© IEEE. Personal use of this material is permitted. However, permission to reprint /republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.



Enhanced Segmentation-CNN based Finger-Vein Recognition by Joint Training
with Automatically Generated and Manual Labels

Ehsaneddin Jalilian and Andreas Uhl
Department of Computer Science, University of Salzburg
Jakob-Haringer-Str.2, Salzburg, Austria

ejalilian@cs.ac.at,Uhl@cs.ac.at

Abstract

Deep learning techniques are nowadays the leading ap-
proaches to solve complex machine learning and pattern
recognition problems. For the first time, we utilize state-
of-the-art semantic segmentation CNNs to extract vein pat-
terns from near-infrared finger imagery and use them as the
actual vein features in biometric finger-vein recognition. In
this context, beside investigating the impact of training data
volume, we propose a training model based on automati-
cally generated labels, to improve the recognition perfor-
mance of the resulting vein structures compared to (i) net-
work training using manual labels only, and compared to
(ii) well established classical recognition techniques rely-
ing on publicly available software. Proposing this model we
also take a crucial step in reducing the amount of manually
annotated labels required to train networks, whose genera-
tion is extremely time consuming and error-prone. As fur-
ther contribution, we also release human annotated ground-
truth vein pixel labels (required for training the networks)
for a subset of a well known finger-vein database used in
this work, and a corresponding tool for further annotations.

1. Introduction

Finger-vein recognition is a biometric method in which
a person’s finger-vein patterns, captured under tissue-
penetrating near-infrared (NIR) illumination, are used as a
basis for biometric recognition. This technique is consid-
ered to offer significant advantages compared to classical
biometric modalities (e.g. fingerprint, iris, and face recog-
nition), as the vein patterns can be captured in touch-less

2019 IEEE 5" International Conference on Identity, Secu-
rity, and Behavior Analysis (ISBA)
978-1-7281-0532-1/19/$31.00 (©2018 European Union

manner, are not influenced by finger surface conditions, are
acquired typically in non-invasive manner and only when
the subject is alive, and cannot easily get forged. While
plenty of finger-vein recognition methods have been pro-
posed in recent years, yet extracting accurate vein patterns
from NIR finger-vein images remains far from being trivial.
This is mainly due to the often poor quality of the acquired
imagery. Improperly designed scanner devices, close dis-
tance between finger and the camera (causing optical blur-
ring), poor NIR lighting, varying thickness of fingers, am-
bient external illumination, varying environmental temper-
ature, and light scattering represent different aspects which
can degrade the finger-vein images’ quality and cause the
images to contain low contrast areas and thus ambiguous
regions between vein and non-vein areas. The intensity dis-
tributions in these areas are complicated, and it is very hard
to propose a mathematical model which can described them.
Nevertheless, even manual annotation of the actual vein pat-
terns (required as ground-truth to train segmentation CNN
networks) in such ambiguous areas is extremely difficult,
time-consuming, and error-prone process.

In this paper, for the first time in literature, we uti-
lize three different the-state-of-the art CNN-based semantic
segmentation architectures to segment finger-vein patterns
from NIR finger imagery and use the extracted patterns for
the recognition process, proposing an efficient training and
configuration setting for these networks. In particular, be-
side inspecting the impact of training data volume, we in-
vestigate three automatic label generation techniques, and
use the obtained labels together with manual labels (in vary-
ing quantity combinations) in joint training of the networks,
primarily to improve the networks’ feature extraction capa-
bility, and also eventually to eliminate the need for man-
ual labels, whose annotation (especially in the ambiguous
areas mentioned above) is extremely time-consuming and
cumbersome. After training the networks with these la-
bels and obtaining corresponding vein patterns, we evalu-
ate the recognition performance in terms of receiver oper-
ating characteristics and relate the results to those obtained



by classical vein feature extraction techniques. We further
publicly release human annotated ground-truth used in net-
work training (and a corresponding tool to generate further
vein-pattern labels) for a subset of a well known finger-vein
database for the first time.

