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Abstract

Emerging standoff iris recognition systems operate un-
der unconstrained conditions and the iris images captured
by these systems are more subject to off-angle acquisition
distortions. While deep learning techniques (e.g. convo-
lutional neural networks (CNNs)) are increasingly becom-
ing a tool of choice for iris segmentation tasks, yet there
is a significant lack of information about how these distor-
tions affect the performance of such networks. In this work,
we thoroughly discuss the general effect of different gaze-
angles on ocular biometrics and relate the findings to off-
angle iris segmentation using CNNs. In particular, we con-
duct systematical analysis on the impact of different gaze-
angles on segmentation performance of two CNNs with dif-
ferent architectures. The networks’ performance turns out
to have a direct relation to the closeness of gaze-angles in
the training and testing images, and it declines as the gaze-
angles diverge. We further investigate the effect of (i) in-
creasing the quantity of iris training data in case of gaze-
angles in training and test data match, and (ii) considering
iris training data consisting of several distinct gaze-angles
(we obtain promising results using the second configura-
tion). Finally, we compare our results to those of some
classical iris segmentation algorithms, where the CNNs are
found to outperform the classical algorithms.

1. Introduction
Iris recognition is a method of identifying people based

on unique patterns within the ring-shaped region surround-
ing the pupil of the eye. Like any other biometrics sys-
tem, the performance of iris recognition systems is highly
dependent on accurate segmentation of the target region
(iris texture) from the rest of the image. Existing iris
recognition systems are designed to capture the iris im-
age mostly when the iris plane is almost perpendicular to
the visual axis of camera. In this case, as sample images
from which templates are generated are captured almost un-
der the same conditions and have similar distortion effects
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such as occlusion, focus, motion-blur, and specular reflec-
tions, the segmented iris region in the probe image corre-
sponds to that of the gallery image(s), maximizing the cor-
relation between the extracted features. Recent demands for
standoff iris biometric systems and the trend towards “on-
the-move-acquisition” are transforming iris biometric sys-
tems from being operated in a well-established and well-
controlled setup, to being a smart standoff modality. Due
to their much less constrained setup, iris images captured
by these systems are more likely to be off-angle, and thus
incorporate additional off-angle related distortions. There-
fore, off-angle iris recognition has became an emerging re-
search topic in biometrics recently. Showing superior per-
formance over classical methods, convolutional neural net-
works (CNNs) represent a new paradigm gaining increas-
ing interest in the biometrics community. To this extent,
recently some CNN models got proposed for iris segmenta-
tion as well [9]. While there are already several approaches
addressing the off-angle distortions in classical iris segmen-
tation methods, yet there exists no detailed research that in-
vestigates and quantifies the mechanism and extent of off-
angle, eye-structure related distortions on the segmentation
capability of the CNNs.

In this work, we cover this topic by investigating the ef-
fect of different gaze-angles in ocular biometrics in general
and relating the gained information to off-angle iris segmen-
tation using CNNs. This allows us to figure out the proper
segmentation strategy when dealing with iris images cap-
tured from different angles (e.g. captured by standoff sys-
tems). Eventually, it might turn out that CNN training has to
be done specifically for a certain gaze angle (i.e. employing
annotated iris images of this angle for training only - homo-
geneous training data). In that case, in the iris recognition
application context, we may utilize available eye-gaze esti-
mation algorithms [14, 17] to classify acquired iris images
based on their gaze-angle, and next conduct segmentation
using the appropriately trained CNNs (training each CNN
with data of one single gaze-angle only). This approach
requires the availability of a significant number of appropri-
ately trained CNNs. This procedure is not desirable. Al-



ternatively, it would be of advantage to improve the gener-
alization capability of the networks, and thus eliminate the
need for any further processing stages including gaze-angle
estimation and angle-specific training.

