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Abstract—Preprocessing and fusion techniques for finger vein
recognition are investigated. An experimental study involving a
set of preprocessing approaches shows the importance of selecting
the appropriate single technique and the usefulness of cascading
several different preprocessing methods for subsequent feature
extraction of various types. Score level fusion is able to signifi-
cantly improve recognition results, in particular when combining
features describing complementary finger image properties.

I. INTRODUCTION

Authentication based on finger veins uses the pattern of
the blood vessels inside the fingers of a human. Compared
to fingerprint authentication using finger veins has several
advantages. The veins are underneath the skin so the vein
pattern is resistant to forgery as the veins are only visible
in infrared light. Also liveness detection is easily possible.
Moreover the vein patterns are neither sensitive to abrasion nor
to finger surface conditions, like dryness, dirt, cuts, etc. But
there are also some disadvantages. First of all, so far it is not
completely clear if vein patterns exhibit sufficiently distinctive
features to reliably perform biometric identification in large
user groups. With the currently available data sets (see Table
I, the public ones available on-line: ChonbukU1, PekingU2,
PolyU3, TwenteU4) this issue cannot be clearly answered at
present state due to their partially limited size.

TABLE I. FINGER VEIN DATASETS.

Acronym Availability # Images # Subjects / # Fingers Ref.

ChonbukU public 6000 100 / 600 [1]

ChongqingU private 4260 71 / 426 [2]

DonggukU private 4800 60 / 480 [3]

HarbinU private 100 10 / 10 [4]

HITACHI private 678 339 / 339 [5]

NTUST private 680 85 / 170 [2]

PekingU public 50700 5208 / n.a. [6]

PolyU public 6264 156 / 312 [7]

TwenteU public 1440 60 / 360 [8]

Another major disadvantage is that the capturing devices,
due to the required transillumination principle, are rather big
compared to e.g. fingerprint sensors. Furthermore, the vein
structure is influenced by temperature, physical activity and
certain injuries and diseases. While the impact of these effects
on vein recognition performance has not been investigated

1http://multilab.chonbuk.ac.kr/resources
2http://rate.pku.edu.cn
3http://www4.comp.polyu.edu.hk/∼csajaykr/fvdatabase.htm
4http://www.sas.el.utwente.nl/home/datasets

in detail so far, consequently it is clear that suitable feature
extraction methods should be independent of the vein width to
compensate for corresponding variations.

The first issue tackled in this paper is the low contrast and
the low overall quality of finger vein images in general. The
nature of these images (see e.g. an example of a good and a
poor quality image pair in Fig. 1) requires to apply successful
preprocessing in order to achieve decent recognition perfor-
mance, no matter which feature extraction strategy is applied.
However, it is difficult to compare the various preprocessing
strategies since these are dispersed across literature and are
often combined with a single feature extraction technique only
(and applied to different, sometimes non-public, datasets). In
this paper, we compare a set of preprocessing techniques in
a common framework applied with various feature extraction
techniques to identify good combinations. We also apply more
than a single preprocessing technique, but contrasting to [9]
we do not fuse the results before feature extraction but apply
different techniques in a cascaded manner.

In order to improve finger vein recognition results, several
fusion techniques have been investigated in literature. Fusion
of several fingers’ results is an obvious possibility [10], [2],
however, sensing is more expensive in this approach of course.
Using multiple features extracted from a single image in a
score level fusion (by analogy to fusion of e.g. palm vein data
[11]) has resulted in first promising results: Fusion of vein
pattern structure, LBP, and super-pixel features [12] as well as
fusion of vein-shape, vein orientation, and SIFT features [2]
were able to improve the usage of single features. Especially
in the latter paper in case of using high accuracy features
improvements have been found to be moderate only. In this
work we show that features representing orthogonal finger-vein
image properties lead to significantly improved accuracy in a
score level fusion scheme, even in case the single techniques
involved exhibit partially poor recognition accuracy.