2. Related work

Classical finger-vein recognition techniques (using
model-based, aka “hand-crafted” features) generally fall
into two main categories: feature-based methods and
profile-based methods. Feature-based methods assume that
in the clear contour of finger-vein images, the pixels located
in the vein regions have lower values than those in the back-
ground and that the vein pattern has a line-like shape in
a predefined neighborhood region. E.g. “Repeated Line
Tracking” (RLT [19]) tracks the veins as dark lines in the
finger-vein image. A tracking point is repeatedly initialized
at random positions, and then moved along the dark lines
pixel by pixel. The number of times a pixel is traversed is
recorded in a matrix. Pixels that are tracked multiple times
have a high likelihood of belonging to a vein. The matrix is
then binarized using a threshold.

Profile-based approaches consider the cross-sectional
contour of vein pattern which shows a valley shape. E.g.
“Maximum Curvature” (MC [20]) traces only the center
lines of the veins and is insensitive to varying vein width.
To extract the center positions, first the local maximum cur-
vature in the cross-sectional profiles of vein images is de-
termined. Next, each profile is segmented as being con-
cave or convex, where only local maxima in concave pro-
files are specified as valid center positions. Then according
to width and curvature of the vein region a score is assigned
to each center position, and recorded in a matrix called lo-
cus space. Eventually, the matrix is binarized using the me-
dian of the locus space. Similarly, in ”"Deformation-Tolerant
Feature-Point” (DTFP [32], a more recent approach), cur-
vature of image-intensity profiles is used to extract feature
points that are robust against irregular shading and vein de-
formation. Another profile-based method, exploiting the
line-like shape of veins in a predefined neighborhood re-
gion is termed “Gabor Filter” (GF [2]). A filter bank con-
sisting of several 2D even symmetric Gabor filters with dif-
ferent orientations is created. Several feature images are ex-
tracted using different filters from the filter bank, and conse-
quently fused to generate the final feature image. There are
many other techniques which often apply classical feature
extraction techniques to the finger-vein pattern generation
task such as Local Binary Pattern (LBP [6]), Region Growth
[13], Principal Component Analysis (PCA [7]), etc. For a
general overview on finger-vein recognition techniques up
to 2014, please refer to e.g. [18].

2.1. CNN based finger-vein recognition

Recent techniques in deep learning, and especially
CNNS, are gaining increasing interest within the biometric
community. However, in finger-vein recognition prior art
is relatively sparse and the extent of sophistication is quite
different. The simplest approach is to extract features from
certain layers of pre-trained classification networks and feed
those features into a classifier to determine similarity to re-
sult in a recognition scheme. This approach is suggested by
Li et al. [29] who apply VGG-16 and AlexNet feature ex-
traction and KNN classification for recognition. Extracting
vein features as such rather than the binary masks, hinders
the application of more advanced training techniques such
as label fusion.

Another approach to apply classical classification net-
works is to train the network with the available enroll-
ment data of certain classes (i.e. subjects). Radzi et
al. used a model of four-layered CNN classifier with
fused convolutional-subsampling architecture for finger-
vein recognition [1]. Itqan et al. performed finger-vein
recognition using a CNN classifier of similar structure [16],
and Das et al. [9] correspondingly proposed a CNN clas-
sifier for finger-vein identification. This approach however
has serious drawbacks in case new users have to be enrolled
as the networks should be re-trained, which is not practical.

Hong et al. [10] used a more sensible approach, em-
ploying fine-tuned pre-trained models of VGG-16, VGG-
19, and VGG-face classifiers, which is based on determin-
ing whether a pair of input finger-vein images belongs to
the same class (i.e. subject) or not. Likewise, Xie et al.
[30] used several known CCN models (namely: light CNN
(LCNN) [28], LCNN with triplet similarity loss function
[24], and a modified version of VGG-16) to learn useful
feature representations and compare the similarity between
finger-vein images. Doing so, they eliminated the need for
training in case of new enrolled users. However utilizing
raw images, the system possesses a potential security threat.

