixels. Like every human being and
every electronic device also an image sensor ages. Image
sensors develop more and more defective pixels as they be-
come older even if they are not in use. These defective
pixels show different characteristics than at manufacturing
time. They appear as spiky noise in the output image. Pixel
defects are permanent, their number increases linearly with
time and they are randomly distributed over the sensor area.



2.1. Defect Causing Mechanism

According to the literature the main source causing the
defects is assumed to be some constant external stress which
impacts the image sensor. Albert Theuwissen [17] stud-
ied the influence of terrestrial cosmic rays on the number
and the parameters of newly generated pixel defects in im-
age sensors. He was able to show an increase in the hot
spot density with increasing cosmic ray total flux. Leung
et al. [11, 10] and Chapman et al. [2] applied statistical
analysis to the spatial and temporal distribution of defects.
They showed that the spatial distribution of defects across
the sensor area follows a normal random distribution with
no significant bias towards short or long distances, i.e. no
defect clustering. They also showed that the number of de-
fects increases linearly with time and inter-defect times fol-
low an exponential distribution, indicating a constant defect
rate which is both in contradiction to material degradation
as defect source. Thus cosmic ray radiation, actually the
neutrons of the cosmic rays, are the main source causing
in-field sensor defects.

We focus on in-field defects only. There are also manu-
facture time defects which occur during the fabrication pro-
cess. These defects may also include stuck and abnormal
sensitivity pixels but are usually corrected by factory calib-
ration, i.e. simply masked out.

2.2. Defect Types

The most prominent defect types that develop over a
sensor’s lifetime are hot and stuck pixels.

A hot pixel has an illumination independent compon-
ent that increases linearly with exposure time. Whereas the
dark response of a good pixel should be close to 0, the dark
response of a hot pixel increases with exposure time. It ap-
pears as a bright spot with a fixed location in the output im-
age. A partially-stuck hot pixel has an additional compon-
ent (offset) that is independent from the illumination and
exposure time. The main cause of a hot pixel is an increased
dark current value compared to its neighbouring pixels due
to the damage caused by cosmic ray radiation.

The output of a stuck pixel always has the same arbitrary
but fixed value c in the range 0 < ¢ < 1 (assumed pixel
output range). Thus, a stuck pixel will always have the same
output under all illuminations independent of the exposure
time. Stuck pixels mainly appear as factory time defects.

2.3. Pixel Defect Model

A pixel model considers the incoming illumination and
the impact of pixel defects on either the raw output of a
single pixel or the whole sensor.

Dudas, Leung and Chapman [5, 10, 3] adopted the pixel
model first proposed by Dudas et al. [5]. They claim that

they have never found a true stuck pixel during their exper-
iments. Thus their current pixel model only includes hot
and partially-stuck hot pixels. Indeed they found out that
partially-stuck hot pixels with a very high offset appear as
stuck high. The output I of a single pixel is:

IPixel(Rphoto; RDark7 Texpa b) =
m - (Rphoto : Terp + RDm’k’ : Texp + b) (1)

where 01, measures the incident illumination, Rpg.i is
the dark current rate, 1., is the exposure time, b is the
dark offset and m is the amplification proportional to the
ISO setting.

For an ideal good pixel, both Rp,,;, and b are 0 and the
output is only proportional to the incident illumination. A
standard hot pixel now adds a signal on top of the pixels
output due to Rp,-r # 0, whereas a partially-stuck hot
pixel has an additional offset value b # 0. Therefore the
output of the pixel will appear brighter.

Their former model also included stuck pixels and other
defect types, where a stuck pixel was modelled (using an
output range of a pixel between 0 — 1 and x = o0 -
Tintegrations Iphotols the intensity of the incoming illumin-
ation and T ¢egration the exposure time):

fstuck—mia(z) =¢, 0<c<1 )

Jessica Fridrich [6] uses a more extensive pixel model:

Y=I4+IoK+7D+C+0© 3)
with Y,I,K,D,C,0 e R* ", 7 ¢ R andw,h € Z

where Y is the sensor output, i.e. the image with dimen-
sions w X h, I is the intensity of the incoming light (incid-
ent illumination), I o K the photo-response non-uniformity
PRNU, 7D the dark current (with 7 being a multiplicative
factor taking into account the exposure setting, sensor tem-
perature, ...), C'is a light-independent offset and © is some
additive modelling noise. According to this model, a pixel
with an extremely high dark current value D is called a hot
pixel. Another defect type, the stuck pixel, has a high offset
value C'.