To address these research questions, we first train two
semantic segmentation oriented fully convolutional neural
networks (FCNs) with different architectures, using iris im-
ages acquired from eleven different angles in a homoge-
neous training scenario. We then analyze their segmentation
performance on iris images captured from angles match-
ing as well as not-matching the training data. We fur-
ther investigate two training settings which are based on
(i) heterogeneous-angle training (training set contains iris
images with different gaze angles), and (ii) increasing the
size of the homogeneous training sets, to improve the gen-
eralization capability of the networks. Finally, we evaluate
the networks’ segmentation accuracy as compared to some
classical iris segmentation algorithms applied on the same
data. To the best of our knowledge, this is the first work
which conducts such investigations systematically in ocular
biometrics in the context of iris segmentation using CNNs.

2. Related work
Existing iris segmentation methods can be broadly di-

vided into four types. The first and most popular type is
feature-based methods. These algorithms first find the pupil
and the inner boundary of the iris, and after locating the
outer iris boundary, articulate the other parameters, such as
eyelid and limbic areas, to separate them from the iris. Two
well know algorithms in this category are Hough transform
(HT) and Daugmans integro-differential operator. HT finds
the circularity by edge-map voting within the given range
of the radius, which is known as the Wildes approach [30].
Daugmans integro-differential operator is another scheme
that finds the boundary using an integral derivative, based
on which new advanced methods got developed recently
[1]. An effective technique to reduce the error rate in a non-
cooperative (e.g. off-angle) environment was proposed by
Jeong et al. [27]. They used two circular edge detectors
in combination with AdaBoost for pupil and iris boundary
detection, and their method approximated the real bound-
ary of detected eyelashes and eyelid. Other methods are
also known to reduce noise prior to the detection of the iris
boundary to increase segmentation accuracy [28]. Perfor-
mance of these methods is highly dependent on the images’
clear contour and the boundaries’ contrast as well as the
circular/elliptic shape of the pupil and iris, however in off-
angle images limbic and pupillary boundaries are usually of
uneven-contrast, and have non-circular/elliptic shape.

The second type of methods includes texture-based seg-
mentation schemes. These algorithms use the specific color
texture and the illumination information gradient to differ-
entiate between an iris pixel and another pixel. Thus, iris

segmentation is performed based on the discriminating fea-
tures for iris and non-iris pixels. A novel method for iris
and pupil segmentation using this technique was proposed
by Khan et al. [16]. They used 2-D profile lines between the
iris and sclera boundary and calculated the gradient pixel by
pixel, where the maximum change represents the iris bound-
ary. Parikh et al. [22] first approximated the iris boundary
by color-based clustering, then for off-angle eye images,
two circular boundaries of the iris were detected.

The third type of segmentation methods employs active
contour methods [26]. In the VanChese algorithm a mask
is created according to the size of the iris, and then an it-
erative process determines the true iris boundary with the
help of the localized region-based formulation [31]. How-
ever, this approach shares the drawback faced by other ac-
tive contour-based models, as it is usually disturbed by the
iris texture during iteration, and normally considers the iris
pattern as the boundary, which results in inaccurate segmen-
tation. Due to the space limitation here we just introduced a
selection of techniques in each category, however there ex-
ists current and ongoing research on non-ideal and off-angle
iris segmentation using the classical approaches specified.
For a general overview please refer to e.g. [13] and [5].

Addressing the drawbacks of classical segmentation
methods and reducing the complexity of intensive pre- and
post-processing, a fourth category of segmentation meth-
ods evolved recently, which are based on data-driven learn-
ing methods. Within this category, deep learning techniques
and in particular convolutional neural networks are the most
ideal and popular schemes due to their accuracy and per-
formance. Liu et al. [20] located the iris region in non-
cooperative environments using convolutional neural net-
works. In their study, a hierarchical CNN (HCNNs) and
a multi-scale FCN (MFCNs) were used to locate the iris
region automatically. Jalilian and Uhl [9] proposed three
types of fully convolutional encoder-decoder networks for
iris segmentation, and evaluated their performance on off-
angle iris images available in UBIRIS.v2 database1. Their
results showed the superior capability of CNNs to deal with
off-angle iris data compared to some classical methods.