The rest of the paper is organised as follows: Section 2
describes techniques for finger vein recognition (i.e. prepro-
cessing and feature extraction approaches) while Section 3
describes the experimental setting and provides results with
respect to the selection of preprocessing strategies and score
level fusion. Section 4 concludes this work and gives an outline
of future research.



II. FINGER VEIN RECOGNITION

A. Preprocessing Techniques

Finger vein image preprocessing techniques can be grouped
into methods for alignment of the finger position and into
methods to improve the often uneven and poor contrast of the
images. The first preprocessing stage used for all subsequent
feature extraction algorithms is to detect the actual region of
the finger in the images. Especially for subsequent contrast
manipulations this is important, since otherwise background
pixels would influence the computation of the parameters for
contrast change. LeeRegion detection [3] uses the fact that the
finger region is brighter than the background and determines
the finger boundaries using a simple 20 x 4 mask, containing
2 rows of 1 followed by 2 rows of -1 for the upper boundary
and a horizontally mirrored one for the lower boundary. The
position at which the masking value is maximal is determined
as the finger edge (boundary), background pixels are set to
black.

Due to slight variations in positioning of the finger on
the capturing device, the orientation of the finger in the
image is not always the same. Therefore Finger Position
Normalisation [6] aligns the finger to the center of the image,
compensating rotations and translations. It uses the finger
edges detected by LeeRegion and fits a straight line between
the detected edges. The parameters of this line are then used to
perform an affine transformation which aligns the finger. In the
experiments, this approach is used. A slightly different method
is to compute the orientation of the binarised finger ROI using
second order moments and to compensate the orientation in
rotational alignment [7].

As an alternative, minutiae-based alignment [3] can be
applied, however, as this approach requires the extraction of
vessel structure before geometrical alignment contradicting
the cascaded application as done here we do not consider
it further. It should be noted that we do not need to apply
alignment methodology when applying SIFT and SURF fea-
ture extraction as both are designed to be invariant against
affine transformations.

The second preprocessing stage is to improve and equalise
contrast. CLAHE [13] or some other local histogram equal-
isation techniques [7] are suggested by most authors as a
preprocessing step for finger vein images. Due to the unevenly
distributed contrast a localised technique like CLAHE is a
perfect tool, additionally the integrated contrast limitation
avoids amplification of noise.

High Frequency Emphasis Filtering (HFE) was proposed
originally for hand vein image enhancement [14]. After com-
puting the discrete Fourier transform, a Butterworth high-pass
filter of order n is applied. Instead of using global histogram
equalisation on the filtered image as the authors suggest, we
apply CLAHE afterwards due to superior results. See Figs. 1.b
and 1.e for examples when computing HFE on two images
from the Twente database.

The Circular Gabor Filter [15], being rotation invariant
and achieving optimal joint localisation in both spatial and
frequency domain, was proposed in combination with grey
level grouping for contrast enhancement, especially at the veins
edges. As before, instead of grey level grouping we apply

CLAHE after filtering due to better results. See Figs. 1.c and
1.f for examples when applying this approach.

(a) Good quality (b) HFE (c) Circular Gabor

(d) Poor quality (e) HFE (f) Circular Gabor

Fig. 1. Preprocessing examples when applied to two images from the Twente
dataset.

Further (tested) image enhancement techniques include
Unsharp Masking, Retinex contrast enhancement [16] as well
as denoising with a median filter (5 x 5) and an adaptive
Wiener filter (7 x 7) but as these did not improve the results in
experimentation we have not further looked into their details.

B. Feature Extraction

We first discuss techniques which aim to explicitly extract
the veins from the background using different approaches
generating a binary image and then compare the resulting
binary images using correlation. Subsequently, key-point based
techniques are described. Note that none of the feature extrac-
tion approaches followed here relies on finger vein “minutiae”
(i.e. vein crossings and endings) as the accuracy of this
approach has only been shown on a very small dataset [2].
A comparison of accuracy results of the described techniques
as published in literature is given in Table II.