Our Pixel Model For this work we adopted the pixel
model of Bergmiiller et al. [1], which is a simplified ver-
sion of Fridrich’s pixel model and show that it is similar
to the one of Dudas et al. Even if the models of Dudas et
al. and Fridrich seem quite different at first sight, they are
not. Dudas et al. simply do not include the PRNU and the
additional modelling noise.

Since all pixels are independent and all operations are
done element-wise, the matrix elements y, , € Y are de-
noted as y € Y for simplicity, the same fori € I, k € K,



d € D,ce Candf € ©. We are interested in the ageing
effect of one specific sensor, thus the PRNU can be elim-
inated. As we aim for reproducible tests, modelling noise
and environmental influences should be minimised, in fact
they can be eliminated completely in a simulation, there-
fore k = # = 0. For all images taken with the sensor the
same exposure settings are used, thus 7 = const. and we set
7 = 1 for simplicity. The dark current level is low for short
exposure times, usually used in standard photography but
also for finger-vein images. Taking all this into account a
simplified pixel model can be derived from Fridrich’s pixel
model:

y=1+d+c with y,i,c,d € R (@)

If the dark current d of a pixel is extremely high, it is
often denoted as hot pixel. Whereas if the offset c is high,
this results in a saturated pixel and is sometimes denoted as
stuck pixel (Dudas et al. denote this as partially-stuck hot
pixel). As the definitions in the literature are not consistent,
we define the following pixel model for our experiments:

y=c &)
y=1i+d (6)

where the first one is light independent and has a constant
value ¢, denoted as stuck pixel. The second one adds an off-
set to the incident illumination and is referred as hot pixel.
Hot pixels are caused by a higher dark current level com-
pared to other pixels. The dark current level depends on the
temperature and exposure time, which are both kept con-
stant in our experiments, i.e. the dark current level is con-
stant and thus there is no difference between a hot and a
partially-stuck pixel, so it is simply denoted as hot pixel.

Our model for stuck pixels can be directly compared to
the one used by Dudas et al. If you take their hot pixel
model (see Equation 1), set m = 1, Tgyp = 1, Rparr = 0
and set Ip;jze; = ¥, Rphoto = ¢ and b = d (as discussed
before) you get the same hot pixel model as we used.

This leads us to the following pixel model for 8 bit grey-
scale images:

_ ) C(z,y)
Yiew) = {m,y) + D(zy)

with Y,C,I,D € (Z : [0;255]“*")

if C(z,y) #0

otherwise

)

where C' and D are the defect matrices. A pixel’s output
Y (x,y) saturates at 0 and 255 if interval borders are ex-
ceeded. This pixel model is the basis for the ageing simula-
tion algorithm, described in section 4.3.

2.4. Empiric Formula for Estimating Defect Growth
Rate

Chapman et al. [4, 3] showed by continued empirical
measurements of several imagers with different character-
istics that the rate of pixel defects depends on the sensor
technology (CCD or APS) and on sensor design parameters
like sensor area, pixel size and gain (which is adjusted by
the ISO setting). They derived the following formula:

D=A-SB.150¢ (®)

where D is the defect density (defects/year/mm?), A is the
number of defects/year/mm? if the pixel size is 1pum, S is the
pixel size, I SO is the ISO value and B and C are constants
depending on the sensor type. For a CCD sensor: A =
0.0141, B = —2.25 and C = 0.69 and for an APS sensor:
A=0.07142, B= —3.07Tand C' = 0.5.

3. Finger Vein Recognition
3.1. Preprocessing

Preprocessing can be grouped into methods to align the
finger position and to improve the low contrast and image
quality.

