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Abstract. Automated Vickers hardness measurement remains to be a challeng-
ing task due to the difficulties associated with Vickers indentation detection and
complex specimen surface defects. Typical image processing methods fail to de-
tect the indentations in specimens possessing rough and noisy surfaces, distorted
indentation shapes, or cracks. We propose a robust deep learning based model for
accurate automated Vickers hardness measurement in this work. A Fully Convo-
lutional Neural network (FCN) is chosen to accurately localize and segment the
Vickers indentations. A set of liner curves are then fitted to the boundary pixels
data extracted from the output segmentations. The initial positions of the inden-
tation vertices are estimated as the cross-sectional point of adjacent boundaries to
each indentation vertex. A complimentary segmentation module then is used to
refine the target regions, and accurate indentation vertices positions are then cal-
culated applying further geometric processing steps. The accuracy of the model
is compared to known algorithms from the literature and results are presented.
The evaluation is conducted on two significant indentation image databases with
150 and 216 highly varying images.
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1 Introduction and Related Work

Vickers hardness testing is a technique used for examining the resistance of the sur-
face of solid specimens such as metals, ceramics, or polymers. In this method hardness
testing machines called durometers apply a pyramidal diamond indenter with an an-
gle of 136° between opposite faces on the specimen surface, with measurable load and
time period. The Vickers hardness (VH) is the quotient obtained by dividing the applied
force load (F) by the square area of indentation:

V H =
1

g

2Fsin 136◦

2

d2
, (1)

where d is the mean of the diagonal length of the indentation, and g is the acceleration of
gravity (see Fig. 2 for an illustration). Manual inspection and measurement of indenta-
tions is time consuming and very interpretive [11]. Computer-assisted hardness testing
systems have been developed to address these issues and also to provide more accurate
measurements. Accurate detection and localization (segmentation) of the indentations
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in the Vickers images is the most crucial step for correct measurement of the indenta-
tion dimensions. In fact, the indentations vary significantly in terms of: size, location,
rotation, brightness, contrast and texture characteristics in the corresponding images.
On the other hand, the target specimens normally have noisy surfaces which contain
cracks, sparkles and other industrial distortions. The computational methods proposed
so far for automatic indentation detection and measurement fail to perform well in cer-
tain groups of images depending on the techniques applied. Thresholding algorithms
[11] [10] easily get misled by the global distribution of the background (specimen sur-
face) pixels which contribute extensively to the threshold level computation (see Figs.
1a and 1e for an example). Long overtures, speckles, and break lines that cross through
edges or that emit from vertices may disturb the reconstruction algorithms as used in
the edge detection approaches [8] [2]. Figs. 1b, 1c and 1d show example images and
their corresponding outputs (Figs. 1f, 1g and 1h) using a Sobel edge operator. Also,
lack of significant markers, or rough specimen surface, or industrial defects may cause
the Axes projection algorithms [11] to fail to detect the significant differences (which
correspond to the indentation region) in such images. Template matching methods [2]
[3] are computationally expensive and their matching mechanism is very sensitive to
the orientation of the indentation, structural discrepancies and artifacts on the specimen
surface. Active-contour algorithms [4] generally require parameters that are distribu-
tion dependent and very hard to generalize. Benefiting from the recent advancements
in deep learning technology, Tanaka et al. [12] used two CNN modules separately to
detect the bounding-box surrounding the Vickers indentation, and the left indentation
vertex positions. In fact the feasibility of this model is very restricted as two seprate
training sessions, and thus two training datasets along with their corresponding manual
ground-truths are required to initialize the system. The authors further used physical de-
viation (in terms of µm) measure (instead of pixel-wise measurement as used in other
related research) to evaluate the model performance, and thus it is difficult to validate
their results against other commonly used algorithms.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Sample indention images (first row), and their output segmentations using adap-
tive threshold (1e, 1f), and Sobel edge detection algorithm (1g, 1h)
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Fig. 2: Durometers and Vickers indention hardness test schematics

This study aims to leverage the power of deep learning networks within a simple
and viable framework to propose a robust and simplified automated Vickers indentation
measurement model. In particular, a powerful semantic segmentation Fully Convolu-
tional Neural Network (FCN) with strong emphasis on boundary pixel preservation is
chosen to perform the challenging task of Vickers indentation region detection and seg-
mentation. The Vickers indentation boundary information obtained in this stage then is
used as the basis to fit (four) linear curves to the indentation edges. The initial Vickers
indentation vertices positions are approximated, at the sub-pixel level, computing the
cross-sectional points of the adjacent curves. A Region Of Interest window (ROI) is
defined around each vertex position, and the target regions are further refined to extract
the actual indention vertices using an adaptive segmentation module. The vertices fi-
nal positions then are calculated utilizing a geometry-based technique. The robustness
and accuracy of the model is verified on samples that differ substantially in terms of
indention shape, size, type, and distribution of the noises.

