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CNN based Off-angle Iris Segmentation and
Recognition

Ehsaneddin Jalilian, Mahmut Karakaya, Andreas Uhl

Abstract—Accurate segmentation and parameterization of the iris in eye images still reminds as a significant challenge for achieving
robust iris recognition, especially in off-angle images captured in less constrained environments. While deep learning techniques
(i.e. segmentation-based CNNs) are increasingly becoming used to address this problem, yet there is a significant lack of information
about the affecting mechanism of the related distortions on the performance of these networks, and no comprehensive recognition
framework is dedicated in specific for off-angle iris recognition using such modules. In this work, the general effect of different
gaze-angles on ocular biometrics is discussed, and then relate the findings to the CNN based off-angle iris segmentation results,
and the subsequent recognition performance. We also introduce an improvement scheme to compensate for some segmentation
degradations caused by the off-angle distortions, and further propose a new gaze-angle estimation and parameterization module
to estimate and re-project (correct) the off-angle iris images back to frontal view. Taking benefit of these, we formulate several
approaches (pipelines) to configure an end-to-end framework for the CNN based off-angle iris segmentation and recognition. Within
the framework of these approaches, we carry out a series of experiments to determine whether: (i) improving the segmentation
outputs and/or correcting the output iris images before or after the segmentation, can compensate for some off-angle distortions,
or (ii) a CNN trained on frontal eye images is able to detect and extract the learned features on the corrected images, or (iii)
the generalization capability of the network can be improved, by training it on iris images of different gaze-angles. Finally, the
recognition performance of the selected approach is compared against some state-of-the-art off-angle iris recognition algorithms.

Index Terms—Off-angle iris segmentation, Off-angle iris recognition, Iris parameterization, Convolutional neural network, CNN.
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1 INTRODUCTION

I ris recognition is one of the most reliable and accurate
techniques in biometrics used for human identification.

The iris is the only human internal organ visible to the outside
world. Therefore, its pattern is well protected, virtually stable
and very difficult to be forged. Iris acquisition is performed
in a contactless and non-invasive manner, and under ideal
acquisition conditions, iris data maintains an accurate recog-
nition with very low false accept rate [1]. Localization and
segmentation of the iris in eye images is the key initial step
in iris recognition, which plays a vital role in the accuracy
of subsequent feature extraction and recognition processes.
Ever since the first iris recognition system proposed by John
Daugman [2], a wide variety of techniques has been proposed
to perform segmentation in eye images captured typically in a
frontal view, under a controlled or constrained environment.
In practice however, many of the users or operators of
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these systems are inexperienced and often capture images
where the subjects are looking in the wrong direction due to
inadvertent eye movement. Meanwhile, the emerging standoff
iris biometric systems and the recent trend towards ”on-
the-move-acquisition” are transforming iris biometric systems
from being operated in well-controlled setup, to being smart
standoff modalities. The iris images captured under such
conditions are more likely to be off-angle, and incorporate
additional off-angle related distortions. Segmentation tasks in
such images become quite challenging as the iris boundaries
are dilated, of elliptical shape, or even missing in the extreme
off-angle images. Most classical segmentation approaches
which are mainly based on the integrodifferential, circular
Hough Transform, and edge detection techniques, which rely
on visibility of clear iris contours, fail to perform segmentation
in such images. Also most feature comparison algorithms,
operating under the assumption that the iris texture lies
on a flat frontal plane and possesses a circular geometric
property, fail to perform the comparison task properly as well
[3]. Addressing such challenges, off-angle iris recognition has
become a hot research topic within the biometrics community
recently.

With recent advancement in deep learning techniques,
some convolutional neural networks (CNN) were proposed
for the challenging task of iris segmentation (e.g. [4] [5] [6]).
While there are already several studies addressing the off-
angle distortions in classical iris segmentation literature, yet
there exists no detailed research that investigates and quan-
tifies the affecting mechanism of the off-angle eye-structure
related distortions on the segmentation capability of the
CNNs, and yet no comprehensive framework is dedicated
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specifically for off-angle iris recognition. The parameteriza-
tion and normalization tools proposed for the obtained iris
segmentations are just limited to frontal iris images [7],
and most algorithms proposed for estimating the iris gaze-
angles and/or re-projecting them back to frontal view rely on
extra supplementary data such as head position [8], intrinsic
parameters, locations and orientations of cameras, lights and
monitors, cornea curvature, angular offset between optical
and visual axis, etc. [9] [10].

In this work, we extend our previous studies ( [11] and
[12]) within the frame of the proposed end-to-end recognition
pipelines to enable the usage of the CNN based segmenta-
tions for the final task of recognition. In particular, in the
”improved-homogeneous” approach, we estimate the gaze-
angle of the iris images and classify them into different classes
according to this angle, so that we can train and apply a
dedicated CNN on (homogeneous in terms of gaze-angle) iris
images of each distinct gaze-angle. The segmentation outputs
then are improved as will be explained in Section 6. In the
”improved-heterogeneous” approach, we train a network with
iris images exhibiting different gaze-angles, aiming to improve
the generalization capability of the network in a way that we
can obtain (hopefully) better results than we obtained using
the angle-specific configuration as outlined above (where the
training and testing data have identical gaze-angles). Also,
we utilize our off-angle iris parameterization and correction
module along with a couple of other correction algorithms
to geometrically re-project the corresponding off-angle iris
images back to frontal view, before unwrapping and normal-
izing the extracted iris features. These techniques are termed
”corrected-homogeneous” and ”corrected-heterogeneous”, re-
spectively. Using these approaches we aim to clarify if
correcting the off-angle iris texture can compensate for the
degradations imposed by the off-angle distortions. In parallel,
we investigate the effect of the applied interpolation, and
the possible imperfections of the correction algorithms on
the subsequent recognition performance in these experiments.
Furthermore, in the ”corrected-frontal” approach (as pro-
posed newly in this work) we apply a network trained only on
the frontal eye images to the corrected images, and likewise
evaluate the subsequent recognition performance using each
correction algorithm. Doing so, we opt to determine if a
network trained on frontal eye images is able to detect
and extract the learned features on the corrected images,
eliminating the need for training with off-angle images.

The main new contributions of the current work as
compared to the previous studies [11], [12] lie in the following:

• Proposing a gaze-angle estimation algorithm (free of
need for any auxiliary data or instrument) to enable:
Gaze-angle estimation in the off-angle images, re-
projecting the off-angle images back to the frontal view
in a realistic manner, as well as angle-specific training
when using the segmentation-based CNNs

• Including other state-of-the-art gaze-angle estimation
and correction algorithms in our experiments, aiming
to disentangle and investigate the agonizing effect
of the interpolation applied during the correction
procedure, and the possible imperfections of the cor-
rection algorithms in the frame of several end-to-end
recognition pipelines.

• Introducing a new approach (recognition pipeline)
termed ”corrected-frontal”, in which a network trained
only on frontal eye images is applied to off-angle im-
ages which have been geometrically re-projected back
to frontal view. This is done utilizing the proposed
off-angle iris parameterization and correction module
along with the other improvement algorithms.