The first preprocessing method adopted from Lee et al.
[©] (LeeRegion) simply masks out background pixels (set-
ting them to 0). This is followed by a normalization step,
i.e. rotation compensation as done in [7].

The second preprocessing stage tries to improve the im-
age contrast. Simple CLAHE [21] or other local histogram
equalization techniques are suggested by most authors for
this purpose.

We use High Frequency Emphasis Filtering (HFE)
which was originally proposed for hand vein image en-
hancement [20].

Filtering using a Circular Gabor Filter (CGF) as pro-
posed by Zhang and Yang [19] was also applied as it leads
to good results. For more details on the preprocessing and
feature extraction methods the interested reader is referred
to [8].

3.2. Feature Extraction and Matching

The first three techniques discussed here aim to extract
the vein pattern from the background resulting in a binary
image, followed by a comparison of these binary images
using a correlation measure.

Repeated Line Tracking (RLT [14]) tries to track the
veins as dark lines inside the image. Veins appear as val-
leys in the cross-sectional profile of the image. The track-
ing point is repeatedly initialised at random positions and
then moved pixel by pixel along the dark line, where the
depth of the valley indicates the movement direction. If no
“valley” is detected a new tracking operation is started. The



number of times a pixel is tracked, is recorded in a matrix.
Pixels that are tracked multiple times as belonging to a line
statistically have a high likelihood of belonging to a blood
vessel. Thus, binarisation using thresholding is applied to
this matrix to get the binary output image.

Maximum Curvature (MC [15]) aims to emphasise
only the centre lines of the veins and is therefore insensitive
to varying vein width. The first step is the extraction of the
centre positions of the veins. Therefore the local maximum
curvature in the cross-sectional profiles, based on the first
and second derivatives, are determined. Afterwards each
profile is classified as being concave or convex where only
local maxima in concave profiles indicate valid centre posi-
tions of the veins. Then a score according to the width and
curvature of the vein region is assigned to each centre posi-
tion, which is recorded in a matrix called locus space. Due
to noise or other distortions some pixels may not have been
classified correctly at the first step, thus the centre positions
of the veins are connected using a filtering operation. Fi-
nally binarisation is done by thresholding using the median
of the locus space.

Wide Line Detector (WLD [7]) is essentially an adapt-
ive thresholding technique (using isotropic non-linear filter-
ing), i.e. thresholding inside a local neighbourhood region.
The difference of the centre pixel to its neighbours inside a
circular neighbourhood and the number of pixels inside this
neighbourhood with a difference smaller than a predefined
threshold are determined. This number is again thresholded
to get the final binary output vein image.

Local Binary Patterns (LBP [9]) is implemented as an-
other representative of a binarisation-type feature extraction
scheme. LBP compares the grey level of a centre pixel to
its neighbouring pixels. Each pixel’s grey scale value is
then represented by the corresponding binary code result-
ing from the comparison with its neighbourhood.

To be able to qualify the impact on more basic schemes
and the (eventual) advantages of the advanced ones, the last
binarisation-type scheme tested is a simple Adaptive Bin-
arisation (AB [16]) one.

For matching the binary feature images we adopted the
approach in [14] and [15]. As the input images are not re-
gistered to each other and only coarsely aligned (rotation is
compensated), the correlation between the input image and
in x- and y-direction shifted versions of the reference image
is calculated. The maximum of these correlation values is
normalised and then used as final matching score.

In contrast to the techniques described above, key-point
based techniques try to use information from the most dis-
criminative points as well as considering the neighbourhood
and context information of these points by extracting key-
points and assigning a descriptor to each key-point. We
used a SIFT [12] based technique with additional key-point
filtering as in [8].

Scheme Preprocessing

SIFT LeeRegion, Resize, CGF, HFE

MC, WLD, RLT, AB LeeRegion, Normalization, Resize, CGF

LBP LeeRegion, Norm, Resize, CGF, HFE, Denoising

Table 1: Preprocessing for the Feature Extraction Schemes

4. Experiments

For MC, RLT and WLD we utilized the MATLAB im-
plementation of B.T. Ton'. Table 1 shows the preprocessing
methods applied for each of the evaluated feature extraction
schemes.