2 Methodology

As we already mentioned, the key challenging step in automatic Vickers indentation
testing is localization and segmentation of the indentation in the images. So, we se-
lected to handle this task utilizing a segmentation CNN, as the models proved to pro-
vide superior performance in wide variety of application, specially in complicated and
challenging segmentation tasks [6] [7].

2.1 Indentation Segmentation using Convolutional Neural Network

As a key criteria, the network needed to possess very strong profile in preserving bound-
ary pixels data, as later the detected boundary data is used as the input for estimating
the initial indention vertices’ positions. We selected the RefineNet [9] to accomplish
this task, as the network is already proven to enable high-resolution prediction, and at
the same time to preserve the boundary information. We used an ADAM optimizer with
learning rate of 0.0001, executing 40,000 iterations to train the network 1.

1 https://github.com/eragonruan/refinenet-image-segmentation
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(a) (b) (c) (d)

Fig. 3: A sample input image (3a), its corresponding output segmentation (3b), the
curves fitted to the indention four edge points (3c), and an initial vertex position speci-
fied (3d)

2.2 Edge Extraction and Initial Indention Vertex Position Estimation

The FCN outputs provide the input data to extract the indentation edge points infor-
mation. In this way, we first refine the output segmentations by extracting the biggest
segmentation profile (by size), thereby removing the false-positive outliers, in the output
segmentations. All connected objects in the output masks are found, and their sizes are
calculated (pixel-wise) to find the biggest one. Then, the indentation contour points are
extracted [5] and a first degree polynomial curve is fitted into each indentation bound-
ary point utilizing a least-squares criterion. The actual indentions’ shapes are not fully
squared and the edges have rather concave profile, which bend towards the inside as we
move along the edges from vertex points toward the middle of the edges. To this extent,
we considered an estimate (50%) of uncertainty values (based on the standard deviation
of the edge points) to be added to the estimated curve positions. This compensated for
the nonlinearity property of the edges and found (by experiment) to improve the algo-
rithm precision notably. The intersection point of the crossing curves L1 and L2 with
the line segments defined as (x1 y1), (x2 y2) and (x3 y3), (x4 y4) then are calculated to
determine the initial coordinates of the indentation vertices (Vx,y):

Vx =
(x1y2 − y1x2) (x3 − x4)− (x1 − x2) (x3y4 − y3x4)

(x1 − x2) (y3 − y4)− (y1 − y2) (x3 − x4)

Vy =
(x1y2 − y1x2) (y3 − y4)− (y1 − y2) (x3y4 − y3x4)

(x1 − x2) (y3 − y4)− (y1 − y2) (x3 − x4)
.

(2)

Fig. 3 demonstrates a sample input image (3a), its corresponding output segmentation
(3b), the curves fitted (3c), and an initial vertex estimated (3d).

2.3 Precision Improvement

To this extent, we leveraged the segmentation power of the FCN to get the challenging
task of indentation positioning and segmentation accomplished. We also estimated (or
rather predicted) the initial indentation vertices positions based on the information ob-
tained in this stage. However, the actual vertex information did not contribute much to
these initial estimations. This was mainly due to the fact that corner region pixels went
missing in the output segmentations (see Fig. 3d). Missing corner pixels is a general
segmentation issue and is not specific to the CNN-based segmentation models. So, in
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(a) (b) (c) (d)

Fig. 4: A Sample right (4a) and left (4b) ROI images and their corresponding output
segmentations (4c, 4a), using the complementary segmentation module

the next step we considered to extract the actual missing vertex pixels, and further pro-
cess this information to improve the initial vertices position estimations. For this, first
we defined a region of interest (ROI) window with size 40× 40 around each initial ver-
tex position. The typical background (specimen surface) distortions already mentioned
are minimized or even not existing in such limited region, and vertex features are fairly
differentiable from the background pixels. Close inspection of the ROI images (Figs. 4a,
4b) and their outputs segmentations (Figs. 4c, 4d) reflected this fact properly too. There-
fore, we chose to utilize Otsu’s adaptive clustering algorithm to segment the ROI region
into the foreground (corresponding to the indentation corner pixels) and the background
(corresponding to the specimen surface pixels). To perform the clustering, the algorithm
maximizes inter-class (w) variance (which is equivalent to to minimizing the intra-class
variance):

σ2
w(t) = ω0(t)ω1(t) [µ0(t)− µ1(t)]