Qin et al. [12], being the only approach so far focusing
on explicit segmentation of vein patterns, applied a two-step
procedure to extract the finger-vein patterns from NIR fin-
ger images. First, they used a CNN classifier to compute the
probability of patch center pixels to belong to vein patterns,
one by one, and labeled them according to the winning class
(based on a probability threshold of 0.5). In the next step,
in order to reduce finger-vein mismatches (as they had the
problem of missing vein pixels) they further used a very
shallow Fully Convolutional Neural Network (FCN) to re-
cover those missing vein pixels. The approach used in the
first network is rather simplistic and computationally de-
manding compared to the state-of-the-art segmentation net-
works as used in this work. Moreover, using a further net-
work to recover the missing pixels, additional processing
time is added to the feature extraction process.



3. Finger-vein Pattern Extraction using Se-
mantic Segmentation CNNs

The first computer vision tasks for which initial CNN
architectures were developed include classification [15],
bounding box object detection [31], and key point predic-
tion [4]. More recently, CNN architectures have been devel-
oped enabling semantic segmentation, in which each pixel
is labeled separately with the class of its enclosing object
or region. The primary techniques, classifying the cen-
ter pixel of an entire image patch required immense time
and computation resources, especially when used for large
scale (whole image) segmentation. Fully convolutional neu-
ral networks are a rich class of architectures, which extend
simple CNN classifiers to efficient semantic segmentation
engines. Improving the classical CNN design with multi-
resolution layer combinations, the resulting architectures
are proven to be much better performing than their counter-
parts consisting of fully connected (FC) layers [14]. As the
key distinction, typically the FC layer is replaced in FCN
with a decoding mechanism, which uses the down-sampling
information to up-sample the low resolution output maps to
the full resolution of the input volumes in a single step, re-
ducing computational cost and improving segmentation ac-
curacy. There have been already attempts to use FCNs to
extract vessel patterns from different human organs. For
example, in [3] an FCN is used for segmentation of retinal
blood vessels in fundus imagery, or in [21] an FCN is used
for vessel segmentation in cerebral DSA series. However,
there are significant differences as compared to this work.
First, the networks have been trained with manually anno-
tated labels provided by human experts only, and second,
evaluation has been done with respect to segmentation accu-
racy relative to the ground truth labels while in our context
segmentation results are indirectly evaluated by assessing
recognition performance using the generated vein patterns.

In this work we used three different FCN architectures
to extract the finger-vein patterns from NIR finger images.
The first network architecture we used to extract the finger-
vein patterns is “Unet” by Ronneberger et al. [22]. The
network consists of an encoding part, and a corresponding
decoding part. The encoding architecture consists of units
of two convolution layers, each followed by a rectification
layer (ReLU) and a 2 x 2 down-sampling (Pooling) layer
with stride 2. At each down-sampling step, feature chan-
nels are doubled. The corresponding decoding architecture
consists of units of 2x 2 up-convolution layers (up-sampling
layers, which halve the number of feature channels), a con-
catenation operator with the cropped feature map from the
corresponding encoding unit, and two 3 X 3 convolutions,
each followed by a ReLU. At the final layer a 1 x 1 con-
volution is used to map the component feature vectors to
the desired number of segmentations. The network’s soft-

‘ Network ‘ Unet ‘ RefineNet ‘ SegNet ‘
Optimizer Stochastic gradient descent| Adam |Stochastic gradient descent
Learning rate 0.08 0.0001 0.003
Momentum 0.9 - 0.01
Weight decay 0.0005 0.1 0.000001
Iteration 300 40,000 30,000

Table 1: Networks’ training parameters.

max layer generates the final segmentation as a probability
map, whose pixel values reflect the probability of a particu-
lar pixel to belong to a vein or not. The network implemen-
tation! was realized in the TensorFlow and Keras.

