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Abstract. Lossy image compression can reduce the space and band-
width required for image storage and transmission, which is increasinly
in demand by the iris recognition systems developers. Deep learning tech-
niques (i.e. CNN, and GAN networks) are quickly becoming a tool of
choice for general image compression tasks. But some key quality cri-
teria, such as high perceptual quality and the spatial precision of the
images, need to be satisfied when applying such modules for iris im-
ages compression tasks. We investigate and evaluate the expediency of
a deep learning based compression model for iris data compression. In
particular, we relate rate-distortion performance as measured in PSNR,
and Multi-scale Structural Similarity Index (MS-SSIM) to the recogni-
tion scores as obtained by a concrete recognition system. We further
compare the model performance against a state-of-the-art deep learning
base image compression technique as well as some lossy compression al-
gorithms currently used for iris compression (namely: the current ISO
standard JPEG2000, JPEG, H.265 derivate BPG, and WEBP), to fig-
ure out the most suited compression algorithm which can be used for
this purpose. The experimental results show superior compression, and
promising recognition performance of the model over all other techniques
on different iris data.

Keywords: Deep Learning · Iris compression · Iris recognition.

1 Introduction

Efficient storage and rapid transmission of iris biometric records is a driving im-
plementation factor in iris recognition systems (especially on low-powered mobile
sensors and for portable devices). The International Organization for Standard-
ization (ISO) specifies that iris biometric data should be recorded and stored in
(raw) image form (ISO/IEC FDIS 19794-6), rather than in extracted templates
(e.g. iris-codes). Such deployments can directly benefit from future improvements
which can be easily incorporated, thus enabling more interoperability and ven-
dor neutrality [5]. Image compression techniques can be generally divided into
lossless and lossy compression. Lossless techniques compress an image by re-
moving statistical redundancy while lossy compression algorithms typically use
inexact approximations, and partial data discarding, to represent the content,
exploiting the fact that the human eye is insensitive to certain visual features.
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Rapid development of deep learning theory and neural networks has introduced
a new image compression paradigm to the lossy compression technology. Deep
learning based methods mostly use convolutional neural networks (CNNs) to de-
sign image codecs. Benefiting from the strong learning ability of neural networks,
these models can learn image characteristics through back propagation and con-
duct the compression of image information without too much prior knowledge.
Recently, it was shown that deep learning can even synthesize a image using
only a semantic segmentation map as input, thanks to the generative adversar-
ial networks (GAN) technology [6]. This advocates the possibility of developing
efficient image compression modules employing deep learning networks and the
associated image synthesis. The major draw back of applying the GAN net-
works is their lack of spatial precision, which results in structural distortions
in the reconstructed images. This could cripple the functionality of the key iris
recognition modules such as the segmentation (which e.g. is based on circular
features) and/or the feature extraction algorithms. Thus, the ability of the com-
pression module to preserve the unique iris features in the reconstructed images,
with high the spatial precision and perceptual quality, is required when it comes
to iris image compression.

In this work we investigate the expediency of a deep semantic segmentation-
based layered image compression (DSSLIC) model [3] for iris compression within
a biometric recognition framework. The model leverages the power of GAN net-
works to encode the key iris features with high precision in the compressed
images, while preserving the spatial precision and perceptual quality of the re-
constructed iris images. The GAN network takes the segmentation map as the
input and tries to learn the missing detail information of the up-sampled ver-
sion of a compacted input image to minimize the distortion of the synthesized
images. The segmentation map of the iris (raw) image is losslessly encoded as
the base layer of the bit-stream. At the same time, the input image and the
segmentation map are used by a deep network to obtain a low-dimensional com-
pact representation of the input, which is encoded into the bit-stream as the
first enhancement layer. The compact image and the segmentation map are then
used to obtain a coarse reconstruction of the image. The residual between the
input and the coarse reconstruction is encoded as the second enhancement layer
in the bit-stream.