Arsalan et al. [19] proposed a two-stage iris segmenta-
tion based on CNNs for images captured in visible light.
Authors used circular Hough transform to detect the rough
iris boundary in the first stage. A pre-trained VGGface
model is used in the second stage for the fine adjustment of
the rough iris boundary obtained in the first stage. Osorio-
Roig et al. [21] conducted inductive learning over two
FCNs for segmenting several eye regions in multi-class ap-
proaches, using fine-tuned pretrained VGG-16 and AlexNet
models. Similarly, Rot et al. [25] presented a deep multi-
class eye segmentation model built around a semantic seg-
mentation architecture. They have also examined sensitiv-

1http://iris.di.ubi.pt/ubiris1.html



Figure 1: Posterior eye structure and the perspective and
refraction distortions affecting the iris texture geometry.

ity of the network to the change of view for four directions
(left, right, up and straight) generally. In order to overcome
the requirement of large quantities of labeled data in the ap-
proaches mentioned above, Jalilian et al. [12] proposed a
domain adaption technique for CNN based iris segmenta-
tion. Bazrafkan et al. [4] introduced a CNN to perform
iris segmentation on lower-quality iris images (including
off-angle images). They further investigated the effect of
network tuning on the segmentation results. Nevertheless,
none of the above works provided a systematic analysis on
the effect of the different gaze-angle on ocular biometrics
and the resulting iris segmentations using CNNs.

3. Eye structures effect on iris segmentation
In addition to the known degradation factors affecting

the constrained (frontal) iris imaging (such as pupil dilation,
occlusion, image resolution, focus, motion blur, specular re-
flections, and illumination variations), off-angle iris imag-
ing introduces further challenging eye-structure related dis-
tortions to the iris images, including perspective and refrac-
tion distortions, change in the appearance of complex three-
dimensional texture on the iris plane, iris missing boundary
in extreme angles, and limbus occlusion.

Interaction of light rays within the posterior eye struc-
ture elements such as cornea, limbus, sclera, anterior cham-
ber (aqueous humour), iris, and lens (as illustrated in Figure
1) can distort the actual iris image depending on the image
acquisition angle. In both frontal and off-angle images, the
cornea and aqueous humour first refract the incoming and
outgoing light rays based on their angles to the cornea. Fur-
ther perspective distortions may get introduced to the light
rays as the perspective (gaze-angle) changes. The three-
dimensional texture on the iris plane can appear differently
as the angle changes and creates shadows on the iris plane.
Also in extreme angles the sclera-iris boundary disappears,
distorting the iris’ actual circle boundary shape. After all,
the limbus, which is a semi-transparent structure at the junc-
tion of the cornea and sclera, consistently occludes side por-
tions of the iris plane. In any case, the extent of distortion in
the iris texture depends on the gaze-angle of the iris images.

3.1. Three-dimensional structure of iris

The structure of the iris consists of several types of dila-
tor muscles to contract the pupil to control the amount of the

Figure 2: Three-dimensional structure of iris and Limbus
occlusion distortions

incoming light to the eye lens, forming a three-dimensional
texture on the iris plane. To this extent, the key context
and texture feature representations learned by the CNN net-
works change from a certain view angle to another. For
instance, some iris pixels may get occluded or shadowed
by others and consequently, the 2D image of the captured
iris texture changes as the gaze-angle changes (see Fig-
ure 3f, which shows the difference between the normalized
images of an iris captured frontally (Figure 3d), and from
+50◦gaze-angle (Figure 3e) in red, where constant parts are
depicted in several shades of blue). Those pixels located
on (the side closer to the camera) the border region of the
iris inner boundary may get occluded in steeper view an-
gles (see the light rays unseen (blue) and seen (green) by the
camera in different angles in Figure 2). There will be con-
siderable changes in the distribution of iris features when
the gaze-angle of training and testing iris images differs,
and the network may not be able to spot the correspond-
ing features (as learned in the training session) in the test
images, failing to segment the iris region accurately.

(a) (b) (c)

(d) (e) (f)

Figure 3: Examples of off-angle distortions on the iris im-
ages in the database.