4.1. Finger Vein Data Set

For the evaluation we used the University of Twente
Finger Vascular Pattern Database (UTFVP) [18], kindly
provided by R.N.J Veldhuis. It consists of a total of 1440
images, taken from 60 subjects, 6 fingers per subject and 4
images per finger. Their scanner uses a BCi5 monochrome
CMOS camera’ produced by C-Cam technologies. This
camera has a CMOS image sensor with an active sensor
area of 8.58 x 6.86mm, a pixel size of 6.7 x 6.7um, a fill
factor of 50% and a resolution of 1280 x 1024 pixels.

4.2. Experimental Settings

Bergmiiller et al. [ 1] had two iris data sets available, cap-
tured with a time span of four years in between. Therefore,
they were able to estimate the relative growth in the number
of defective pixels and their parameters from these data sets.
They estimated a defect rate of 0.6659 de fects/M P/year.
Unfortunately, there are no two data sets with a time lapse in
between for finger vein images taken with the same sensor.
Thus, we used the formula of Chapman et al. [4] to estim-
ate the defect growth rate based on the sensor data. There
is no information available at which ISO level the UTFVP
images were captured, therefore we assume ISO level 400.
Using this data yields a defect growth rate of:

D =0.0742 - 6.773:07 . 400°° = )
0.00432 defects/year /mm?

or for a sensor area of 58.859mm?:
0.254 de fects/year = 0.194 defects/M P/year (10)

The finger-vein images have a resolution of 672 x 380
pixels. The effective pixel defect rate is:

IPublicly available on MATLAB Central: http://www.
mathworks.nl/matlabcentral/fileexchange/authors/
57311

2yww.c—-cam.be/doc/Archive/BCi5.pdf
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672 x 380

1980 < 1024 - 0.254 = 0.0495 de fects/year (11)

According to Chapman et al. [3] and Albert Theuwissen
[17] the additional offset Jofser Of hot pixels or the dark
current value, respectively follows an exponential distribu-
tion, i.e. hot pixels with a lower amplitude are more likely
to occur. The parameter . = 0.15 of the exponential distri-
bution was estimated using the data given in the papers of
Theuwissen and Chapman et al.

Theoretically there would be only 0.0495 de fects/year
caused by sensor ageing according to our defect model. But
in practice much higher defect rates might occur due to
other influences like higher ISO level, electrical stress or
radiation originating from other sources. Moreoever, the
cosmic ray total flux is dependent on the altitude, i.e. it
increases with higher altitude. A realistic scenario with a
high defect rate of more than 10 de fects/year would be
a finger-vein based authentication system for air plane pi-
lots because the flux is about 300 times higher on transat-
lantic flights than at ground level. At first we started the
simulation with a defect rate of 1 de fect/year. Such a low
number of defects has little to no impact on the recognition
accuracy. Therefore we then ran our simulations with a rate
of 1000 de fects/year, a time span of 10 years and a time
step of 1 year to be able to quantify the impact of the pixel
defects and to cover all scenarios where higher defect rates
might occur, although such extremly high defect rates will
hardly occur in practice.

4.3. Image Ageing Algorithm

We exclusively want to investigate the impact of sensor
ageing related effects on the recognition performance and
no additional effects like sensor conditions, subject or tem-
plate ageing. Thus we used UTFVP images as a basis (un-
aged images) and simulated the sensor ageing related pixel
defects. As our results are relative it does not matter if the
UTFVP images already contain some defective pixels.

Although some researchers [5, 4, 3, 10] never found a
true stuck pixel we included it in our simulations. We in-
cluded hot and stuck pixels but no partially-stuck hot ones
due to the assumed constant dark current level.