We use this model along with four other commonly used compression al-
gorithms (BPG, JPEG2000, JPEG, WEBP) as well as a state-of-the-art deep
learning based model to compress iris images in five well-known datasets. The
visual quality of the compression in each cases is measured and compared against
each other in terms of Peak Signal to Noise Ratio (PSNR), and Multi-scale Struc-
tural Similarity Index (MS-SSIM). Then the biometric recognition performance
is evaluated, in terms of Equal Error Rate (EER), by using the compressed iris
images in a regular iris biometric system. At the end, the compression and the
corresponding recognition results are compared and carefully investigated to fig-
ure out a well suited compression algorithms to be employed in iris recognition
systems.
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2 Related Work

Classic Iris Image Compression: Numerous studies are conducted on iris im-
age compression and recognition during the past decades (e.g. [5] [9]). Grother
[7] explored existing approaches and compared JPEG and JPEG2000 to provide
a quantitative support to the revision of the ISO/IEC IS 19794-6, including a
cropped format (IREX K3), masked and cropped image format (IREX K7), and
an unsegmented polar format (IREX K16). Matschitsch et al. [15] investigated
the impact of using different lossy compression algorithms on the matching ac-
curacy of iris recognition systems, relating rate-distortion performance to the
matching scores. They concluded that JPEG2000, SPIHT and PRVQ are al-
most equally well suited for iris compression. Korvath et al. [8] investigated the
impact of dedicated lossless image codecs (lossless JPEG, JPEG-LS, PNG, and
GIF), lossless variants of lossy codecs (JPEG2000, JPEG XR, and SPIHT), and
some general purpose file compression schemes on the iris images.

Deep Image Compression: In recent years, number of learning based image
compression methods have been proposed as well. Toderici et al. [24] proposed re-
current neural networks based on convolution and deconvolution long short-term
memory (LSTM) to extract binary representations, which are then compressed
with entropy coding. In [4], a model that involved a generalized divisive nor-
malization (GDN)-based nonlinear analysis transform, a 2-uniform quantizer,
and a nonlinear synthesis transform were proposed. Johnston et al. [12] used
the structural similarity (SSIM) quality measure and spatially adaptive bit al-
location to further improve the performance. Theis et al. [23] proposed an auto-
encoder where they used smooth approximation instead of quantization to get
different rates. Agustsson et al. [1], introduced a soft-to-hard vector quantiza-
tion model along with a unified formulation for both the compression of deep
learning models and image compression. The authors in [25] proposed a compres-
sion bit allocation algorithm to allow the recurrent neural network (RNN)-based
compression network to hierarchically compress the images according to seman-
tic importance maps. Li et al. [13] proposed a model based on image content
weighting. They used the edge feature map, extracted by the convolution neural
network, as the importance map of the original image. In [11], a compact convo-
lutional neural network (ComCNN) and a reconstruction convolutional neural
network (RecCNN), were used to encode and decode the original image, respec-
tively. An innovative algorithm solves the non-differentiated calculation in the
quantization rounding function to achieve a backward propagation gradient in
the standard image algorithm. In [14] the authors combined image compression
and classification to reconstruct the images and generate corresponding seman-
tic representations at the same time. Mantzer et al. [16] proposed a conditional
probability models for deep image compression (CPDIC), focusing on improving
the entropy rate of the latent image representation using a context model (a
3D-CNN which learns a conditional probability model of the latent distribution
of the auto-encoder). During training the auto-encoder makes use of the con-
text model to estimate the entropy of its representation, and the context model
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Fig. 1: An iris image (a) and its corresponding output using a GAN based model
(b), along with their difference image (c), and the overlaid ground-truth (d)