3.2. Limbus occlusion

The limbus is the semitransparent organ that joins the
sclera and the cornea texture where the fully transparent
cornea cannot reach to the bottom of the anterior cham-
ber and ends at a higher level than the iris plane. Due to
the distance between the ending points of the cornea and
the iris plane, the diameter of the cornea-limbus border is
slightly smaller than the anterior chamber width. Therefore,
the limbus consistently occludes the boundary region of the
iris texture (especially) in extreme off-angle view. The ex-
tent of occlusion of the iris texture on the side closer to the



camera increases as the gaze angle increases (see the red-
dotted reflections in Figure 2). In CNN-based segmenta-
tion, an off-angle test image does not exhibit certain outer
iris boundary information as present in frontal training im-
ages, and thus the network fails to accurately detect the iris
region (especially its outer boundary) in the test images.

3.3. Perspective and refraction distortion

The geometric properties of an object’s image on the
camera sensor change if the coordinates of the camera
change with respect to the object. This phenomenon is sim-
ply referred to as “perspective distortion”. In this case the
new position of point ax1,y1,z1 rotated by θx,y,z with respect
to a coordinate system defined by the camera will be located
at a′x2,y2,z2 as follows:

a′
x2 = cy(szy1 + czx1)− syz1

a′
y2 = sx(cyz1 + sy(szy1 + czx1)) + cx(czy1 − szx1)

a′
z2 = cx(cyz1 + sy(szy1 + czx1))− sx(czy1 − szx1)

(1)

where c and s stand for cos and sin of the rotation degree
(θ), respectively. Figure 1 illustrates the effect of this phe-
nomenon on iris images as the capturing angle changes.

The cornea is the transparent structure of the eye located
at the outermost layer of the eye. Aqueous humour is the
transparent watery fluid that is located between the cornea
and the iris and fills the anterior chamber. Therefore, in-
coming and outgoing light rays are first refracted at the
cornea and then refracted at the aqueous humour due to the
refraction index differences between air, cornea, and aque-
ous humour. When capturing iris images at steeper angles,
light rays refract more at the cornea, causing the geomet-
ric property of the reflected iris features to transform (e.g.
get scaled, dilated or eroded), as shown in Figure 1. Corre-
spondingly, we can see that the circle shape of the iris im-
age captured in frontal manner in Figure 3a is transformed
to an ellipse in Figure 3b, when captured from a +50◦angle,
mainly due to the perspective distortion. We can also ob-
serve the effect of this distortion along with the refraction
distortion on the geometric properties of the corresponding
normalized iris textures (Figure 3d, and Figure 3e respec-
tively), as presented in Figure 3f. Basically CNNs learn
scale-dependent patterns at a specific combination of image
size and network architecture, and thus they are not able to
spot the learned patterns in the testing data, if their geomet-
ric properties (such as boundaries and texture information)
are changed with respect to the training data.

3.4. Iris missing boundary in extreme angles

The sclera is the outer layer of the eye with bright white
color which strongly contrasts with the colored iris tex-
ture, forming a clear boundary between these two tissues.
In frontal imaging this boundary is clearly visible. But

Network RefineNet SegNet

Optimizer Adam Stochastic gradient descent
Learning rate 0.0001 0.003
Momentum - 0.01
Weight decay 0.1 0.000001
Epochs 40,000 30,000

Table 1: Networks’ training parameters

as the gaze-angle gets steeper (especially towards the right
most gaze-angle as we consider left eyes (i.e. +50◦)), the
boundary erodes and finally disappears (see the green curve,
showing the missing iris boundary in Figure 3c). The learn-
ing process in CNNs starts with convolving filters which
can be thought of as feature identifiers which convolve over
the input looking first for low level features such as edges
and boundaries, and then building up to more abstract con-
cepts through further filtering layers. Thus, low level fea-
tures such as edges (boundaries) play a scaffolding role
in encoding the feature representations of target regions.
Therefore, if these features (learned during the training pro-
cess) are not presented in the testing data (which might have
steeper gaze-angle than the training data), the network will
not be able to retrieve the accurate boundary pixels (which
are missing), or may spot false boundaries (false-positives)
in the image wrongly.