The following listing describes our sensor ageing al-
gorithm in pseudo code, which is an extended version of
the one proposed by Bermiiller et al. [1] to generate the de-
fect matrices C' and D and also the sequence of aged images
by applying these matrices to the input image Y7, (can be
applied to a set of source images to generate the aged data
set) for a single source image and sample points in time
To...TmI

procedure AgedImageSequence (Yr,)
for i=1...m do

Ang < ng(T; — To) — ns(Ti—1 — Tp)
Anps — nps(n - TO) - nps(Tifl - TO)
DTi = DTi—l
Cr, =Cr,_,
for k=1...An, do

rq < random in [0;1]

do

S < random in w X h

while checkNeighbours(sy, 3) = 1
Cr,(sK) < rq - as
endfor
for k=1...An,, do
rqe < drawn from expd(0.15)
do
S <+ random in w X h
while checkNeighbours(sg, 3) =1

Dy, (s) < T4 - Qps

endfor
Y, (z,y) = 4 S5 00) if Cr,(a,9) # 0
Yr,(z,y) + Dr,(z,y) otherwise.
endfor

return (Y7,)i=1..m
end procedure

Our extensions include that the amplitude of the
hot pixels is drawn from an exponential distribution,
denoted as expd(n) in the pseudo code and that
check N eighbours(pos, size) is used to avoid local clus-
tering of defects, i.e. no 2 defects are allowed to be inside
the same 3 x 3 pixel region.

Actually, we would have to use the incident illumination
1 according to our pixel model. As this is not known, we
simply used the unaged images and injected the sensor age-
ing related hot and stuck pixels into the images, i.e. added
a hot pixel offset d to the pixel value and replace the pixel
value by the value c for stuck pixels.

4.4. EER Determination Procedure

The test procedure of the FVC2004 [13] was adopted to
determine the EER.

For the genuine matches (FNMR) each image of each
finger is compared with all remaining images of the same
finger, no symmetric matches are performed. This results in
a total of 2160 genuine matches.

For the impostor matches (FMR) the first image of each
finger is compared against the corresponding first image of
the same finger of all remaining subjects, again no symmet-
ric matches are performed. This results in a total of 10620
impostor matches.

4.5. Experimental Results

We ran the simulations for hot pixels only, stuck pixels
only and also combined stuck and hot pixels for MC, RLT,



Method | EER EER 10000 Defects | 10000 Defects

w. denoising w. denoising
MC 0.006 0.010 0.017 0.010
RLT 0.020 0.021 0.077 0.021
WLD 0.031 0.025 0.361 0.028
LBP 0.063 0.063 0.068 0.068
SIFT 0.020 0.022 0.029 0.023
AB 0.036 0.036 0.048 0.036

Table 2: EER Baseline and 10000 Defects

WLT, LBP, AB and the SIFT based approach. As the loca-
tions and amplitudes of the hot and stuck pixels are random
we ran all tests 5 times and used the mean of the EER as fi-
nal result. Furthermore, we did all the experiments with an
additional denoising filter as preprocessing (median filter
followed by an adaptive Wiener filter). LBP uses denoising
during preprocessing by default thus the results for LBP are
the same with and without denoising.

In Figure 1 some sample finger vein images containing
no defects, 1000 and 10000 pixel defects and the corres-
ponding region of the feature extraction image for MC, RLT
and WLD are shown. One can clearly see that for MC due to
the pixel defects the lines get broken and an additional line
appears at 10000 defects which is clearly not a vein. The
vein lines do not get broken for RLT but they appear wider
with some additional noise at the vein boundaries. WLD
does not show much useful information any more at 10000
defects due to the noise caused by the defective pixels which
leads to dots and small circles inside the binary image.

Figure 2 shows that not only SIFT and MC but also the
simple AB scheme (presumably because it relies on the fin-
ger outline and not only on the vein structure) is hardly in-
fluenced at all by hot pixel defects, even if there are 10000
defects inside the image. The EER of MC rises to 0.0074
at 10000 defects but it is still the best performing approach.
The EER of RLT doubles at 10000 defects but stays still
below 0.045. WLD, as it is quite a simple thresholding
method, is influenced dramatically. At 10000 defects the
EER is ten times higher than its baseline EER. The per-
formance of LBP is hardly influenced at all by the noise
introduced due to sensor ageing even in the case of 10000
defects.