is concurrently updated to learn the dependencies between the symbols in the
latent representation.
Some recent works used generative adversarial networks (GAN) in their learning-
based image compression schemes. Santurkar et al. [21], used a discriminator to
help training an decoder. They used perceptual loss based on the feature map
of an, ImageNet-pretrained, AlexNet, although only low-resolution image cod-
ing results were reported. Ripple et al. [20] embedded an auto-encoder in a
GAN framework in which the feature extraction adopted a pyramid of inter-
scale alignments. They considered the target and its reconstruction jointly as a
single example and, instead of producing an output for classification at the last
layers of the pipeline, accumulated scalar outputs along branches constructed at
different depths. An average of these scalars was used as the final value provided
to a sigmoid function. The discriminator also extracted outputs from different
layers, similar to the pyramid feature generation. Augustesson et al. [2] proposed
a segmentation map-based image synthesis model based on the GAN networks
operating at extremely low bitrates. The framework combines an encoder, de-
coder/generator and a multi-scale discriminator, which are trained jointly for
a generative learned compression objective. The main draw back of these mod-
els (which operate directly on the input image) is that they generate outputs
which have some structural distortions and lack the sufficient spatial precision.
In fact, as already mentioned, such distortions will change the iris structure and
can cause the different system modules to fail. Fig. 1 shows a sample iris image
(1a) (from the Notredame iris dataset, as used in this work), and its compressed
version (1b), using the last GAN based model, along with their difference image
(1c), and the overlaid ground-truth mask (1d). Gray regions in the difference
image show where the two images have the same intensities, and magenta and
green regions show where the intensities are different. Also the overlaid ground-
truth mask shows how the actual iris outer and inner boundaries (as specified
by the mask) are distorted in the compressed (reconstructed) image.

3 Deep Compression Model

Fig.2 illustrates the overall scheme of the model used in this work, which is de-
rived from the model already proposed in [3]. As a key distinction to the current



DEEP IRIS COMPRESSION 5

GAN based models, the embedded GAN network in this model does not operate
directly on the input the iris image. Instead it takes the segmentation map as
the input and tries to learn the missing detail information of the up-sampled ver-
sion of the compacted input image to minimize the distortion of the synthesized
images. This is made practical due to the recent advancement in deep learning
techniques which have made it easy to access such segmentations with very high
accuracy and in a timely manner (i.e. [10]). In fact here we didn’t use a segmen-
tation network in our model, and fed the manually segmented labels directly to
the model instead. Doing so we helped to improve the models performance by
introducing more accurate labeling data to the model. The encoder includes two
deep learning networks: CompNet and FiNet (GAN-based network). An input
iris image is fed into the ComNet, while the segmentation map is encoded to
serve as side information to this network for generating a low-dimensional ver-
sion of the original image. Both the segmentation map and compact version are
losslessly encoded using the FLIF codec [22], which is a state-of-the-art lossless
image codec. Given the segmentation map and up-sampled compact image, the
FiNet tries to obtain a high-quality reconstruction of the input image. Note that
although GAN-based synthesized images from segmentation maps are visually
appealing their details can be quite different from the original images. To min-
imize the distortion of the synthesized images the up-sampled version of the
compact image, as an additional input, is added to it. In this way the FiNet
is trained to learn the missing detail information of the up-sampled version of
a compact image with respect to the input image, which in turn controls the
output of the GAN network. After adding the up-sampled version of the com-
pact image and the FiNet’s output we get a better estimate of the input. The
residual difference between the input and the estimate is then obtained and en-
coded by a lossy codec (H.265/HEVC intra coding-based BPG). In order to deal
with negative values, the residual image is re-scaled to [0, 255] with a min-max
normalization before encoding. The min and max values are also sent to decoder
for inverse scaling. In this scheme the segmentation map serves as the base layer
and the compact image and the residual are the first and second enhancement
layers respectively. At the decoder side the segmentation map and the compact
representation are decoded to be used by the FiNet to get an estimate of the
input image. The output of FiNet is then added to the decoded residual image
to get the reconstructed image as output.

4 Experimental Framework

Datasets: We used five different iris datasets in our experiments: The Notredame
dataset (including 835 iris images of 30 different subjects)1. The Casia4i dataset
(containing 2640 iris images of 249 subjects)2. The IITD dataset (containing

1 https://sites.google.com/a/nd.edu/public-cvrl/data-sets
2 http://biometrics.idealtest.org
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Fig. 2: The deep learning based iris compression model

2240 iris images of 224 subjects)3. The Casia5a dataset (including 1880 images
of both eyes of 94 users)4.