2
. (3)

The class probability ω0(t) and ω1(t) are computed from the L bins of the histogram:

ω0(t) =

t−1∑
i=0

p(i) , ω1(t) =

L−1∑
i=t

p(i), (4)

and the class means µ0(t), and µ1(t), are calculated as:

µ2
0(t) =

t∑
i=1

[i− µ1(t)]
2 P (i)

w1(t)′
, µ2

1(t) =

I∑
i=t+1

[i− µ2(t)]
2 P (i)

w2(t)
. (5)

As it can be seen in the output results (Figs. 4c, 4d), the vertex regions are effectively
separated from the background. The straight-forward approach to specify the vertex

(a) (b) (c)

Fig. 5: A sample ROI with connected defect (5a) and its corresponding output segmenta-
tion (5b), where the initial vertex point (blue mark) is corrected (red mark), considering
the vertex central gravity (green mark) in the output (5c)
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Fig. 6: Histogram of the maximum deviation for the manual measurements in DA (left)
and DB (right) respectively

position in the output segmentations is to find the coordinate of the most extreme pixels
located at the tip of the segmented indentation corner region. However, locating such a
pixel ought not to be a trivial task. In some cases the defects in the surface (grooves or
holes) are connected to the indentation corner regions (see an example in Fig. 5). While
the target vertex pixel is assumed to be a single pixel located at the tip of the segmented
area (see Fig. 4c), yet it turned out in certain cases to have linear shape (formed from two
or more pixels) in some. To address these issues, we decided to calculate the horizontal
coordinate of the vertex point based on the ”central gravity” of the segmented area. So,
we calculated the centroid (Cx,y) of the segmented area [1] as follows:

Cx =
1

6A

n−1∑
i=0

(xi + xi+1) (xiyi+1 − xi+1yi)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1) (xiyi+1 − xi+1yi) ,

(6)

Where the area (A) of the polygon containing the segmented area is defined as:

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi) . (7)

We also calculated the vertical coordinate of the vertex point, averaging the top-left
and top-right pixels’ vertical coordinates of the polygon containing the segmented area.
As illustrated in Fig. 5, this approach enables us to effectively filter out the connecting
outliers affect, and at the same time allows us to compute the actual coordinates of the
vertex in case of vertices having a linear shape.

3 Experimental Framework
We used two Vickers hardness indentation databases to carry out our experimental stud-
ies which has been used in previous work [2, 3]. Each database contains a substantial
number of images (DA: 150, DB: 216) at a resolution of 1280 × 1024 pixels, which
were captured directly in production operation environments. Images contain one Vick-
ers micro-indentation with severe variation in the size, location and rotation of the in-
dentation, the texture of the specimen surface, and the overall focus and contrast of the
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picture. We utilized an annotation tool to generate the manual ground-truths of inden-
tation images required to train the FCN network. The indentation regions were marked
(in the corresponding binary ground-truth mask), fitting a square-shaped polygon (man-
ually) to each indention region. We requested multiple testing experts to generate the
diagonal measurement manual ground-truths, and the vertices manual ground-truths.
Fig. 6 shows a histogram of the maximum deviation for the manual measurements for
the databases DA and DB respectively, which can be considered as a human baseline
for the desired quality of automatic hardness measurement algorithms.

4 Experiments and Results

We selected representatives of indentation detection algorithms from Section 1, as well
as the proposed model as described in Section 2 to be evaluated against the two inden-
tation image databases described in Section 3. To evaluate our model, first we trained
the FCN network on the images in the databases. We applied a 2-fold cross evaluation
training scheme for the network. For this, we partitioned each database into two equal
parts, and then trained and tested the network alternatively on each database partition.
Doing so, we tested the networks on all samples in each database without overlapping
the training and testing sets. After obtaining the output segmentations for each database,
we applied the measurement pipeline as explained in Section 2 to the output segmenta-
tions. Results were compared to the median of the manual measurements and presented
in terms of two averages errors: the overall average errors (reflecting the algorithm ro-
bustness and accuracy), and the non-outlier average error in which the errors exceeding
20 pixels are inhibited (reflecting the algorithm precision). Likewise, we evaluated the
other algorithm representatives on the databases as well (i.e. we have taken their accu-
racy results from [3]). Table 1 lists the algorithms together with the results obtained in
these experiments. The axes projection algorithm evaluated here differs from the orig-
inal proposal [11], as Otsu’s algorithm is used to determine the threshold level for the
binarization step as well as to determine the threshold level for the indentation detection
in the x- and y-projection. Furthermore, all images were rotated by 45◦ based on the
requirements of the algorithm.