• Evaluation of the recognition performance of the best-
performing approach (pipeline) against some well-
known off-angle iris recognition algorithms, after spec-
ifying the proper configuration.

• Extending the experimental validation to cover all
subjects in the used dataset [13] (doubling the scope
of the experiments).

• Extending the recognition experiments to include a
further deep-learning-based segmentation architecture
for a selected approach.

2 RELATED WORK
Existing classical iris segmentation methods can be broadly
categorized into three types: The first and most popular type
is feature-based methods, which aim to locate the iris inner
and outer boundaries in the iris image. Hough transform finds
the circularity by edge-map voting within the given range
of the radius, which is known as the Wildes approach [14].
Daugman’s integrodifferential operator is another scheme
that finds the boundaries using an integral derivative [15].
Many advancements are made to these algorithms ever since
the introduction of these two algorithms [16] [17]. The second
type of methods use the texture-based discriminating features
to differentiate between iris and non-iris pixels [18] [19]. The
third type of segmentation methods employs active contour
models [20] [21]. There exists many current and ongoing
research on iris segmentation using the classical approaches
specified, but due to the space limitation, and in order to keep
the focus on off-angle iris segmentation here we introduced a
selection of techniques in each category only. For a general
overview please refer to e.g. [22] and [23].

Stemmed from the classical methods, several different
techniques have been proposed, to address the off-angle iris
segmentation and recognition problem. Daugman proposed
to detect inner and outer iris boundaries using an active
contour method, based on the discrete Fourier series ex-
pansion of the contour data [1]. Shah and Ross combined
snakes segmentation with geometric active contours [20].
Generally active contour methods require parameters that are
distribution dependent and hard to generalize. Zuo et al. [24]
used intensity, shape, and localization features from the iris
and pupil to automatically segment non-ideal iris images.
Their method demonstrated performance improvement on
challenging iris images up to 30◦gaze-angle. Kennell et al. [25]
proposed to segment images containing non-circular irises
with morphological operations. Gangwar et al. proposed the
IrisSeg algorithm [26], which adopts a coarse-to-fine strategy
to localize different boundaries. The pupil is coarsely detected
using an iterative search method exploiting dynamic thresh-
olding and multiple local cues. The limbic boundary is first
approximated in polar space using adaptive filters and then
refined in Cartesian space. Uhl and Wild proposed the WA-
HET (Weighted adaptive hough and ellipsopolar transforms)
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Fig. 1: Posterior eye structure and the perspective and
refraction distortions affecting the iris texture geometry

algorithm [27], which uses an adaptive Hough transform at
multiple resolutions to estimate the approximate position
of the iris center. Subsequent polar transform detects the
first elliptic limbic or pupillary boundary, and an ellipsopolar
transform finds the second boundary based on the outcome
of the first. Few other works like [28] and [29] focused on
refining the iris features after extraction to mitigate the off-
angle related distortions.

Some other works tried to compensate for the off-angle
iris distortions. Schuckers et al. [30] used a method which
is based on searching to pick the angle estimates that
maximize the value of the integrodifferential operator on iris
images. The algorithm utilizes a brute-force technique to re-
project the input image to all possible gaze-angles. In [31],
authors utilized the iris and pupil boundary segmentation and
compared the boundaries with a look-up-table generated by
using a biologically inspired biometric eye model and finding
the closest feature point in the look-up-table to estimate
the gaze-angles. Bolme et al. [32] presented four methods
for correcting off-angle iris images to appear frontal. They
tested their affine transformation method on segmentations
which are manually corrected. The displacement and generic
algorithms they used require a corresponding frontal image
to perform the correction for each off-angle image (which
is not realistic). Also, the refractive method they used is
based on a synthesized eye model, and requires supplementary
information such as camera focal length, distance to the iris,
etc, to perform the correction on the iris images. Price et
al. [33] developed a generalized eye model to correct for
perspective and refractive distortion of the iris pattern using
ray tracing techniques. They reported a median reduction
of Hamming Distance for synthetic eyes with gaze up to
60◦. A main drawback in the majority of recent approaches
is that they rely on classical boundary detection methods
which operate on the input iris images, and generally tend to
localize false iris boundaries (specially in off-angle images).
Furthermore, in many cases they used synthesized eye models
or manually adjusted data, to evaluate their algorithms which
does not reflect real world scenarios.

Addressing the drawbacks of classical segmentation meth-
ods and reducing the complexity of intensive pre- and
post-processing, a fourth category of segmentation methods
evolved recently, which are based on data-driven learning
methods. Within this category, deep learning techniques and
in particular convolutional neural networks are the most ideal
and popular schemes due to their accuracy and performance.
Liu et al. [5] located the iris region in non-cooperative
environments using convolutional neural networks. In their

Fig. 2: Three-dimensional structure of iris and Limbus occlu-
sion distortions

study, a hierarchical CNN (HCNNs) and a multi-scale FCN
(MFCNs) were used to locate the iris region automatically.
Jalilian and Uhl [6] proposed three types of fully convolutional
encoder-decoder networks for iris segmentation, and evalu-
ated their performance on off-angle iris images available in
the UBIRIS.v2 database1. Their results showed the superior
capability of CNNs to deal with off-angle iris data compared
to some classical methods. The method presented by Arsalan
et al. [34] roughly estimates the iris region using an edge
detection algorithm and then classifies the pixels in two classes
(iris and non-iris) by using a CNN. They performed a fine
tuning of a VGG CNN, and tested their model on iris images
captured in non-ideal environments. Rot et al. [35] presented
a deep multi-class eye segmentation model built around a
semantic segmentation architecture. They have also examined
sensitivity of the network to the change of view for four
directions (left, right, up and straight) generally. In order to
overcome the requirement of large quantities of labeled data in
the approaches mentioned above, Jalilian et al. [36] proposed a
domain adaption technique for CNN based iris segmentation.
Bazrafkan et al. [37] introduced a CNN to perform iris
segmentation on lower-quality iris images (including off-angle
images). They further investigated the effect of network
tuning on the segmentation results. The work presented in
[4] proposed a deep network called IrisDenseNet, which is
based on VGG-16, to deal with low quality iris images, such
as side views, glasses, off-angle eye images and rotated eyes.
Roig et al. [38] proposed to segment the iris region using a
multi-class approach which differentiates additional classes,
e.g. pupil or sclera, aiming to improve the iris segmentation
in non-cooperative environment using CNN. Nevertheless,
none of the above works provided a systematic analysis on
the effect of the different gaze-angle on ocular biometrics
and the resulting iris segmentations and recognition using
CNNs. There exist other studies that employed deep learning
models for feature extraction or comparison stages of an iris
recognition system capable to deal with off-angle imagery.
Karakaya et al. [39] proposed a deep-learning based iris
recognition model, in which they adopted the AlexNet [40]
classifier to simply classify off-angle and frontal iris images
belonging to 52 subjects (as available in their database) to 52
corresponding classes.