Repeated Line Tracking (RLT [5]) is based on dark
line tracking starting repeatedly at various random positions.
Veins appear as valleys in the cross-sectional profile of the
image. The randomly initialised tracking point is moved pixel
by pixel along the dark line, where the depth of the valley
indicates the movement direction (pixel is moved to where the
valley is deepest). If no “valley” (exhibiting a certain width)
is detectable a new tracking operation is started. The number
of times a pixel is tracked is recorded in a matrix (called
locus space). Pixels that are tracked multiple times as being
a line statistically have a high likelihood of belonging to a
blood vessel (high value in locus space image). Therefore,
binarisation is applied to the locus space image to get the final
binary output image. See Figs. 2.b and 2.h for an example
binarisation of this type.

TABLE II. FINGER VEIN RECOGNITION ACCURACY COMPARISON IN

TERMS OF EER (%).

Ref. Dataset RLT MC WLD LBP EGM MF SIFT

[5] HITACHI 0.15 - - - - - -

[17] HITACHI 0.01 0.0001 - - - - -

[8] TwenteU 1.2 0.4 0.9 - - - -

PekingU 5.9 1.2 2.7 - - - -

[6] PekingU - 2.8 0.87 - - - -

[7] PolyU 6.54 2.2 - - 0.43 1.88 -

[3] DonggukU - - - 0.08 - - -

[4] HarbinU - - - - - - 0.46

[2] ChongqinU - - - - - - 16.09

NTUST - - - - - - 10.98



Maximum Curvature (MC [17]) emphasises the center-
lines of the veins and is therefore insensitive to changes in
the width of the veins. At first the center position of veins is
extracted. For this purpose, the local maximum curvature in
cross-sectional profiles in four directions, horizontal, vertical
and the two oblique directions, based on the first and second
derivates, is determined. Then each profile is classified as being
concave or convex (curvature positive or negative) where local
maxima in concave profiles indicate the center positions of the
veins. Each center position is then assigned a score, according
to the width and curvature of the region.

Subsequently, the center positions of the veins are con-
nected. Due to noise or other distortions some pixels may not
have been classified correctly at the first step, so a filtering
operation is applied in all four directions taking adjacent
context pixels into account. The last step is the binarisation
of the vein pattern using the median of the locus space as a
threshold.

The Wide Line Detector (WLD [6]) works similar to
adaptive thresholding (using isotropic nonlinear filtering), i.e.
thresholding inside a local neighbourhood region. The dif-
ference of each pixel inside a circular neighbourhood to the
central pixel is determined. Subsequently, the number of pixels
inside this neighbourhood which have a difference smaller
than a set threshold are determined. This number is again
thresholded to get the final binary vein image See Figs. 2.d
and 2.j for an example binarisation of this type.

(a) Good Q (b) RLT (c) MC (d) WLD (e) LBP (f) AB

(g) Poor Q (h) RLT (i) MC (j) WLD (k) LBP (l) AB

Fig. 2. Feature extraction examples.

Given the title of the paper [7], it is somewhat surpris-
ing to find highly competitive finger vein feature extraction
techniques: Gabor Filtering (EGM) is suggested by taking
the maximal response in each pixel by using a convolution
of self similar 2D even Gabor filters for different orienta-
tions with a zero-mean version of the image. Subsequently, a
morphological top-hat operation is performed (i.e. subtracting
the Gabor response image from a version that has undergone
morphological opening) to generate the binary result. Matched
Filters (MF [7]) are used to match cross section profiles of
finger veins employing a group of 1-D Gaussian functions.
Similar to the Gabor case before, the employed Gaussian
functions are rotated in different orientations and only the
maximum response is utilised. Binarisation in conducted in
the same manner.

To assess the advanced binarisation techniques which try
to model vein shape in their binarisation strategy as described
so far, we have additionally used basic Adaptive Binarisation
(AB [18]) to see the (eventual) effect of the more advanced
schemes. See Figs. 2.f and 2.l for an example binarisation
of this type and please note, that contrasting to the other
binarisation techniques discussed (i) veins appear black and
(ii) also the outline of the finger causes a strong black

curve indicating its shape. Thus, in addition to show the vein
structure we additionally get finger shape information for free.