4. Experimental framework
Database: For our experiments we used a subset (con-

taining 4400 left eye iris images captured from 40 subjects)
of an off-angle iris database [15]. The iris images in this
database are captured by two near-infrared sensitive IDS-
UI-3240ML-NIR cameras. Images at 0◦gaze-angle were
captured by a frontal fixed camera, and off-angle images
were captured by a frontal moving camera rotating horizon-
tally from -50◦(N50) to +50◦(P50) in angle with a 10◦step-
size. Each camera captured 10 iris images per stop, giv-
ing 10 frontal and 100 off-angle iris images captured from
each subject, to comprise 440 images per angle (examples
of images in the database are presented in Figure 6). The
database is accessible on request (from the authors), and
further details about it can be found in [15]. We developed
the ground-truth segmentation masks (required for train-
ing networks) for all images available in the dataset using
the iris, pupil, upper and lower eyelid parameters speci-
fied manually. For our experiments we divided the whole
database into two equal parts (each containing iris images
of 20 separate subjects), and used one part as our testing
data and the other one as our training data. Jalilian et al. al-
ready showed in their works that the CNN networks can be
trained to their optimal accuracy using approximately 200
training samples [10] [11].

Segmentation evaluation and measures: In order to fa-
cilitate proper quantification of the resulting segmentation
accuracy in each experiment, we considered the nice1 iris
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Figure 4: Segmentation performance of SegNet trained and
tested on each gaze-angle separately as average nice1 error.

segmentation error rate which is based on the NICE1 pro-
tocol 2 as used in several iris segmentation challenges. Ac-
cordingly, the segmentation error rate (Ei) for each input
iris mask Ii is given by the proportion of corresponding dis-
agreeing pixels (through the logical exclusive-or operator)
over all the mask as follows:

Ei =
1

c× r

∑
c′

∑
r′

O(c
′
, r

′
)⊗ C(c

′
, r

′
) (2)

where c and r are the dimensions of the segmentation
masks, and O(c′, r′) and C(c′, r′) are, respectively, pix-
els of the output (segmentation result) and the ground-truth
masks. The value of (E) is in the [0, 1] interval, and 1 and
0 are the worst and the best scores, respectively.

Fully convolutional neural networks (FCNs): In this
work we used two different FCN architectures to extract the
iris textures from iris images. The first network architec-
ture we used is identical to the “Basic” fully convolutional
encoder-decoder network proposed by Badrinarayanan et
al. [2] and is termed “SegNet” subsequently. The network
has a rather shallow structure, which includes an encoder
net, and a corresponding decoder net. The network’s en-
coder architecture is organized in four stocks, containing a
set of blocks. Each block comprises a convolutional layer,
a batch normalization layer, a ReLU layer, and a Pooling
layer with kernel size of 2 × 2 and stride 2. The cor-
responding decoder architecture, likewise, is organized in
four stocks of blocks, whose layers are similar to those of
the encoder blocks, except that here each block includes an
up-sampling layer. The decoder net ends up to a soft-max
layer which generates the final segmentation mask. The net-
work implementation3 was realized in the Caffe framework.

The second network architecture we used in our work
is RefineNet [18]. RefineNet has a very deep multi-path
refinement architecture, which employs a 4-cascaded archi-
tecture with 4 Refining nets, each of which directly con-

2http://nice1.di.ubi.pt/
3http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html.
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Figure 5: Segmentation performance of RefineNet trained
and tested on each gaze-angle separately as average nice1
error.
nects to the output of one Residual block [6], as well as to
the preceding Refining net in the cascade. Each Refining
net consists of two residual convolution units (RCU), and
their outputs are fused into a high-resolution feature map,
and then fed into a chained residual Pooling block. The
implementation4 of this network was realized in the Ten-
sorFlow framework using the Keras library. We selected
these two architectures based on the successful results al-
ready obtained by these two networks in iris segmentation
[7, 8], and also due to their architectural distinctions. None
of the networks war pre-trained. Table 1 specifies the train-
ing parameters we used for the networks in our experiments.