Compression Algorithms: To evaluate and compare the model performance
against some popular and state-of-the-art lossy compression algorithms we con-
sidered: JPEG, the current ISO standard JPEG2000 (J2K), the H.265 derived
BPG, the WEBP algorithms, and a deep learning based image compression
model termed Conditional Probability Models for Deep Image Compression
(CPDIC) [16]. The overall compression model consists of an encoder, a quan-
tizer, and a decoder. The encoder E : Rd → Rm maps an input image to a latent
representation y which is in form of a 3D feature map. The encoder architec-
ture consists of convolution and ReLU layers combined with 15 Residual Blocks,
with skip connection between every third layer. The quantizer Q : R → C then
discretized the coordinates of the latent representation (y) to the L = |P | cen-
ters, which can then be losslessly encoded into the bit-stream. Specifically, given
centers P = {p1, . . . , pL} ⊂ R, the quantizer uses nearest neighbor assignments
to compute

ỹi = Q(yi) := argminj ||yi − pj ||, (1)

relying on the following differentiable soft quantization:

ỹi =

L∑
j=1

exp(−σ||yi − pj ||)∑L
l=1 exp(−σ||yi − pl||)

pj . (2)

3 http://www4.comp.polyu.edu.hk/ csajaykr/database.php
4 http://www.biometrics.idealtest.org
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Table 1: Selected compression parameters (par) and their corresponding com-
pression performance in bits per pixel (bpp) for each algorithm.

Dataset Casia4i Casia5a IITD Notredame

Method par bpp par bpp par bpp par bpp par bpp par bpp par bpp par bpp

DSSLIC 23 0.20 16 0.44 23 0.16 14 0.45 27 0.30 19 0.53 23 0.16 14 0.51

BPG 37 0.21 30 0.54 30 0.19 24 0.42 33 0.29 26 0.60 33 0.18 24 0.55

J2K 35 0.23 21 0.55 45 0.18 14 0.55 28 0.27 14 0.55 45 0.18 14 0.55

JPEG 23 0.20 57 0.50 12 0.19 57 0.51 17 0.30 57 0.53 09 0.18 57 0.58

WEBP 1 0.21 82 0.44 45 0.20 82 0.44 1 0.29 45 0.57 25 0.19 82 0.57

CPDIC 11 0.29 22 0.60 11 0.27 22 0.57 11 0.29 22 0.60 11 0.27 22 0.57

bpp A (0.30) B (0.60) A (0.30) B (0.60) A (0.30) B (0.60) A (0.30) B (0.60)

The decoder D, which has a similar architecture as the encoder, forms the re-
constructed image from the quantized latent representation, which is in turn
(losslessy) decoded from the bit-stream
Metrics and Measures: To measure the compression performance: Peak Signal-
to-Noise Ratio (PSNR), which is a mathematical measure of image quality based
on the pixel difference between input images, and Multi-Scale Structural Sim-
ilarity Index Measure (MS-SSIM) are used. Unlike in Structural Similarity In-
dex Measure (SSIM), where variation in luminance, contrast and structure of
“single-scale” input images are compared, MS-SSIM alliteratively down-samples
the input images up to M scales. At each scale, the contrast comparison and the
structure comparison are calculated. The luminescence comparison is computed
only at scale M , and the final MS-SSIM evaluation is obtained by combining the
measurements at different scales [26]. As an overall measure of biometric recog-
nition performance the Equal Error Rate (EER) was chosen. It is the operation
point on the receiver operating characteristic curse where the false non-match
rate and the false match rate are equal.
Recognition Pipeline: We used the contrast adjusted Hough transform (CAHT)
[18], and Osiris [17], for iris segmentation, local Gabor filters (LG) for feature
extraction, and the Hamming distance with rotation correction for matching.
Apart from the Osiris the algorithms from the USIT toolkit [19] were used.