1http://iris.di.ubi.pt/ubiris1.html
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3 EYE-STRUCTURES-RELATED DISTORTIONS
AND THEIR EFFECTS ON THE CNN BASED IRIS
SEGMENTATION
In addition to the known degradation factors affecting the
constrained (frontal) iris imaging (e.g. focus, motion blur,
specular reflections, and illumination variations), off-angle iris
imaging introduces further challenging eye-structure related
distortions to the iris images. In the followings we investigate
the interacting mechanism of light rays within the anterior
and posterior eye structure elements such as cornea, limbus,
sclera, anterior chamber (aqueous humour), iris, and lens
(as illustrated in Fig. 1 and 2), and analyze the distortions
they may introduce to the actual iris image depending on
the image acquisition angle, and the way they can affect the
segmentation capability of the network respectively.

3.1 Three-dimensional Structure of Iris
The structure of the iris consists of several types of dilator
muscles, forming a three-dimensional texture on the iris plane.
As the gaze-angle changes, the 2D image of the captured
iris texture changes, amending the key content and features
learned by the CNN networks during the training process (see
Fig. 3i, which shows the difference between the normalized
images of an iris captured frontally (Fig. 3g), and from -
50◦gaze-angle (Fig. 3h) in red, where constant parts are
depicted in several shades of blue). Those pixels located on
(the side closer to the camera) the border region of the iris
inner boundary may get occluded in steeper view angles (see
the light rays unseen (blue) and seen (green) by the camera in
different angles in Fig. 2). There will be considerable changes
in the distribution of iris features when the gaze-angle of
training and testing iris images differs, and the network may
not be able to spot the corresponding features (as learned in
the training session) in the test images, failing to segment the
iris region accurately.

3.2 Limbus Occlusion
The limbus is the semitransparent organ that joins the sclera
and the cornea texture, where the fully transparent cornea
cannot reach to the bottom of the anterior chamber and ends
at a higher level than the iris plane. Due to the distance
between the ending points of the cornea and the iris plane,
the diameter of the cornea-limbus border is slightly smaller
than the anterior chamber width. Therefore, the limbus
consistently occludes the boundary region of the iris texture
(especially) in extreme off-angle view. The extent of occlusion
of the iris texture on the side closer to the camera increases
as the gaze-angle increases (see the red-dotted reflections in
Fig. 2). Thus, the off-angle images do not exhibit certain
outer iris boundary information as present in frontal training
images. This causes a CNN trained on the frontal images to
fail to accurately detect the iris region (especially its outer
boundary) in the (off-angle) test images.

3.3 Perspective and Refraction Distortion
The geometric properties of an object’s image on the camera
sensor change if the coordinates of the camera change with
respect to the object. This phenomenon is generally referred
to as ”perspective distortion”. The cornea is the transparent

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Examples of the iris images in the dataset, and the
corresponding off-angle distortions

structure of the eye located at the outermost layer of the
eye. Aqueous humour is the transparent watery fluid that is
located between the cornea and the iris and fills the anterior
chamber. Therefore, incoming and outgoing light rays are
first refracted at the cornea and then refracted at the aqueous
humour due to the refraction index differences between air,
cornea, and aqueous humour. When capturing iris images
at steeper angles, light rays refract more at the cornea,
causing the geometric property of the reflected iris features
to transform (e.g. get scaled, dilated or eroded), as shown in
Fig. 1. Correspondingly, we can see that the circle shape of the
iris image captured in frontal manner in Fig. 3d is transformed
to an ellipse in Fig. 3e, when captured from -50◦angle, mainly
due to the perspective distortion. We can also observe the
effect of this distortion along with the refraction distortion on
the geometric properties of the corresponding normalized iris
textures (Fig. 3g, and Fig. 3h respectively), as presented in
Fig. 3i. Basically, CNNs learn scale-dependent patterns at a
specific combination of image size and network architecture,
and thus they face serious difficulties to spot the learned
patterns in the testing data, if their geometric properties
(such as boundaries and texture information) are changed
with respect to the training data.

3.4 Iris Missing Boundary in Extreme Angles
The sclera is the outer layer of the eye with bright white
color which strongly contrasts with the colored iris texture,
forming a clear boundary between these two tissues. In frontal
imaging this boundary is clearly visible. But as the gaze-angle
gets steeper (especially towards the right most gaze-angle as
we consider left eyes (i.e. +50◦)), the boundary erodes and
finally disappears (see the green curve, showing the missing
iris boundary in Fig. 3f). The learning process in CNNs starts
with convolving filters which can be thought of as feature
identifiers which convolve over the input looking first for low
level features such as edges and boundaries, and then building
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Fig. 4: Gaze-angle estimation results on the different gaze-
angle groups using the KNN-based algorithm

up to more abstract concepts through further filtering layers.
Thus, low level features such as edges (boundaries) play a
scaffolding role in encoding the feature representations of
target regions. Therefore, if these features (learned during
the training process) are not presented in the testing data
(which might have steeper gaze-angle than the training data),
the network will not be able to retrieve the accurate boundary
pixels (which are missing), or may spot false boundaries (false-
positives) in the image wrongly.

3.5 Posterior Eye Effect
The space behind the iris and in front of the vitreous body is
referred to as the posterior eye chamber, which includes the
ciliary body muscle and the lens complex. The reflected light
rays (as received by the camera during the iris acquisition)
are not directly interacting with posterior eye structures.
However, during accommodation of the eye, the variation of
the lens thickness can change the curvature of the iris surface
by pushing it forward and backward. To this extent, the effects
of the posterior eye on the iris is indirect, and thus should be
studied within the frame of anterior eye structures effects,
which are already discussed in the previous subsections.

4 OFF-ANGLE IRIS GAZE ESTIMATION
Gaze estimation is an important prerequisite to analyze and
in case of need correct off-angle iris images. There is exten-
sive literature about the video-based gaze angle estimation
and eye tracking applications i.e. [41] [42] [43]. In these
applications, various intrusive and non-intrusive techniques
and instruments are used, depending upon the required
level of accuracy, to estimate the eye gaze-angles. Generally,
non-intrusive methods are cheaper, more comfortable, more
practical, less risky, but less accurate compared to intrusive
methods. These methods can be roughly classified into four
main categories: corneal reflection-based methods [9], map-
ping functions-based methods [44], model-based methods [31],
and appearance-based methods [10]. To achieve accurate gaze
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Fig. 5: Gaze-angle estimation results on the different gaze-
angle groups using the Integrodifferential-based algorithm

angle estimation with these non-intrusive methods, typically
a set of parameters (e.g. intrinsic parameters, locations and
orientations of cameras, lights and monitors, cornea curva-
ture, head position [45], angular offset between optical and
visual axis, etc.) needs to be set initially by conducting well-
controlled calibration and/or training steps. We have already
reviewed the algorithms that propose to estimate the gaze-
angle without use of such supplementary data in eye images,
and discussed their main drawbacks in Section 2. Additional
works proposed within this category e.g. [46], are mainly
theoretical solutions which are tested only on synthesized
data, which is generated by (controlled) mathematical setups,
and generally do not apply to realistic applications.