5. Experiments and Results
The first research question addressed is if a gaze-angle

specific training process is required for high segmentation
accuracy. To facilitate a proper analysis, we trained the
networks in a homogeneous training setting, i.e. training
data consists of iris images with identical gaze angles (200
images per gaze-angle as in our training data). For each
available gaze-angle, a dedicated network is trained. Subse-
quently, we conduct segmentation on all the test data, differ-
entiating and grouping results into the different gaze-angles
available (starting from -50◦(N50) to +50◦(P50)). Figure
4 shows the results (as average nice1 error) for this ex-
periment for the SegNet network. As it can be seen, the
network’s performance has a direct relation to the similar-
ity of gaze-angles of the training and testing images, and as
the gaze-angles diverge, the performance of the network de-
clines too. This result is underlined by the coloring, which
displays the lowest errors around the diagonal, which re-
flects the effect of off-angle distortions explained in Sec-
tion 3. As the corresponding outputs in Figures 6l and 6m
also show, the missing left iris boundary and dilated right
boundary (caused by perspective and refraction distortions)
in extreme P50 gaze-angle images cause the network to fail

4https://github.com/eragonruan/refinenet-image-segmentation.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6: Sample iris images of P0 (6a), N50 (6f), and P50 (6k) gaze-angles in the database, and their corresponding
segmentation (blue color) masks, and error (red color) masks using SeNet (second and third column), and RefineNet (fourth
and fifth column), trained on frontal iris data, respectively.

to extract iris boundary pixels properly. Similar poor results
are visible in the outputs of the N50 gaze-angle images (see
Figures 6g and 6h), but with much less severity. The rea-
son for this are the more severe off-angle distortions present
in the images of P50 gaze-angle (compare the correspond-
ing images in Figures 6f and 6k) which is not surprising
as we consider left eyes only. As it is visible in the corre-
sponding example outputs as well, the right iris boundary
is also affected by the limbus occlusion which resulted in
additional false-negative detections in this area. The other
false-negative detections visible in the iris main texture (far
from the iris boundaries) seem to be mainly due to the 3D
iris structure, perspective and refraction distortions, affect-
ing the iris texture property as the gaze-angle gets steeper
(i.e. in P50 angle). As results of these distortions, we can
observe relevant degradations in the segmentation results
obtained by the network (as presented in Figure 4), which
are visible in the upper right and the lower left corners of the
table (corresponding to the configurations where the differ-
ence between the training and testing gaze-angles is larger).

Figure 5 shows the results of the same experiments using
the RefineNet network, which look partially different than
the results obtained by the SegNet network. Overall we ob-
serve higher errors, the better results when being close to
the diagonal are not seen that clearly, and the table is much
less symmetric. As already mentioned, RefineNet uses a
chain of pooling filters with plenty of residual information
in a very deep architectural configuration to build many
more abstract concepts (contents) on the low level features
(texture), aiming to enable high-resolution boundary pre-
dictions. To this extent, key content information (boundary
information) plays a key role in adjusting the network’s fil-
ter weights, and thus learning the target features. The corre-
sponding output in Figure 6o also shows, that this archi-
tecture makes the network very vulnerable to the texture
related distortions such as perspective, refraction and also

3D iris structure distortions. Correspondingly, we can ob-
serve many false-positive detections in the output mask, as
well as some undetected iris pixels (false-negatives), espe-
cially on the iris main texture, when testing the network on
iris images acquired from steeper angles (e.g. P30, P40 and
P50). The strong decline of the network performance visi-
ble at the upper left and right side of the table is mainly due
to this issue. These distortions affect the iris images of the
left sided gaze-angles less severely. As already specified,
the reason for this effect is the more severe off-angle dis-
tortions present in images of P50 gaze-angle (see Figures
6g and 6h), and thus we can observe better performance in
the lower left and left side of the table. The effect of miss-
ing iris boundary is also visible in Figure 6o, however, the
effect of limbus occlusion distortion seems not to so sever.

Network-wise, SegNet has a comparably shallow hier-
archical encoding-decoding architecture which allows the
network to extract a balance combination of both high level
(content) and low level (texture) iris features up to a moder-
ate level. While such a configuration allows the network
to resist against false-positive errors (caused by the off-
angle distortions) when trained on frontal images and tested
on off-angle images, it undermines the network capability
in detecting the iris pixels located at the boundary regions
properly (resulting in many false-negative detections). On
the contrary, RefineNet has a very deep architecture with
built-in chain of pooling filters to extract more abstract con-
cepts in the higher layers. Thus, the network is very sensi-
tive to the higher level feature information. While the net-
work performance is good in configurations where the effect
of off-angle distortions on the texture pixels are not very se-
vere, it diminishes strongly (spotting many false-negative
pixels) when such distortions are high. Consequently, Seg-
Net shows better accuracy in such configurations.