5 Experiments and Analysis

To fit the fixed network dimensions all images are re-scaled to 256 × 512 × 1.
Since the networks are trained on RGB format we cloned each image two times to
generate 3 channel (RGB) images (256×512×3). We applied a cross-fold scheme
to train the model. First we partitioned each dataset into two equal parts and
then trained and tested the model alternatively on each partition. Doing so, we
tested the networks on all samples in each dataset without overlapping training
and testing sets. We set the down-scaling factor α = 8 to get the compact
representation of the inputs. All models were jointly trained for 250 epochs
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Fig. 3: Samples of highly (A) compressed iris images from the Casia4i, Casia5a,
IITD, and Notredame datasets, per column respectively, using DSSLIC, CPDIC,
BPG, J2K, JPEG and WEB algorithms per row respectively

with mini-batch stochastic gradient descent (SGD) and a mini-batch sizes of
2 and 8 respectively. To address the fixed bandwidth/storage compression limit
requirement we set two bandwidth limits of 0.30 (A) and 0.60 (B), corresponding
to the higher and the lower compression levels respectively, for each dataset in
terms of bit-per-pixel (bpp). It should be noted that not all algorithms allow to
set the exact output file size. Thus, we selected the compression parameter for
each algorithm so that the achieved bpp of the resulting compressed images are
equal to or less than the fixed bandwidth/storage limit. It is also important to
note that the resulting file sizes using the DSSLIC model are the smallest in the
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Table 2: Average MS-SSM scores using high (A) and low (B) compression levels

Dataset Casia4i Casia5a IITD Notredame

Compress B A B A B A B A

DSSLIC 0.998 0.994 0.995 0.989 0.998 0.994 0.997 0.990

BPG 0.996 0.988 0.994 0.985 0.997 0.992 0.996 0.988

J2K 0.991 0.966 0.992 0.970 0.987 0.945 0.988 0.964

JPEG 0.993 0.950 0.988 0.931 0.994 0.957 0.991 0.949

WEBP 0.993 0.982 0.991 0.965 0.995 0.987 0.992 0.981

CPDIC 0.897 0.889 0.844 0.852 0.881 0.875 0.909 0.902

majority of cases (i.e. IITD, Notredame, Casia5a-A, and Casia4i-B) among all
the algorithms. Table 1 shows the selected compression parameters (par) and
the resulting bpps per algorithm and dataset. Samples of the compressed images
in each dataset using the compression methods used are presented in Fig. 3 per
column and row respectively.

Table 2 gives the quality results based on the MS-SSIM for each dataset (av-
eraged over all images) for the different compression algorithms. The DSSLIC
model shows superior performance over all other codecs for both compression
levels considered. This is a quite remarkable result given that the files produces
by the DSSLIC are smaller in size than files produces by the competing meth-
ods. Visual inspection of the corresponding output iris images as presented in
the Fig. 3 (first column) shows that the model is able to preserve spatial preci-
sion and the uniqueness of the iris features very well. Across all datasets, and
both compression settings, BPG is always the second-best and CPDIC is always
the worst. The performance of the other three algorithms are varies depending
on the dataset. The performance, in terms of rank, of the WEBP, JPEG and
J2k algorithms also can vary for different compression levels (on Notredame and
Casia4i). While the order of performance for the higher compression level (A)
on these datasets is: WEBP, J2k, JPEG, the order of performance for the lower
compression level (B) is: WEBP, JPEG, then J2k. Considering the average per-
formance of each algorithm on the different dataset the order of performance
(after DSSLIC and BPG) is: WEBP, J2k, and JPEG. Table 3 shows the corre-
sponding results for each dataset (averaged over all images)in terms of PSNR.