Addressing this need, we developed a (non-intrusive)
method which requires no additional instrument or sup-
plementary information to estimate the iris gaze-angles in
the eye images with very high accuracy. The principle of
the algorithm is based on measuring the relative distance
of certain off-angle iris and pupil feature points in the
segmentation output masks generated by the CNNs. The
information then is fed to a fine K-Nearest-Neighborhood
(KNN) classifier to classify iris images to their corresponding
gaze-angles. Based on our experiments, this model is able
to successfully classify iris images into their corresponding
gaze-angle classes with about 97% accuracy. For this, first
we decouple the iris and pupil regions in each segmentation
mask. To improve the masks and remove false-negative pixels,
we compute and superimpose the convex hull of each region,
where the iris convex hull boundary information is used also
to decouple the iris and pupil region in the masks where there
is no clear boundary between these regions (see Fig. 6 for an
example). Next, we find the right and the left most extreme
iris and pupil pixels on the horizontal axis passing through
the center-points of the corresponding regions. Using these 5
points we developed 10 relative measures which are expected
to be unique for each gaze-angle (see Fig. 7a showing the
corresponding measures).

The rationale behind this is the fact that: as the eye gaze-
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(a) (b) (c)

Fig. 6: Example of a segmentation output mask (6a), where
the iris convex hull boundary is superimposed (6b) to decouple
the pupil region (6c)

angle moves (toward left or right) on the horizontal axis, the
geometric features of the iris (e.g. horizontal diameter, radius,
...) change too. The proportion of such changes assumed to be
unique for each gaze-angle and ought to provide an estimation
of the eye gaze-angle. Based on the same logic, we support
the obtained data by adding further measures calculated
using segmentations’ extrema points (8 points each). These
measures are, in specific, obtained by subtracting the left
side points (Top-left (TL), Left-top (LT), Left-bottom (LB),
and Bottom-left (BL)), from the right side points (Top-right
(TR), Right-top (RT), Right-bottom (RB), and Bottom-right
(BR)), as illustrated in Figs. 7b and 7c.

Out of the 42 measures obtained, 11 were found (experi-
mentally) to be unique for each gaze-angle. So, we associated
each iris image with a 21-elements (10 + 11) vector (as
illustrated in TABLE 1), and trained a fine KNN classifier,
which makes finely detailed distinctions between classes with
the number of neighbors set to 1, with this information.
Fig. 4 shows the corresponding algorithm performance on
the different classes in the form of confusion plot. As the
results show, the model is able to determine the iris gaze-
angles with high accuracy (≈ 97%), with very low prediction
deviations (possessing standard deviation of ≈ 0.48), in a
way that in most cases the falsely predicted gaze-angles
are adjacent to the target ones. This in fact leads to less
deviations when performing angle-specific training, as well as
performing the iris correction tasks. We used a 20 fold-training
scheme for training the KNN, where the training and testing
data were fully separated with no overlap. The primary 10
measures proven (by experiment) to contribute the most to
the algorithm accuracy, as including only these measure we
were bale to obtain about 80% accuracy. Yet, adding the
secondary 11 measures we could improve this result up to
97% accuracy.

pTL-pBL pTL-pBR pTR-pBL iTR-iBL 1 2 3

4 5 6 7 8 9 10

iLB-iRB iLT-iRT iTL-iRT iTR-iLT iRT-iBL iTL-pBL iLT-pRT

TABLE 1: 21-elements vector associated with each image

To get better insight about the model performance, we com-
pared the model performance against another setup applied
to the same data. For this purpose, first we implemented
the core algorithm proposed by Schuckers et al. in [30] (as
a generic angle correction algorithm), which is based on
searching to pick the estimates that maximize the value
of the integrodifferential operator on iris images possess-

(a) (b) (c)

Fig. 7: Examples of the (zoomed) iris (7a, 7b) and pupil (7c)
segmentation outputs (green areas), and the corresponding
measures considered

ing different gaze-angles, terming it as ”Integrodifferential-
based” algorithm. We updated the code to enable gaze-angle
estimation within the range of the available angles in our
dataset (-50◦to +50◦), and then applied the algorithm to
our dataset and compared the results with those obtained
using the KNN-based algorithm. Fig. 5 shows the results
obtained in this experiment in the form of confusion plot. As
it can be seen, the performance of the KNN-based algorithm
is far way better than this algorithm in terms of accuracy.
Also, the run-time of 5 minutes per image (using an Intel-i5-
6500-3.20GHz CPU), the algorithm is computationally very
inefficient (compared to the KNN-based algorithm with the
run-time of less than 1 second) as well. It is also interesting
to note that, in the majority of the cases, the algorithm
finds the maximum value of the integrodifferential operator
in images which encountered no re-projection (the horizontal
middle row in the table), regardless of the actual iris gaze-
angles in the images. Technically, this can reflect the negative
affect of interpolation (applied when re-projecting the irises
to different gaze-angles) on the key iris boundaries feature,
which causes the integrodifferential operator to fail to find
the maximum value on the corrected circular irises.

5 ELLIPSE-BASED OFF-ANGLE IRIS PARAME-
TERIZATION AND CORRECTION
As we already mentioned in Section 1, in this work we
propose an off-angle parameterization method to outline the
elliptic boundary of the iris in the segmentation outputs of
off-angle images, and use this information to re-project the
segmentation masks along with their corresponding off-angle
iris images back to frontal view. Currently there is a lack of
suitable algorithms, which enable true parameterization of the
off-angle iris region in the CNN based segmentation outputs.
The available parameterization algorithms are limited to the
frontal segmentation outputs, where circular Hough transform

(a) (b) (c)

Fig. 8: Sample iris segmentation output (8a), the extracted
vertical boundaries (8b), and the corresponding fitted ellipse
(8c)
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Fig. 9: Recognition pipeline and the correction module

is used to parameterize the iris region. In fact, off-angle iris
images normally possess an elliptic shape, and to this extent
circular-based algorithms fail to perform well on such images.
The main obstacle to apply an elliptic parameterization to the
actual segmentation outputs is the tendency of such models
to overly oblong or obround, due to occlusion of the iris by
eyelid or eyelashes. To resolve this issue, we propose to search
only for the vertical edges in the segmentation outputs. The
detected edges here are ensured to correspond to the actual
iris boundaries as the iris region is already specified by the
CNN. The horizontal edge information is further used to filter
out the horizontal noise. Thus, the resulting edge points secure
the proper fitting of an ellipse to the actual iris region. A
Least-Squares criterion then is used for estimation of the best
ellipse fit to the given set of points (see Fig. 8 for an example).
In the next step, we extract the horizontal and vertical
axes information of the ellipse. This information is used
for re-projecting (correcting) the segmentation outputs and
their corresponding off-angle iris images back to frontal view
as follows. Assuming that our ellipse is in the following
parametric form:

x = x0 +Q×
[
a× cos(θ)
b× sin(θ)

]
, (1)

where x and x0 are 2-dimensional vectors, and a > b > 0
correspond to the horizontal and vertical axes of the ellipse,
respectively. Q is the rotation matrix, and θ represent the
rotation angle. We assume a vertical ellipse, as our rotation
angles are to the left and right only. Thus:

Q =

[
cos(90) −sin(90)
sin(90) cos(90)

]
. (2)

We want our transformation to produce y in the shifted,
rotated coordinates:

y =

[
1 0
0 a/b

]
.