In Figure 3 it can be seen that the influence of stuck
pixels is higher than that of hot pixels. The average amp-
litude or hot pixel offset, respectively is quite low. Thus the
original grey value is only slightly changed. Stuck pixels al-
ways have the same fixed value, independent of the original
grey value, so they actually “break” the vein lines inside the
image.

SIFT is again quite stable, while MC is affected more
by stuck than by hot pixels and at 10000 defects the per-

(a) No Defects (b) MC
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(h) RLT

(e) 1000 Defects

(i) 10000 Defects (G MC
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Figure 1: Sample Aged Images and Feature Extraction
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Figure 2: EER Hot Pixels only

formance of MC gets worse than the SIFT one. Also the
performance of AB is influenced more by stuck pixels than
by hot ones as the EER rises to 0.051 at 10000 stuck defects
in comparison to 0.043 for hot ones. RLT is even influenced
more than MC and AB and its EER rises to 0.097 in com-
parison 0.045 at 10000 hot pixel defects. WLD is again
highly influenced by the stuck pixel defects and like MC,
AB and RLT even more than by hot pixel ones. The impact
of stuck pixels on LBP is not higher than for hot pixel due
to denoising.

If both, hot and stuck pixel defects, are present in the
images, the results are similar to those for the single defect
types. WLD is influenced most, whereas the performance
of SIFT is quite stable, even if 20000 defects in total (10000
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Figure 4: EER Hot and Stuck Pixels

hot and 10000 stuck pixels) are present, i.e. the EER only
rises to 0.032. The performance of MC gets worse than
SIFT for 14000 defects (MC: 0.03 and SIFT: 0.027). RLT
is affected more than by hot pixels only but not as much as
by stuck pixel defects only. Its EER for a total of 10000
defects is 0.077. The influence on LBP and AB is again
negligible.

Table 2 shows that the baseline EER for MC, RLT and
SIFT is slightly higher with denoising than without. It can
be seen from Figures 5, 6 and 7, that the impact of sensor
ageing related pixel defects can be eliminated almost com-
pletely using denoising for MC, SIFT, RLT and AB, i.e. the
EER remains constant even for a high number of pixel de-
fects, except some small statistical variations due to the ran-
dom positions of the defective pixels. The EER of WLD and
LBP rises only slightly. Denoising can be made adaptive
such that it is only used at a certain noise level and in addi-
tion only used for schemes where it is advantageous. Thus
the baseline EER stays the same and if more pixel defects
are present, the EER can be reduced.

Figure 6: EER Stuck Pixels only with Denoising
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Figure 7: EER Hot and Stuck Pixels with Denoising

5. Conclusion

We used the UTFVP finger-vein dataset and several
state of the art feature extraction and matching schemes to
quantify the impact of sensor ageing related pixel defects
on the performance of finger-vein based recognition sys-
tems. Our future work will include evaluations on other



publicly available datasets and further matching schemes.
We showed that the impact of sensor ageing and its related
pixel defects for a reasonable, i.e. realistic number of de-
fective pixels which occurs in practice, is negligible. Thus
sensor ageing is not an issue for practical applications of
finger-vein recognition.

The theoretical defect rate of 0.05 defects/year which
hardly occurs in practice would lead to 1.5 defective pixels
over a reasonable long sensor lifetime of 30 years. In prac-
tice there are other factors such as higher altitudes, electrical
stress and temperature changes leading to defect rates that
are several hundred times higher. But the more advanced
feature extraction and matching techniques are robust even
against a high number of defects. At 10000 defective pixels
SIFT is hardly influenced at all. Also MC, RLT, LBP and
the simple AB scheme are quite robust against the defects.
Only the performance of WLD drops significantly.

In addition a simple denoising filter is able to reduce
the impact of pixel defects substantially at the cost of an
increased baseline EER, i.e. a slight overall performance
drop.
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