Table 3: Average PSNR scores using high (A) and low (B) compression levels

Dataset Casia4i Casia5a IITD Notredame

Compress B A B A B A B A

DSSLIC 49.1 44.0 45.2 41.6 45.5 41.3 45.7 40.3

BPG 44.5 39.8 44.0 40.9 44.7 40.5 43.5 40.0

J2K 41.8 35.5 43.1 37.9 40.5 34.4 41.1 35.5

JPEG 39.7 33.0 39.6 32.4 39.6 32.5 39.1 32.5

WEBP 41.0 37.0 41.8 37.5 41.5 37.6 41.0 37.2

CPDIC 16.1 16.0 18.7 18.7 17.8 17.8 16.8 16.4
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Fig. 4: Compression performance in terms of PSNR and MS-SSIM for the high
(left side of the graphs) and low (right side of the graphs) compression levels

The superior performance of DSSLIC over the other algorithms is visible in these
results too. Likewise, BPG ranks the second-best and CPDIC ranks the worst
in terms of peak signal-to-noise ratio. Despite slight differences in the ranking
orders (compared to those of the MS-SSM experiments) the other algorithms are
also ranked the same when considering the average performance: WEBP, J2K,
then JPEG. Figure 4 presents further details about the experimental results in
the form of box-plots for each dataset. Unsurprisingly, the higher (left in the
graphs) compression rate results in a decreases in performance over all datasets
and algorithms (including DSSLIC).

Next, we applied the biometric recognition system to all obtained compressed
iris images and evaluated the biometric comparison accuracy, in terms of EER,
for the two levels of compression. In addition to the two segmentation algorithms
used, Osiris and CAHT, we used the perfect segmentation produced by manual
segmentation (manually annotated segmentation drop masks). The manual seg-
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Table 4: EERs for the different datasets using the CAHT algorithm

Dataset Casia4i Casia5a IITD Notredame

Compress B A B A B A B A

DSSLIC 1.2 1.0 21.1 21.2 1.4 1.8 29.9 29.9

BPG 1.0 1.2 21.6 21.3 1.6 2.4 29.6 30.3

J2K 1.1 1.3 20.6 22.3 2.0 2.6 30.0 30.1

JPEG 1.2 2.8 20.6 26.1 1.9 2.5 29.9 32.4

WEBP 1.2 1.7 21.5 23.0 2.0 2.6 30.3 31.5

CPDIC 3.4 4.0 28.8 29.4 2.3 2.8 32.5 34.1

mentation was used to disentangle the compression effect on iris texture from
the segmentation performance on compressed data, and their possible failures.
Tables 4 and 5 show the results for the CAHT segmentation and manual segmen-
tation respectively. When using the CAHT segmentation recognition does not
work at all for the Casia5a and Notredame datasets. For the IITD and Casia4i
data the DSSLIC compression frequently shows the best performance, especially
for the high compression level. When using manual segmentation results (Table
5), recognition still does not work for Notredame data, while for the remaining
datasets, DSSLIC results are never surpassed by any other compression scheme.
Given the fact that the DSSLIC also produces the smallest actual files these
results imply that DSSLIC compression is able to preserve iris texture very well.
Certainly better than the other algorithms under test, as the segmentation ef-
fects can ruled out due to manual segmentation. Table 6 shows the results when
the OSIRIS algorithm is used for segmentation. ecognition on the Notredame
data does not work either, but otherwise the ranking of the algorithms is fairly
different. DSSLIC is the best performer only for Casia5a, while it is actually the
worst performing algorithm on the IITD dataset. When comparing CAHT and
OSIRIS segmentation results it’s clear that the segmentation methods, and the
logic behind them, react quite differently to the artifacts in the compressed im-
ages, and thus deliver very different results considering identical compressed iris
images. Overall, the clearly higher rate-distortion compression performance of
the DSSLIC algorithm is not directly translated into best recognition accuracy,
except where a manual segmentation is used.