[
a× cos(θ)
b× sin(θ)

]
, (3)

and x in the original coordinates. Submitting to the equation
(1), we can infer the affine transformation matrix we need to
re-project the parameterized ellipse back to frontal view, so

that it possess circular shape:

x =

[
Q

[
1 0
0 a/b

]
Q′

]
x+

[[
1 0
0 1

]
−Q

[
1 0
0 a/b

]
Q′

]
x0 (4)

6 SEGMENTATION IMPROVEMENT
Based on the findings in our previous work [11], we already
knew that the network tends to produce some false-positive
detection, in specific, along the segmentation output masks
borders. Therefore, we improved the segmentation outputs
by applying some specific morphological operations. So, we
first defined a marginal area (A) along each border of the
segmentation output masks (with a width (in pixel) equal to
1/5 of the length of the same border), and then performed an
opening operation with a big (disk-shape) structuring element
(B) as follows:

A ◦B = (A⊖B)⊕B, (5)

where ⊖ and ⊕ denote erosion and dilation, respectively.
We further performed another opening operation on the
overall segmentation output masks using a small (disk-shape)
structuring element to remove small false-positive detections
outside the iris region. Fig. 10 shows a sample segmentation
output mask and its corresponding improved version.

7 EXPERIMENTAL FRAMEWORK
Dataset: For our experiments we used a subset (containing
4400 left eye images captured from 40 subjects) of an off-angle
iris database [13]. The iris images in this dataset are captured
by two near-infrared sensitive IDS-UI-3240ML-NIR cameras.
Images at 0◦gaze-angle were captured by a frontal fixed cam-
era, and off-angle images were captured by a frontal moving
camera rotating horizontally from -50◦(N50) to +50◦(P50)
in angle with a 10◦step-size. Each camera captured 10 iris
images per stop, giving 10 frontal and 100 off-angle iris images
captured from each subject, to comprise about 400 images per
angle (examples of images in the dataset are already presented
in Fig. 3). The database is accessible on request (from the
authors), and further details about it can be found in [13].
We developed the ground-truth labels (required for training
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(a) (b) (c)

Fig. 10: Sample iris image with P0 gaze-angle (10a) and its
corresponding segmentation (green area) and error mask (red
area) before (10b) , and after correction (10c), using the
network trained on P0 images

the network) for all images available in the dataset using
the iris, pupil, upper and lower eyelid parameters specified
manually (the data will be made available upon acceptance
of the manuscript at http://wavelab.at). We used a 2-fold
training scheme to carry our segmentation experiments. For
this, we divided the whole dataset into two equal parts (with
no overlap according to subjects). In the first fold of training,
we used one part as our testing data and the other one as
our training data, and in the second fold of training, datasets
roles where switched.

Fully convolution neural network (FCN): We selected
the RefineNet [47] to perform the iris segmentations in our
experiments. The network is already proven to enable high-
resolution prediction, and at the same time, preserve the
boundary information (which is crucial to our parameteri-
zation mechanism). The network is a multi-resolution refine-
ment network, which employs a 4-cascaded architecture with
4 refining units, each of which directly connects to the output
of one Residual net [48] block, as well as to the preceding
refining block in the cascade. Each refining unit consists of
two residual convolution units (RCU), which include two
alternative ReLU and 3× 3 convolutional layers. The output
of the RCU units are processed by 3 × 3 convolution and
up-sampling layers incorporated in multi-resolution fusion
blocks. A chain of multiple pooling blocks, each consisting
a 5× 5 max-pooling layer and a 3× 3 convolution layer, next
operate on the feature maps, so that one pooling block takes
the output of the previous pooling block as input. Therefore,
the current pooling block is able to re-use the result from
the previous pooling operation and thus access the features
from a large region without using a large pooling window.
Finally, the outputs of all pooling blocks are fused together
with the input feature maps through summation of residual
connections. We used an ADAM optimizer with learning rate
of 0.0001, executing 40,000 iterations to train the network.

Recognition pipeline: The segmentation outputs (after
applying correction or improvement), are parameterized using
the technique introduced in [7]. The extracted iris patterns are
normalized by unwrapping the circular region into a rectan-
gular block of constant dimensions. Each isolated iris pattern
is then demodulated to extract its phase information (feature)
using quadrature 1-D Gabor wavelets. To compare the unique
extracted features to each other, the Hamming distance with
rotation correction was calculated in the comparison phase.
We used the University of Salzburg implementation of these
algorithms, as provided in the Iris Toolkit (USIT)2. Fig. 9

2http://www.wavelab.at/sources/USIT

(a) (b) (c)

(d) (e) (f)

Fig. 11: Sample iris images with N50 (11a), P0 (11b), and P50
(11c) gaze-angles, and their corresponding outputs (11d, 11e,
and 11f) extracted from the intermediate CNN layers

illustrates the overall recognition pipeline, along with the
proposed parameterization and correction module.

Segmentation evaluation and measures: In order to facil-
itate proper quantification of the accuracy of the segmenta-
tions in each experiment, we considered the nice1 iris seg-
mentation error rate, which is based on the NICE1 protocol3,
as used in several iris segmentation challenges. Accordingly,
the segmentation error rate (nice1) for each segmentation
output mask Ii is given by the proportion of corresponding
disagreeing pixels (through the logical exclusive-or operator)
with the ground-truth mask, over all the output mask as
follows:

nice1 =
1

c× r

∑
c′

∑
r′

O(c
′
, r

′
)⊗ C(c

′
, r

′
), (6)

where c and r are the dimensions of the segmentation, and
O(c′, r′) and C(c′, r′) are, respectively, pixels of the segmen-
tation and the ground-truth mask. The value of (nice1) is in
the [0, 1] interval, and 1 and 0 are the worst and the best
scores, respectively.

8 EXPERIMENTS AND ANALYSIS
In the first step, we investigated the effect of different
gaze-angles on the CNN based off-angle iris segmentations,
aiming to address the primary research question: If a gaze-
angle specific training is required for high segmentation
accuracy. We extended the experiments and analysis to the
subsequent recognition too. So initially, we used the KNN-
based module to estimate the gaze-angles of the iris images
in our dataset. Then, we trained the network under the
improved-homogeneous approach, i.e. training data consists
of iris images with identical gaze-angles (200 images per
gaze-angle for each fold as in our training data). For each
available gaze-angle, a dedicated network was trained, and
then we conducted segmentation on all the testing data,
differentiating and grouping results into the different gaze-
angles available (starting from -50◦(N50) to +50◦(P50)).
Analysis of the network segmentation outputs (examples
displayed in Fig. 15), shows that the extensive use of the
pooling filters and residual information, as utilized in the

3http://nice1.di.ubi.pt/
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Fig. 12: Segmentation performance on the different gaze-angle
groups under the improved-homogeneous approach as average
nice1 error

RefineNet architecture, makes the network vulnerable to the
texture related distortions such as perspective, refraction and
also 3D iris structure distortions, leading to many false-
positive detections (specially along the outputs’ borders), as
well as some undetected iris pixels (false-negatives), especially
on the iris main texture, as reflected in the segmentation
outputs and their corresponding error masks in Figs. 15g,
15h, and 15i respectively.