The second network architecture we used to extract
the finger-vein patterns is “RefineNet” [17]. RefineNet
is a multi-path refinement network, which employs a 4-
cascaded architecture with 4 RefineNet units, each of which
directly connects to the output of one Residual net [11]
block, as well as to the preceding RefineNet block in the
cascade. Each RefineNet unit consists of two residual con-
volution units (RCU), whose outputs are fused into a high-
resolution feature map, and then fed into a chained residual
Pooling block. The implementation® of this network was
also realized in the TensorFlow and Keras.

The third network architecture we used in our work is
identical to the "Basic” fully convolutional encoder-decoder
network proposed by Kendall et al. [27], and is termed
”SegNet” subsequently. However, we redesigned the net-
work’s softmax layer to segment only the vein pattern. The
whole network architecture is formed by an encoder net-
work, and a corresponding decoder network. The network’s
encoder architecture is organized in four stocks, contain-
ing a set of blocks. Each block comprises a convolutional
layer, a batch normalization layer, a ReLU layer, and a Pool-
ing layer with kernel size of 2 x 2 and stride 2. The cor-
responding decoder architecture, likewise, is organized in
four stocks of blocks, whose layers are similar to those of
the encoder blocks, except that here each block includes an
up-sampling layer. In order to provide a wide context for
smooth labeling in this network the convolutional kernel
size is set to 7 x 7. The decoder network ends up to a soft-
max layer which generates the final segmentation map. The
network implementation® was realized in Caffe deep learn-
ing framework. Table 1 summarizes the training parameters
(which turned out to deliver best results) we used to train
each network in our experiments.

4. Experimental Framework

Database: We used the UTFVP database [26]*, acquired
by the University of Twente with a custom sensor, in our

Uhttps://github.com/orobix/retina-unet.
Zhttps://github.com/eragonruan/refinenet-image-segmentation.
3http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html.
4Available at: http://scs.ewi.utwente.nl/downloads.



experiments. The UTFVP database contains 1440 finger-
vein images (with resolution of 672 x 380 pixels), collected
from 60 volunteers. For each volunteer, the vein pattern of
the index, ring, and middle finger of both hands have been
collected twice at each session (each individual finger has
been captured four times in total). We resized the images to
the corresponding networks’ input volumes, using bicubic
interpolation method, as specified in the Table 2.

Training Labels Generation: We established and uti-
lized an annotation tool (implemented as ImagelJ plugin) to
generate the manual labels for a subset (400 samples) of the
UTFVP dataset (including at least one sample per subject).
Using this tool, the vein structure is marked using polylines.
Each line segment is assigned with a width representing the
vein thickness. In order to diminish variances introduced by
different persons all annotations were accomplished by the
same person. We release the tool and annotated labels for
further usage under the link: (blinded for review).

With primary aim of improving network performance
and also considering the fact that data labeling is an expen-
sive and time-consuming task, especially due to the signif-
icant human effort involved, we also use the approach of
automatically generating labels and training the networks
with different proportion of such labels jointly with manual
labels. Addressing the automatic training label generation,
in some works (i.e. [25]), it has been suggested to gener-
ate training ground-truth labels utilizing available classical
algorithms within the same field. In [12], authors used sev-
eral algorithms to generated a set of finger-vein masks and
then applied a probabilistic algorithm to each pixel (within
the masks) to assign it as being vein or not. However, to the
best of the authors’ knowledge, this approach: (i) has not
yet been investigated systematically, and (ii) has not been
used jointly with manual labels in network training process
so far. Subsequently, we generated the same number of cor-
responding automated labels (using the identical images),
utilizing the following classical binary vein-pattern extrac-
tion algorithms: Maximum Curvature (MC), Gabor Filter
(GF), and Repeated Line Tracking (RLT). The technical de-
tails of these algorithms are already discussed in Section 2.
For MC and RLT we used the MATLAB implementation of
B.T. Ton >, and for GF we used the implementation in [231°.