As the last binarisation-type feature extraction scheme, we
consider a Local Binary Patterns (LBP) feature extraction
scheme [3]. LBP compare the grey level of a center pixel to its
neighbouring pixels. The original LBP is a 3x3 non-parametric
operator. It can also be defined as an ordered set of binary
values determined by comparing the gray values of a center
pixel to its 8 neighbouring pixels. Each image gray scale value
is replaced by the corresponding binary code resulting from the
binary pattern of the neighbourhood (which results in binary
images of 8-fold size of the binarisation results discussed so
far).

Lee at al. [3] used an LBP approach for finger vein
matching, preceded by a minutia-based alignment step and a
Hamming distance matching. We followed their approach for
feature extraction but moved the alignment into the matching
stage and used a multi-scale LBP version instead (due to better
results). See Figs. 2.e and 2.k for an example binarisation of
this type.

For matching a pair of binarized image features we adopt
the approach in [5] and [17]. As the input images are not
registered to each other and only coarsely aligned, we simply
calculate the correlation between the input image and the
reference one while shifting the reference image in x- and y-
direction. The maximum value of the correlation is normalised
and used as matching score.

While binarisation techniques (with the exception of LBP)
compute a single bit of information for each pixel in the
original image, the importance of neighbourhood information
is already accounted for in how these single bits are computed
in most techniques as discussed before as well as in the
super-pixel approach of Liu et al. [12]. As already discussed,
an entirely different approach is to use vein minutiae repre-
senting the most discriminative local information contained
in the images. A different approach combining both ideas,
i.e. highlighting the most discriminative points as well as the
importance of neighbourhood and context information, is the
employment of key-points and their descriptors. In this work
we consider SIFT [19] and SURF [20]. See Figs. 3.a and 3.b
for a visualisation of extracted keypoints.

SIFT keypoints have been considered in palm vein image
recognition [21] with moderate success only. Peng et al. [4]
propose an approach for finger vein images based on CLAHE
and an orientation-selective Gabor filtering (responses of two
two Gabor filters with orientations 2π

8
and 7π

8
are fused) with

subsequent matching based on SIFT feature extraction on the
filtered images. Qin et al. [2] use SIFT to identify distinctive
corresponding sub-regions in finger vein images and apply
matching to those regions only.

As can be seen from the SURF feature extraction example
(see Fig. 3.b), there are many strong keypoints along the finger
boundaries. As descriptors of such keypoint contain irrelevant
background information, including them can lead to false or
ambiguous matches. Thus we implemented a filtering step
within a window along the finger boundaries (whose width
can be defined). All keypoints inside the window are discarded
(keypoint filtering, see Fig. 3.c). In addition, a minimum
number of keypoints can be defined. If too few keypoints are



found, feature extraction is re-run with adapted parameters to
extract more keypoints until at least the minimum number of
keypoints are found or the parameters cannot be changed any
more.

(a) SIFT (b) SURF (c) SURF filtered

Fig. 3. SIFT & SURF feature extraction.

SIFT and SURF matching is done using the keypoint
descriptors – the keypoint with the smallest distance to the
reference keypoint is the matched one if the distance is below a
threshold, otherwise there is no match. To resolve the problem
with ambiguous matches (i.e. one keypoint may have small
distances to more than one other point) a ratio threshold is
used: A match is only valid if the distance of the best point
match is at least k (threshold) times smaller than to all other
points.

After matching we get a set of matched keypoints with
associated distances. The simplest way (and also best one, at
least for SURF) to get a final matching score is to use the
number of matched keypoints only. A slightly better way (for
SIFT) is to use the ratio of matched keypoints to the maximum
possible number of matches (minimum number of keypoints
of the two images) – “ratio score calculation”. All techniques
involving also distances of matched keypoints performed worse
and thus have not been considered further.