The effect of missing iris boundary is also visible in Fig. 15i
(as missed iris boundary pixels), while the effect of limbus oc-
clusion seems to be neglectable. Fig. 11 visualizes the outputs
of some intermediate CNN layers for the configurations where
the network is trained on the frontal eye images and tested on
the N50, P0, and P50 data. In particular, we may notice the
network failure to retrieve the accurate iris boundary pixels
(inside the red marked area) in the case of P50 iris images due
to the missing boundary features, as demonstrated in Fig. 11f.

It is worth also to mention the rule of background
variation on the distribution of false-positive detections for
different gaze-angles (e.g. as in Fig. 15h where the eyebrow
region is falsely detected as the iris, or in Fig.15f where the
periocular region is falsely detected). While analysis of such
a variation can certainly contribute in improving the network
performance in these cases, yet we believe that it is beyond the
scope of this paper, and needs to be addressed in a separate
research work.

To address these issues, we opt to improve the segmenta-
tion outputs using the improvement scheme already explained
in Section 6. Fig. 12 shows the corresponding segmentation
results, as average nice1 error after improving the segmenta-
tion outputs. As the results show the improvement resulted in
considerable enhancements in almost all segmentation results
(especially for the right off-angle (P) images), compared to
the segmentation results obtained in [11], as the average
segmentation error decreased (about 2 times) from 0.030 to
0.013. Also, affirming to what we found using the identical
training scheme (Homogeneous) and the network (RefineNet)
already in [11], we can see the direct relation of the network
performance to the similarity of gaze-angles of the training
and testing images, here after the morphological improvement
too. Yet the key new finding is that, the performance grad-
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Fig. 13: Recognition performance on the different gaze-angle
groups under the improved-homogeneous approach in terms
of EER error

ually improves as the gaze-angles of the training and testing
data converge in terms of angle but may also diverge in terms
of the direction. The corresponding gradual improvement
of the results as getting distanced from the middle vertical
column of the table toward the sides (except for the extreme
right gaze-angles, which are most affected by the missing
boundary distortion) reflects this fact clearly. Technically,
this shows the dominance of the gross content features (i.e. iris
boundaries) learned by the network over the fine eye image
context features. To be more precise, the network is able
to detect the symmetric iris elliptical features in the images
captured from the same angle (with respect to frontal view),
but in opposite direction. The applied improvement, which in
fact compensated for some false-positive detections (caused
by the off-angle distortions), allowed us to figure out this
capability of the network.

In the next step, we fed the improved segmentations along
with their corresponding images to the recognition pipeline
to investigate the recognition performance in terms of Equal
Error Rate (EER) under this approach. Fig. 13 shows the
results for this experiment. Expectedly, we can observe that
the segmentation results are more or less translated into
the recognition scores, following the same trends already
discussed in the segmentation experiments. The only visible
difference here is the lower recognition performance of the
extreme gaze-angle images (i.e. N50 and specially P50), which
as already mentioned is mainly due to the extreme 3D and
perspective distortions on the extracted iris textures.

In the improved-heterogeneous approach, we considered
to investigate if we can improve the generalizability of the
network by switching to a heterogeneous training setting,
where we include iris images with different gaze-angles into
the training data. For this purpose, first we trained the
network with all iris images with different gaze-angles in our
training data, and then tested it on all iris images in our test-
ing data. Likewise, the segmentation outputs were improved
by morphological opening, and performance was evaluated,
differentiating and grouping results into the different gaze-
angles available. While the heterogeneous configuration was
expected to deliver good results (compared to the angle-
specific training configuration), based on the findings in [11],
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Fig. 14: Segmentation performance on the different gaze-
angle groups under the improved-heterogeneous approach as
average nice1 error

here we (i) evaluated the extent to which the improvement
applied can enhance the segmentation performance, and (ii)
verified if the improved segmentations can eventually improve
the recognition performance, beyond the improved angle-
specific training configuration.

Fig. 14 demonstrates the segmentation results for this
experiment in the form of a Boxplot for each gaze-angle
group (after the improvement). As the results show, applying
the improvement, we obtained a considerable enhancement
in almost all segmentation results (especially for the right
off-angle (P) images) we already obtained in the identical
heterogeneous configuration without improvement in [11],
as the average segmentation error decreased from 0.023 to
0.008. Also as the results show, we obtained almost the same

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 15: Sample iris images of P0 (15a), N50 (15b), and P50
(15c) gaze-angles in the dataset, and their corresponding
segmentation masks (15d, 15e, 15f), and error masks (15g,
15h, 15i), using the network trained on the frontal iris data
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Fig. 16: Recognition performance benchmark and the cor-
responding experimental results on the different gaze-angle
groups under the improved-heterogeneous approach using
different CNNs, in terms of EER error

segmentation performance as obtained using the improved-
homogeneous approach for the angle-specific configurations.

Fig. 16 shows the subsequent recognition results obtained
using the corresponding images. As it can be seen in the
figure, in spite of minor degradation in some results (i.e. N50,
P40 and P50 gaze-angle groups’ results), we could maintain
on average the same recognition performance (≈ 1.85) as
we obtained under the improved-homogeneous approach for
the angle-specific configurations (≈ 1.87). Of course, this is
a very positive result, as it enables us to refrain from the
angle-specific training strategy, and even better, there is no
need to determine the iris images gaze-angles or carry out the
correction procedure before deploying the recognition system.

To provide a proper evaluation of the actual model
performance, we developed a performance benchmark too.
For this, we segmented the iris region on the eye images
utilizing the manual ground-truths (resembling the perfect
condition), and then fed the segmented iris regions into the
recognition pipeline. We also considered another well known
CNN (”Unet” [49]) to be trained (using the manual ground-
truths) and ran on the same data. As it can be seen in
Fig. 17, the segmentation outputs generated by Unet contain
corresponding errors (false-positive and false-negative pixels)
especially in the boundary areas to a certain extent as well. So,
we applied the same improvements (as proposed in Section 6)
on the segmentation outputs and proceeded to the recognition
experiment. As the corresponding results in Fig. 16 show, the
RefineNet segmentation outputs maintain better recognition

(a) (b) (c)

Fig. 17: Sample segmentation outputs for N50 (17a), P0 (17b),
and P50 (17c), using Unet network
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Fig. 18: Recognition performance on the different gaze-angle
groups under the corrected-homogeneous approach, using the
KNN-based algorithm, in terms of EER error

performance (which is close to the benchmark results in the
majority of cases) than those of the Unet.