Table 5: EERs for the different datasets using manual masks

Dataset Casia4i Casia5a IITD Notredame

Compress B A B A B A A B

DSSLIC 0.4 0.4 2.5 2.9 0.4 0.5 23.8 23.9

BPG 0.4 0.6 2.9 3.9 0.4 0.5 23.8 23.9

J2K 0.4 0.6 2.7 5.1 0.4 0.5 23.8 24.0

JPEG 0.5 1.7 3.0 14.0 0.4 0.5 23.8 25.7

WEBP 0.5 0.7 3.4 5.4 0.4 0.5 24.0 24.6

CPDIC 1.6 2.0 15.1 18.2 0.5 0.6 26.6 29.3
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Fig. 5: Genuine and impostor distributions of the different compression methods
for Casi4i (a), Casi5a (b), IITD (c), and Notredame (d) when applying the
manual drop masks

It is also interesting that the recognition performance of CPDIC on Casi5a
is much lower compared to other compression algorithms on the same dataset.
When inspecting the iris images generated by this algorithm, along with their
corresponding iris features extracted, we noticed some artifacts which were dis-
tributed uniformly over all the images in a block-like pattern. These artifacts
are more severe and intense in areas of high texture, specifically the iris tex-
ture areas. For an example of this behavior see Fig. 6 where an image from the
Notredame datasets is compared to an image from the Casia5a dataset. This
effect seems to be due to the different performance of the encoder network on
the input iris images when generating the latent representations combined with
the subsequent quantization technique. The persistence of these artifacts over all
images of the Casia5a dataset clearly undermined the recognition performance.

In order to clarify how the quality of the images generated by different com-
pression algorithms affect the actual recognition performance we analysed the
distribution of the genuine and impostor scores obtained using each algorithm
and dataset. Figure 5 shows the genuine and impostor distributions for the dif-
ferent compression methods for each dataset when using the manual drop masks
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Table 6: EERs for different the datasets using the Osiris algorithm

Dataset Casia4i Casia5a IITD Notredame

Compress B A B A B A A B

DSSLIC 1.1 1.0 2.0 2.2 0.7 0.8 25.2 25.5

BPG 0.9 1.0 2.0 2.5 0.3 0.3 26.9 26.4

J2K 0.8 0.9 2.0 3.1 0.4 0.7 25.7 25.1

JPEG 0.8 1.8 2.4 9.7 0.5 0.6 24.7 24.7

WEBP 0.8 0.9 2.9 4.0 0.4 0.4 25.1 25.0

CPDIC 2.2 2.6 15.9 19.2 0.6 0.6 26.1 27.8

(to exclude the influence of segmentation errors). Each pair of curves (genuine
and impostor) are indicated by color while linetype distinguishes between im-
postor (dash-dotted) and genuine (solid). The impostor curves remains virtually
unchanged, while the genuine curves fluctuate almost in all cases. This leads us
to the argument that the compression process affects the genuine scores, by in-
troducing artifacts into the iris images which alter the distinct patterns that are
present in the genuine samples, making the compressed images more dissimilar.
This effect appears as higher fluctuation in genuine scores, and thus EERs.

6 Conclusion

We investigated the performance of a deep learning model (DSSLIC) for iris im-
age compression in terms of rate-distortion and recognition accuracy. The model
showed superior compression performance over all other algorithms using differ-
ent datasets and compression rates. Unlike the other algorithms, the DSSLIC

(a) (b)

(c) (d)

Fig. 6: A sample iris image in the Casia5a dataset (a) vs a sample image in
the Notredame datasets (b), both generated by CPDIC algorithm, and their
corresponding normalized outputs (c and d) respectively
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model was able to cope with iris images with complex feature characteristic, and
possessed stable performance on all different types of iris data. The results of
the recognition experiments showed that the higher compression performance
of the DSSLIC algorithm is directly translated into better recognition rates in
majority of the cases. Yet, further experiments with an alternative segmentation
algorithm (Osiris) revealed that the segmentation techniques, and the logic used
in them, could react quiet differently to the compress images. In the case of
Osiris the segmentation performance was degraded considerably. The results ob-
tained using the manual drop masks supported this argument. The experiments
also showed that an increase in compression results in reduction of recognition
performance in aa majority of cases. Analysis of the genuine and the impos-
tor scores indicated that compression process introduces artifacts into the iris
images which alter the distinct patterns that are present in the genuine sam-
ples, making the compressed images more dissimilar. Overall, the results showed
that the presented deep learning based model is capable of efficient iris image
compression for the use in an iris biometric recognition system.
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