Comparing the accuracy of the different techniques as
given in literature, Table II shows that reported EERs (1)
highly depend on the dataset (2) are not even consistent among
different implementations when applied to the same dataset (3)
tend to be lower in the original publications as compared to re-
implementations. Thus, at current stage, it is almost impossible
to make recommendations concerning the “best” technique
based on the data available.

III. EXPERIMENTS

A. Experimental Settings

For our evaluation we use the TwenteU dataset. This dataset
(see Table I) consists of a total of 1440 images, taken from
60 persons, 6 fingers per person (index, ring and middle finger
of each hand) and 4 images of each finger. The images were
captured in 2 sessions with a time-lag of 15 days between
the sessions using a custom designed transillumination device.
Each finger was captured twice during one session. 73% of
the subjects were male and 82% were right handed. The
images have a resolution of 672 x 380 pixels, a density of
126 pixels/cm and are stored in 8 bit grey scale PNG format.
The width of the visible blood vessels is 4 - 20 pixels.

RLT, MC, WLD feature extraction and matching are used
as provided in a MATLAB implementation by B.T. Ton5. SIFT
and SURF software is used as provided by OpenCV, custom

5Publicly available on MATLAB Central: http://www.mathworks.nl/
matlabcentral/fileexchange/authors/57311

implementations are used for the preprocessing techniques,
LBP, SIFT and SURF keypoint filtering, and AB. Images have
been downsampled by a factor of 2 in both dimensions as the
MATLAB software is customised to the expected vein width
of this image scale.

In order to be able to compare our results to those in [8]
(compare Table II [8] to Table V) we applied the same EER
determination procedure: Only one finger of each of the first 35
subjects is used as training set for parameter tuning. The actual
EER determination with the rest of the dataset consists of 1950
genuine matches and 842400 impostor matches compared into
FAR and FRR, respectively.

Considering score level fusion as used in this work, the
simple MinMax normalisation turned out to be the best. We
tested different score combinations, from pairs of 2 scores
to tuples of all available scores, each one with different
fusion schemes (including weighted sum, weighted product,
weighted mean/median and weighted minimum/maximum)
and systematically assessed all variants with different weight
combinations on the parameter optimisation test set.

B. Experimental Results

The first results (Tables III and IV) are devoted to prepro-
cessing strategies. For these results, computational load has
been reduced due to costly exhaustive configuration testing –
N preprocessing stages can be combined into N! different com-
bination configurations – by restricting the impostor matches
to comparing each image with the corresponding finger/image
of each other person only but used the entire dataset instead
of 90%. Thus, these results cannot be compared directly to the
results in Table V.

The results in Tables III and IV are cumulative, i.e. for
a given line all the above lines were also applied to achieve
the final result. An important thing to note is that parameters
are not independent from each other, which means if e.g. the
feature extraction parameters are changed also the matching
parameters have to be re-adjusted.

TABLE III. PREPROCESSING IMPACT ON EER (%) OF SIFT.

Without any preprocessing 18.82
Filtering of keypoints along the finger edges 10.66

Feature Extraction parameter adjustments 9.65
Matching parameter adjustments 9.00

CLAHE 8.26
Resizing (0.5) 6.44
HFE Filtering 2.74
Gabor Filter 2.59

Ratio Score Calculation 2.04

As it can be seen easily in Table III for SIFT-based
recognition, keypoint filtering and HFE filtering exhibit the
most significant positive impact on the EER. Interestingly, we
are able to improve EER in several successive stages from
applying SIFT without any preprocessing at EER of 18.82%
to the highly tuned variant at EER of 2.04% involving several
preprocessing and matching optimisations and variants.

Table IV compares preprocessing cascades for the other
recognition approaches considered. While up to LeeRegion
detection all feature extraction techniques are able to take
advantage from preprocessing, the optimal EER is achieved at



TABLE IV. IMPACT OF PREPROCESSING ON EER (%).