In the corrected-homogeneous approach, we target to
address if re-projecting the off-angle iris images back to
frontal view and correcting the off-angle iris texture can
compensate for the degradations imposed by the off-angle
distortions, and eventually improve the system recognition
performance. To address this, we re-projected the improved
segmentation outputs along with their corresponding iris
images back to frontal view using our KNN-based algorithm.
To disentangle and investigate the agonizing effect of the
interpolation applied during the correction procedure, and the
possible imperfections of the correction algorithm, we further
included the Integrodifferential-based and the Ellipse-based
algorithms in our experiment.

Re-projecting the off-angle images back to frontal view
(correcting them) concerns with rotating the images back
along the rotation direction. The off-angle iris images in
our database are captured by rotating the camera around
the vertical axis by θ◦. Thus, in order to correct the (off-
angle) images, theoretically all we need to do is to develop the
corresponding rotation matrix, substitute the rotation value
(e.g. as obtained using our gaze-angle estimation antiloga-
rithms), and apply it to the (off-angle) images as follows:x′

y′

z′

 =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 .

xy
z

 (7)

Applying such a transformation to the images practically
results in certain changes in image dimensions depending on
the value of rotation applied (see Fig. 20 for an example). To
compensate for this, we first calculated a ratio (R) for the
corresponding change as follows:

R =
newheight× previouswidth

previousheight
(8)

A new image width then was calculated using this ratio for
each image, and the images got cropped, centering the mid of
the new calculated widths on the images center pixels. The
resulting images then got rescaled to the original images sizes,
as demonstrated in the Fig. 20.
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Fig. 19: Recognition performance on the different gaze-angle
groups under the corrected-homogeneous approach, using the
Integrodifferential-based algorithm, in terms of EER error

After correcting the iris images in our testing data using
each algorithm, we fed them into the recognition pipeline
to evaluate the recognition performance. Fig. 18 shows the
recognition results using the KNN-based algorithm. When
comparing the results to those obtained using the improved-
homogeneous approach (see Fig. 12), a notable improvement
in the majority of results belonging to right gaze-angle con-
figurations is observable. The improvement gradually tends
to increase as the testing data gaze-angles diverge more from
the frontal view (i.e. P20, P30, ...), so that we can observe
the maximum improvement in the results of the extreme
right gaze-angle groups (i.e. P40 and P50). However, this
is not true for the left gaze-angle images, and the results
seem to be coherent with those obtained under the improved-
homogeneous approach, with a slight degradation over all
results (see Fig. 13 for a comparison). This seems to be as
expected as the gaze-angle prediction results obtained by this
algorithm on the right gaze-angle groups were better than
those of the left-angle groups (see Fig. 4).
Fig. 19 shows the corresponding results using the
Integrodifferential-based algorithm. Expectedly, we can ob-
serve an overall degradation in the results (specifically in those
of the frontal view images) compared to the results obtained
using the improved-homogeneous approach and the KNN-
based approach, which is clearly due to the poor algorithm
performance on detecting the correct iris gaze-angles. The re-
sults obtained using the Ellipse-based algorithm are partially
different (see Fig. 21), and except for a slight improvement in

Fig. 20: Sample off-angle iris image (left) and its correspond-
ing transformed image (middle) and the resulted output after
cropping and rescaling
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Fig. 21: Recognition performance on the different gaze-angle
groups under the corrected-homogeneous approach, using the
Ellipse-based algorithm, in terms of EER error

those of the extreme right and left gaze-angles groups (i.e. N50
and P50), all other results encountered a medium degradation
compared to those obtained using the improved-homogeneous
approach. Nonetheless, these results are generally better than
those obtained using Integrodifferential-based algorithm, and
except for some improvements in the results of the extreme
left gaze-angles images (i.e. N40 and N50), do not show a
notable improvement compared to those obtained using the
KNN-based algorithm.

(a) (b) (c)

Fig. 22: Sample corrected iris images of N50 corrected
by KNN-based (22a), Integrodifferential-based (22b), and
Ellipse-based (22c) algorithms

Considering the fact that the KNN-based algorithm pos-
sessed very high accuracy in predicting the iris gaze-angles,
we inspected the corresponding outputs of the N40 and N50
image groups (as demonstrated in Fig. 22c) to get better
understanding of the slight improvement obtained on these
gaze-angles groups, using the Ellipse-based algorithm. The
inspections revealed that the Ellipse-based algorithm tends
to underestimate the iris gaze-angles (and thus applies less
interpolation) for the extreme right off-angle images (i.e. N40
and N50) as the value of interpolation in this algorithm is es-
timated based on the actual circularity of the iris shape in the
image, rather than the recorded capture-angle (as in the case
of the KNN-base algorithm). All in all, regardless of the type
of correction algorithm applied, the overall degradation of the
results as the gaze-angles of the test data diverge more from
the frontal view (moving from the central horizontal column
in the corresponding tables to the sides), is more than the
corresponding degradations observable in the segmentation
results obtained under the improved-homogeneous approach.
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Fig. 23: Recognition performance on the different gaze-angle
groups under the corrected-heterogeneous approach, using the
different correction algorithms, in terms of EER error

So, the experiments here decoupled and clearly distincted
the negative effect of the interpolation (in distorting the key
iris features) applied during the correction process, from the
possible defects of the correction algorithms.

We further considered the corrected-heterogeneous ap-
proach, in which we investigated if correcting the off-angle
iris texture can compensate for the degradations imposed
by the off-angle distortions within a heterogeneous training
configuration. So here, after training the network on iris
images with different gaze-angles, and testing it on the images
of each gaze-angle separately, the segmentation outputs were
morphologically improved, parameterized and re-projected
back to frontal view using all the three correction algo-
rithms already used in the previous experiment, and the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 24: Sample N50 iris images, corrected using the knn-based
(24a), the Ellipse-based (24b), and the Integrodifferential-
based (24c) algorithms, and their corresponding segmenta-
tions outputs (second row) and the error masks (third row)
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Fig. 25: Recognition performance on the different gaze-
angle groups under the corrected-frontal approach, using the
different correction algorithms, in terms of EER error

recognition performance was evaluated subsequently. Fig. 23
demonstrates the results for this experiment per gaze-angle
and algorithm, along with the results we obtained using the
improved-heterogeneous approach. As can be seen, the results
obtained using the KNN-based and Ellipse-base algorithms
show slight degradation for the left gaze-angles images (N50,
N40,..), while showing considerable improvement for P50
gaze-angle images, compared to the results obtained under
the improved-heterogeneous approach. The results for the
rest of the gaze-angle groups are more or less the same. The
Integrodifferential-based algorithm generally doesn’t deliver
any promising results under this approach too. Thus, we
can see that depending on the correction algorithm used,
the correction setup can only improve the performance on
some most extreme gaze-angle images (i.e. N50, P50), while
it generally does not improve the results in other cases.
Of course, the type and the scale of the changes in the
performance in each case is subject to the influence of the
two factors already explained.