Considering the primary measurement errors (non-outlier average diagonal errors),
the proposed model shows superior performance in comparison with the other algo-
rithms on both databases (2.43 pixels for DA and 1.51 pixels for DB). The results
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Fig. 7: Deviation of the diagonal lengths from the ground-truths for the database DA
(left) and DB (right) respectively
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Table 1: Diagonal indentation measurement results for different algorithms along with
the corresponding manual measurements
Measure Average Diagonal Error

(pixels)
Non-outlier Average

Diagonal Error (pixels)

Database DA DB DA DB

Axes projection [11] 62.01 48.04 8.49 8.18
Vertex template matching [2] 10.01 4.65 4.13 4.24
Edge template matching [2] 14.16 5.37 4.18 4.96
Edge tracing [2] 13.73 5.61 4.15 4.97
Ray sweeping [2] 24.58 14.70 12.03 12.09
Three-stage template matching [3] 8.75 4.77 2.96 2.90
Ours 7.03 3.24 2.43 1.51
Manual measurements 3.12 4.28 3.06 4.30

proved to be very precise on both databases as they are even better than the average
manual measurements. Furthermore, considering the average diagonal measurements
errors (7.03 pixels for DA and 3.24 pixels for DB), the model delivers a robust per-
formance as well, and proves to deal better with hard cases compared to the other al-
gorithms (see Fig. 7 for the corresponding error graphs). Among the other algorithms
representatives, the three-stage template matching algorithm shows better results (in
terms of both measurement errors) compared to the others. The axes projection and ray
sweeping algorithms result in a vast number of outliers, and generally do not deliver
promising results. The vertex and the edge template algorithms however perform better
(than the two previous algorithms), stil worse compared to the proposed one.

In addition to the evaluation of the accuracy of diagonal length measurements, we
also examined the positional error of the indentation vertices for the proposed model.
Examination of the vertex errors is not necessary for the sole computation of the hard-
ness value of a specimen but has significance in imitating the manual hardness measur-
ing process where measurement lines are attached to the indentation in the image. Such
measurement lines are likewise welcome in automated measurements to enable veri-
fication and monitoring of the operation. Minimal positional errors of the indentation
vertices are therefore demanded to ensure good visual feedback. Fig. 8 shows the his-
togram of the deviation of vertex positions from the ground-truths for both databases,
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(a) (b) (c)

Fig. 9: Examples of problematic cases where the model does not yield good results
where the non-outlier average error is 3.89 and 3.04 pixels for the DA and DB databases,
respectively. The deviation is computed according to the procedure described in Section
3. Fig. 9 shows examples of problematic cases where the model does not yield promis-
ing results. For both problem cases, the first step of the model, which is the indentation
localization and segmentation, failed and generated false indentation boundaries that
misled all the following steps. In particular, Fig. 9a shows a segmentation defect (un-
derestimation) on both the upper-right and the lower-right indentation boundaries which
placed the indentation vertices’ initial positions quite far from the actual vertices posi-
tions, as well as the ROI windows. This of course is due to the FCN segmentation error,
and needed to be analyzed from this point of view. The significance of Figs. 9b and
9c are however quite questionable, because the indentations completely lack contrast to
the surrounding. This violates the structural features learned by the FCN, and thus the
indention region is just guessed by the network here.

5 Conclusion

The proposed deep learning based model showed superb results for automatic Vick-
ers indentation measurement in the Vickers images. The FCN network enabled us to
successfully perform the challenging task of indentation localization and segmentation,
specially in hard cases where indentation profiles are distorted by rough specimen sur-
face, sparkles, and low contrasts. The segmentation network delivered reliable input
data to the secondary segmentation module where indentation vertices positions were
extracted. The accuracy of the predicted vertex positions were further improved apply-
ing a geometric improvement technique, and thereby the model delivered the results
that were superior to all studied competing algorithms in terms of both the exactness
of the measured diagonal lengths and the robustness. The size of the databases enabled
the calculation of statistics, which give quantitative predictions about the viability of an
algorithm when deployed. It is also shown that the precision of the proposed algorithm
is even better than manual measurements performed by operators and thus lays beyond
the scope of human measurement variations. The accuracy of the model was highly
influenced by the network segmentation performance. So, enhancing the segmentation
accuracy specially in the indentation corner regions will diffidently mitigate the seg-
mentation related errors as those discussed in Section 4. The key competences of the
proposed algorithm are its robustness to the size, location and rotation of the indentation
in the images as well as to the brightness conditions of the images, and the resistance
against surface defects. Moreover, simplicity of the techniques applied, and absence of
tunable parameters, makes it a practical module for Vickers indention measurement.
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