Preproc. MC WLD RLT LBP AB SURF

none 6.443 32.19 22.63 34.1 7.223 13.81
Resize (0.5) 2.041 10.18 4.03 32.67 4.872 9.843
LeeRegion 1.989 9.96 4.11 31.45 4.816 9.843

Normalisation 0.7831 4.777 2.04 29.67 3.606 11.45
CLAHE 0.6011 2.687 1.856 11.55 3.376 11.88

Circ. Gabor Filter 0.4692 3.116 1.999 9.895 3.335 11.58
HFE Filter 0.7399 3.804 5.785 10.75 3.807 4.184
Denoising 0.9255 2.918 5.662 6.043 3.508 4.275

different stages of the cascade, SURF results degenerate until
HFE application where the minimal EER value is reached at
4.18%. RLT and WLD reach their optimum at EER of 2.69%
and 1.86% when using CLAHE, respectively. The additional
circular Gabor filter application delivers the best results for
MC and AB at 0.49% and 3.34%, respectively. Finally, for
LBP, the best result (EER 6.04%) is achieved when applying
a final denoising stage after having applied the circular Gabor
filter and CLAHE. Summarising we may state that there is
no unique best preprocessing cascade to be identified, but in
any case it gets clear that some feature extraction techniques
benefit from a cascaded preprocessing application while others
suffice with a restricted set only.

Table V lists the results of the overall best preprocessing
cascades / feature extraction combinations achieved over the
entire evaluation dataset. We achieve the top EER at 0.42%
for MC and the worst one for LBP at 5.03%. It is interesting
to see that the generic SIFT approach outperforms the highly
specialised WLD and that even the simple AB technique is not
much worse.

TABLE V. COMPARISON OF EERS (%) OF RECOGNITION METHODS

CONSIDERED.

MC WLD RLT SIFT SURF LBP AB

EER 0.42% 2.87% 1.64% 1.96% 4.34% 5.03% 3.23%

Figure 4.a displays ROCs for all combinations in Table
V (WLD: yellow, LBP: magenta, MC: cyan, RLT: red, SIFT:
green, SURF: blue, and AB: black). While in terms of EER,
AB is superior to SURF, for lower FAR values SURF gets
superior quickly. The remaining schemes maintain the EER
ranking almost consistently. Figure 4.b shows the ROC of the
best fusion technique which is obtained using weighted sum
fusion (weights: 1.2, 3.2, 1.1) of LBP, MC, and AB at an EER
of 0.25%. Also the ROCs of the three single techniques are
included for comparison (Fusion: red, LBP: green, MC: blue,
AB: black).

It is interesting to observe that the best fusion result is not
obtained by combining the three best performing techniques
but in contrast, by combining the best performing single tech-
nique with the two worst ones. Obviously, it is not the single
performance that determines the final fusion result. While MC
captures the structure of the veins most efficiently, AB con-
tributes finger shape and LBP adds general texture information
also between veins (mainly local information around the pixels
and not lines are extracted). Thus, those three technique can
really be said to contribute quite orthogonal properties of
the finger region. Another good result was achieved using a
combination of MC, LBP and SIFT with weighted product
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Fig. 4. ROC results

fusion (weights 0.7, 2.8, 1.4) resulting in an EER of 0.27%.
Here similar considerations concerning opposing properties do
apply.

IV. CONCLUSION

Preprocessing has a major impact on the recognition per-
formance of different feature extraction techniques. There is
neither a single preprocessing approach nor a single prepro-
cessing cascade that is the optimal technique for all subsequent
feature extraction techniques. In contrary, preprocessing needs
to be carefully optimised for each single feature extraction
method. We have found that cascading different preprocessing
techniques significantly improves recognition performance as
compared to applying a single approach in many cases.

Score level fusion has turned out to improve recognition
performance considerably, especially when combining features
which represent complementary properties of the images’
finger regions. In these combinations, not only vessel structure
but also finger shape and non-vessel texture is represented,
leading to EERs superior to the best EERs of single techniques
by almost 100% .

With respect to fusion, we aim to further investigate the
inclusion of Gabor and Matched Filter feature extraction as
well as vein-minutiae informations to further improve results.
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