The next research question tackles the impact of the size
of the training set and the stability of the obtained results
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Figure 7: Segmentation performance of SegNet (average
nice1), trained with increasing quantities of P0 gaze-angle
images, on the N50 and P50 gaze-angles images vs. trained
with identical (N50 and P50) gaze-angles images.

with respect to a varying quantity of training images. In
particular we wanted to clarify if the results get better (i.e.
improved generalizability in case training and testing an-
gle do not match) by simply increasing the number of used
training images. For this purpose, we trained the networks
with increasing quantities (50, 100, 150, 200, 250, and 300)
of N50 and P50 gaze-angle images, respectively, and then
tested them on the remaining (100) images of the same
gaze-angles. Similarly, we trained networks with increas-
ing quantities of frontal images (P00), and then tested on
the same N50 and P50 gaze-angle images as before. Fig-
ures 7 and 8 demonstrate the results obtained using SegNet
and RefineNet for these experiments, respectively. As the
results show, in general introducing more training images
to the networks doesn’t consistently improve the networks
segmentation performance. Moreover, results indicate very
unstable results and only for SegNet we observe stable ac-
curacy for varying training data size in case training and
testing gaze angle do match. In all other configurations (es-
pecially those involving RefineNet) we observe highly un-
stable behavior, often showing increasing error for larger
training sets. Therefore, the results obtained so far do sug-
gest that (i) in fact gaze angle-specific training is required
to get high accuracy and that (ii) increasing the size of the
training set does not resolve this issue. In particular for Re-
fineNet, we observe very unstable results when changing
the size of the training set.

The next research question we want to address is if we
are able to improve the generalizability of the networks by
switching to a heterogeneous training setting, i.e. to include
iris images with different gaze-angles into the training set.
For this purpose, in the first stage, we trained the networks
with all available iris images (with different gaze-angles)
in our training data (200 samples per gaze-angle), and then
tested the networks on all images in the testing data. Figure
9 visualizes results for this experiment per gaze-angle. As
it can be seen, the networks react quite differently to this
training configuration. SegNet’s performance gets almost
identical to the results of the homogeneous training setting
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Figure 8: Segmentation performance of RefineNet (average
nice1), trained with increasing quantities of P0 gaze-angle
images, on the N50 and P50 gaze-angles images vs. trained
with identical (N50 and P50) gaze-angles images.

in case training and testing gaze-angles do match. This is
a very positive result, as this enables us to refrain from
the angle-specific training strategy (and even better, from
the application perspective, there is no need to determine
the gaze-angle of an iris image before being able to deploy
CNN-based segmentation). However, RefineNet’s perfor-
mance deteriorates considerably as compared to these best
results but is still better as compared to homogeneous train-
ing with not corresponding gaze-angles (see Figures 4 and
5). Actually, RefineNet seems to be unable to properly learn
the features when introducing the diversified target features
as contained in the heterogeneous training set due to its con-
centrated learning mechanism already explained.

This first experiment with heterogeneous training sets
was based on a large training set. In the next stage, we
want to investigate how many training images per gaze-
angle we actually need to achieve results of this high accu-
racy. For this, we trained the networks with different shares
of available iris images and present results when using the
half quantity (100 samples per gaze-angle in our training
set) – this setting is the best for RefineNet while for SegNet
the full training set is optimal. As expected and in accor-
dance to earlier results, SegNet’s accuracy gets eroded con-
siderably, but surprisingly RefineNet’s accuracy improves
notably (getting even better than the results of the homoge-
neous training setting on the left-sided gaze-angle iris im-
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Figure 9: Segmentation performance of SegNet and Re-
fineNet, trained with iris images of different gaze-angles
altogether as average nice1 error.
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Figure 10: Segmentation performance of the CNN networks
vs. classical methods’ performance as average nice1 error.