The corrected-frontal approach experiments are dedicated
to address, if we can enable segmentation in the iris images
of different gaze-angles using a network trained on the frontal
eye images, by correcting their gaze-angles and bringing them
back to frontal view. To address this, we first corrected
all off-angle iris images available in our testing data, using
their corresponding ground-truth masks, by the correction
algorithms. Then we trained the network only with the iris
images belonging to frontal view in our training data, and then
performed segmentation in the corrected images in our testing
data (400 samples per gaze-angle). The segmentation outputs
then were morphologically improved, and the recognition
performance was evaluated subsequently.

Fig. 25 shows the results obtained in this experiment along
with the corresponding results obtained under the improved-
heterogeneous approach (as the selected approach), the results
obtained by applying the same network to the corrected off-
angle images as obtained by the KNN-based algorithm (6th

row of the table in Fig. 18), and also those of the angle-
specific training obtained under the improved-heterogeneous
approach. As the results show, almost in all cases either results
does not show any specific improvement, or are degraded to
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Fig. 26: Recognition performance on the different gaze-angle
groups using the different recognition algorithms, in terms of
EER error

certain extents. While the KNN-based algorithm delivered the
best correction results, yet the corresponding segmentation
results for the extreme left gaze-angle images (i.e. N50,
N40) obtained by this algorithm are degraded very intensely
compared to those of other correction algorithms used. Fig.
24 demonstrates sample segmentation outputs obtained using
each correction algorithm along with their corresponding error
masks in these experiments. As it can be observed, there are
many false negative detections (red pixels in Fig. 24g) in the
corresponding segmentation outputs of this algorithm. These
again show the negative role of the interpolation applied
during the correction process, and the fact that, as it increases,
it can alter the unique iris texture patterns learned by the
network and cause the network to fail to detect the true iris
pixels in the test images.

After investigating the different approaches to figure out a
solid model to best deal with iris images captured from differ-
ent angles using the CNNs, we further proceeded with evaluat-
ing the model performance within the frame of other off-angle
iris recognition algorithms. For this purpose, we implemented
some well-known off-angle iris recognition algorithms which
are based on deep-learning, as well as classical techniques. In
particular, we considered the IrisSeg [26] algorithm and the
WAHET [27] algorithm as the classical approaches, and the
algorithm proposed in [39] as our deep-learning based setup.
The technical details of these algorithms are already explained
in Section 2. We applied each algorithm to our testing
data and prepared the results for each gaze-angle group
separately as presented in Fig. 26. As it can be seen in the
plot, the selected approach (improved-heterogeneous) shows
superior preference over all other classical algorithms. Yet the
deep learning algorithm shows the optimal performance. Of
course the main drawback of deep-learning based classifiers
of this type is their non-scalability. To be more precise, these
networks have to be trained each and every time a new subject
is introduced to the system. Furthermore, the performance of
such classifiers gradually declines as the number of classes
increases [50]. Thus, they may show good performance on a
dataset containing a limited number of subjects, while their
performance may deteriorate as the size of the dataset (the
number of classes) increases.
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9 CONCLUSION

We investigated the effect of different gaze-angles on ocular
biometrics, and analyzed their distorting mechanism on off-
angle iris segmentation using CNNs, as well as their sub-
sequent recognition performance. The effect of perspective,
refraction, and 3D iris structure distortions on the network
mainly appeared as missing (undetected) iris texture in the
network segmentation outputs. These distortions also caused
considerable changes in the unique iris features, specially
in the extreme (right) gaze-angle images, undermining the
corresponding recognition results for these gaze-angle groups
too. The missing and dilated iris boundary, and the limbus
distortions caused the network to fail to accurately extract
the iris boundary pixels (false-negatives) in the corresponding
segmented areas of images with steeper gaze-angles. In this
case, the recognition results were also degraded due to the
missing boundary information which is required for the seam-
less recognition. In fact, in all cases the effect of distortions
was more severe on the images captured from the right angles,
rather than the images captured from the left angle, due to the
more severe off-angle distortions they include when captured
from the right angles, as we consider left eyes only.

The results obtained under the improved-homogeneous
approach showed that the performance of the network has a
direct relation to the correspondence of the gaze-angles of the
training and testing images, and it declines as the gaze-angles
diverge. Yet we further found that the network performance
gradually improves as the gaze-angle of the training and
testing data converges in terms of angle but diverges in terms
of direction. This showed the capability of the network to
detect the symmetric iris contents in the images captured
from the same angle, but in the opposite direction, which was
figured out as the result of the segmentation improvement
done. Also, the morphological improvement technique proved
to compensate for some false-positive segmentation errors,
and enhanced the segmentation results beyond the results
obtained in [11], in identical configurations. Furthermore,
the proposed KNN-based algorithm for estimating the iris
gaze-angles in the eye images, successfully classified the
iris images into their corresponding gaze-angle classes with
about 97% accuracy, without the need for any supplementary
information (i.e. head position, camera parameters, etc).

The experiments carried out to investigate the effect
of correcting the off-angle iris images on the recognition
performance showed that the interpolation applied during the
correction procedure and the imperfections of the correction
algorithms, can diversely influence the unique iris features
in the eye images. In some cases recognition performance
is improved while in other settings it is reduced. While the
better correction performance of the KNN-based algorithm
(as compared to the other two algorithms) resulted in general
improvement of the recognition results, yet the lower extent
of interpolation applied by the Ellipse-based algorithm, which
tended to underestimate the angle in the right gaze-angles im-
ages, improved the recognition performance beyond the values
obtained by the KNN-based algorithm on these gaze-angle
groups. The experiments carried out under the corrected-
heterogeneous approach also showed similar outcomes, and
except in some extreme gaze-angles (e.g. P40, P50), and using
certain correction algorithms (KNN-based algorithm), the

correction process didn’t improve the recognition performance
considerably. So, based on these results we may conclude
that: (i) provided that a suitable correction algorithm is
applied, the correction setups are recommended just for the
extreme off-angle images (i.e. gaze-angles grater than 30◦),
and (ii) the type and scale of the improvement obtained in
this case is defined as function of influence of the value of
interpolation applied during the correction procedure and the
possible imperfections of the correction algorithm.

The experiments carried out under the corrected-frontal
approach, in which we applied the network trained only on iris
images belonging to frontal view to the corrected images from
different gaze-angles, showed that the network is not able
to detect and extract the learned features on the corrected
images, in the way that we can obtain better results compared
to those obtained when applying the same network to the
”uncorrected” off-angle images, using the same configuration.

Also our experiments actually showed that we can main-
tain almost the same segmentation and also recognition
performance, respectively, as we obtained in angle-specific
configurations, using the improved-heterogeneous approach.
Further experiments showed superior preference of this ap-
proach (improved-heterogeneous) over all other classical off-
angle recognition algorithms. These are in fact very promising
results as the selected approach enabled us to refrain from:
(i) the angle-specific training strategy, which requires to
determine the iris images gaze-angles in advance, and (ii) even
more important, from carrying out the correction procedure
(which proved to be complicated, based on our findings)
before deploying the recognition system. Also, in spite of
the better recognition performance of the Deep-learning-
based recognition algorithms (i.e. [39]) than the classical
algorithms, yet the improved-heterogeneous model possessed
higher preference, as it addresses some key drawbacks of these
algorithms (i.e. poor scalability).
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