Network Training and Finger-vein Recognition Eval-
uations: We divided the whole database into 2 parts, each
containing a disjoint set of training (200 samples, set by
experiment to obtain the networks’ full capacity) and test-
ing (720 samples) divisions. Then we created 6 disjoint
subdivisions (containing 5, 20, 60, 100, 140, 180 labels)
within each manual label division, and 5 disjoint subdivi-
sions (containing 40, 80, 120, 160, 200 labels) within each
automatically generated label division respectively. In the

SPublicly available on MATLAB Central.
6 Available at: http://www.wavelab.at/sources/Kaubal6e.

‘ Network ‘ Unet ‘ RefineNet ‘ SegNet ‘
‘ Input volume size ‘ 584 x 565 ‘ 584 x 565 ‘ 360 x 480 ‘
|  processing time | 3.164s | 0.138s | 0.0398s |

Table 2: Run-time per input volume for each network.

first stage of our experiments, we trained each network with
the subdivisions within the first manual label division, and
evaluated the networks on the corresponding subdivisions in
the second testing division. Next we trained networks with
the subdivisions in the second manual label division, and
evaluated the networks on the corresponding subdivisions in
the first testing division. In the second stage of our exper-
iments, we repeated the same training and evaluation pro-
cedure using automatically generated subdivisions (while
adding 40 manual labels to each training subdivision). Do-
ing so, we tested the networks on the whole database in each
experiential stage, without overlapping training and testing
sets. Table 2 shows the segmentation run-time per input
volume for each network, on TITAN-X (Pascal) GPUs.

To quantify the recognition performance of the networks
(using their vein pattern outputs), as well as the classically
generated vein patterns in comparison, receiver operator
characteristic behavior is evaluated. In particular, the equal
error rate EER as well as the FMR 1000 (FMR) and the
ZeroFMR (ZFMR) are used. For their respective calcu-
lation we followed the test protocol of the FVC2004 [8].
For matching the binary feature maps, we adopted the ap-
proach by Miura et al. [20], which is essentially the calcu-
lation of the correlation between an input and reference im-
age. As the input maps are not registered to each other and
only coarsely aligned (using LeeRegion [5] background re-
moval), the correlation between the input image I (z, y) and
the reference one is calculated several times while shifting
the reference image R(z,y), whose upper-left position is
R(cu, cx) and lower-right position is R(w — ¢y, h — ¢p,), in
x- and y-direction.

h—2cp —1w—2cy,—1

N (s,t) = Z Z I(s+z,t + y)R(cw + z,cn + )
y=0 =0

where N,, (s, t) is the correlation. The maximum valid
of the correlation is normalized and used as matching score:

— Nmmam
to+h—2cp —1sg+w—2c,—1 h—2cp —1lw—2cy—1
I(zy)+ X > R(=zy)
y=to T=50 y=cp, T=Cyw

2
where s and ¢, are the indexes of IV, . in the correlation

matrix N,,(s,t), and S values are: 0 < S < 0.5.

5. Results

Table 3 displays EER, FMR, and ZFMR results obtained
by each network in the first stage of our experiments us-
ing varying number of manual training labels. As it can



‘ Networks ‘ Unet ‘ RefineNet ‘ SegNet ‘

‘ Networks ‘ Unet ‘ RefineNet ‘ SegNet ‘

|Labels |EER FMR ZFMR|EER FMR ZFMR|EER FMR ZFMR |

|Labels |EER FMR ZFMR|EER FMR ZFMR |EER FMR ZFMR |

180 pcs [0.87 1.85 5.18 |2.73 5.83 11.85|291 6.75 12.63
140 pes |1.15 2.08 430 [2.73 6.62 9.02 [3.09 8.79 16.94
100 pecs [1.04 1.88 3.47 |3.09 8.61 1824|2.21 6.20 17.03
60 pcs 1.71 3.65 11.52)232 6.01 939 |235 6.66 11.25
20pcs  [0.64 194 6.34 |226 5.83 8.19 |7.26 25.09 53.70
5 pes 3.80 11.75 2430 |1.76 4.12 6.34 |9.71 25.69 31.57