ages). The network’s concentration on high level content in-
formation can explain this phenomenon. Actually, the train-
ing images are (supposed to be) originating from the same
feature space (sharing similar contents). Thus, the discrep-
ancies among differing angles are mostly embedded in the
texture data. Therefore, introducing more training samples
to the network means introducing more discrepancies to the
network (which is not designed to handle them well, result-
ing in worse accuracy for the higher quantity of heteroge-
neous training data). Overall, we can conclude that training
a (certain) network architecture with a distinct quantity of
iris images of different gaze-angles improves the network’s
generalization capability and its subsequent segmentation
accuracy. However, if we select an improper architecture or
quantity of training data, the results may not be as expected.

Finally, the last research question is to evaluate the actual
segmentation performance of the networks on iris images
with different gaze-angles as compared to classical segmen-
tation techniques. To address this, we compare the cor-
responding segmentation results obtained by the networks
on each angle to those obtained by applying three well
known classical iris segmentation algorithms, including:
active contours-GrabCut (A-Contour) [3], contrast-adjusted
Hough transform (Caht) [24], and weighted adaptive hough
and ellipsopolar transform (Wahet) [29]). We used the USIT
implementation of these algorithms [23]. To enable a fair
comparison, we used the results obtained by training the
networks with heterogeneous gaze-angles in their best con-
figuration (i.e. large training set for SegNet and small train-
ing set for RefineNet) (Figure 9), as well as those obtained
by using the homogeneous training setting with full training
set for both networks (see Figures 4 and 5). As the results in
Figure 10 show, both networks have superior performance
over the classical methods, no matter if trained on the homo-
geneous or heterogeneous data (best configuration), while
SegNet shows consistently better performance.

6. Conclusion
We investigated the effect of different gaze-angles on oc-

ular biometrics and related the obtained information to off-
angle iris segmentation using CNNs. The results showed

that the performance of the networks has a direct relation
to the correspondence of the gaze-angles of the training and
testing images, and it declines as the gaze-angles diverge,
confirming the negative effect of off-angle eye-structure
related distortions on the networks’ performance. While
missing and dilated iris boundary distortions (especially in
P50 gaze-angle images) caused the networks to fail to accu-
rately extract the iris boundary pixels, the effect of perspec-
tive, refraction, and 3D iris structure distortions on the net-
works mainly appeared as missing (undetected) iris texture
in the networks’ output masks. Also limbus occlusion af-
fected the networks’ performance, mostly resulting in miss-
ing iris outer boundary pixels (false-negatives) in the corre-
sponding segmentation masks of images with steeper gaze-
angles. In this case, the effect of distortions was more se-
vere on the images captured from the right angles, rather
than the images captured from the left angle, due to the
more severe off-angle distortions they include when cap-
tured from the right angles, as we consider left eyes only. It
also turned out that FCNs with shallow hierarchical archi-
tecture, which extract a balanced combination of both high
and low level features up to a moderate level, resist more
against off-angle distortions (when gaze-angles in training
and test data do not match), generating fewer false-positive
errors. In contrast, FCNs with very deep architectures (de-
signed to extract more abstract features) are very sensitive
to the off-angle distortions affecting the texture data, thus
detecting many false-positive pixels.

The investigations on the stability of the results and the
possibility of improving them by increasing the quantity
of training images turned out to not deliver promising out-
comes for none of the networks, as there was no converg-
ing pattern observed when increasing the training images’
quantity. Alternatively, we considered to train the networks
with iris images exhibiting different (heterogeneous) gaze-
angles, aiming to increase the networks’ generalization ca-
pability in such cases. The experimental results showed that
this configuration can enhance a network’s generalization
capability and significantly improves the results, especially
for SegNet. Gaze-angle specific network training can be
abandoned when resorting to this training strategy. How-
ever, we found that selecting a proper network architecture
and training data quantity plays a key role in such a config-
uration. Last but not least, comparison of the corresponding
segmentation results obtained by FCNs to those of some
classical iris segmentation algorithms showed that FCNs
possess superior performance over the classical algorithms,
making them a better choice for off-angle iris segmentation.
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