Table 3: Networks’ performance, trained with different
number of manual labels.

be seen in the table, Unet performs better than the other
two networks in terms of almost all parameters (EER, FMR
and ZFMR). The network shows the best performance when
trained with 20 labels only, while increasing the number
of training labels (specially between 60 to 140) erodes the
network performance considerably. SegNet and RefineNet
show rather similar performance, as the EER, FMR and
ZFMR results obtained by these networks demonstrate. Yet
it is interesting to note that while RefineNet achieves the
best performance when trained with minimum of 5 training
labels, the performance of SegNet improves as the number
of training labels increases (at least up to 100 pcs).

[Method | MC \ GF \ RLT \ DTFP \

|Database|EER FMR ZFMR|EER FMR ZFMR|[EER FMR ZFMR|EER FMR ZFMR|

[UTFVP [0.41 0.55 1.29 [1.11 2.45 4.12 |2.17 5.87 9.35 |1.68 291 5.18 |

Table 4: Classical algorithms’ performance.

In order to assess the recognition performance of the
vein patterns generated by the different network training
approaches considered, we compared the corresponding
recognition performance to that of the classical algorithms
as presented in Table 4. As it can be observed in the ta-
bles, Unet shows better performance than the GF, RLT, and
DTFP algorithms, when train with certain number (i.e. 20,
180) of labels, while RefineNet outperforms only RLT algo-
rithm when trained with a limited (5) pcs of labels. SegNet
generally does not perform well on the dataset and falls be-

hind all the classic algorithms. ) )
Next, we look into the results we obtained in the sec-

ond stage of our experiments, where we trained networks
jointly with different proportion of automatically generated
labels, and 40 pcs of manual labels). As Table 5, and also
the corresponding DET (Detection Error Trade-off) curves
in Figure 1 illustrate, training networks jointly with labels
generated by MC algorithm and the manual labels signif-
icantly improves the networks performance. Furthermore,
the networks’ performance continuously increases with in-
creasing the quantity of training labels (up to a certain sat-
uration point). Note that this behavior is only observed for
SegNet on manual labels. The most interesting results are

200 pcs |0.32 0.60 092 [0.28 037 1.57 |1.43 245 5.64
160 pcs |0.51 1.20 5.18 |0.28 0.69 1.29 [1.34 231 3.42
120 pes |0.41 0.64 1.25 |0.36 0.69 1.11 [0.73 1.66 291
80pcs 041 055 0.78 [{047 097 1.25 |1.15 347 09.12
40 pcs 125 138 2.17 |1.43 2.50 1291 |4.44 12.96 16.80

Table 5: Networks’ performance, trained with different
number of labels generated by MC algorithm.

obtained by RefineNet, when trained with sufficient (160,
200) pcs of training samples, scoring: 0.28, 0.37, 1.57, and
0.28, 0.69, 1.29, in ERR, FMR, and ZFMR parameter re-
spectively. These results clearly outperforms the best clas-
sical algorithms results (obtained by MC algorithm) in all
terms (see Table 4). Likewise, Unet outperforms MC algo-
rithm (and all other algorithms) when trained with 200 pcs
of automatically generated labels, while generally outper-
forms GF, RLT, and DTFP algorithms when trained with
more than 40 labels. SegNet outperforms GF, RLT, and
DTFP algorithms when trained with 120 labels, while in-
creasing the number of training labels for this network (up
to 180 pcs) generally erodes its performance.

As Table 6 shows, the results for training networks
jointly with labels generated by GF algorithm and the man-
ual labels shows just limited improvements (i.e. SegNet
trained with 160 or more pcs of automatically generated
labels), as compared to those obtained when training net-
works jointly with labels generated by MC algorithm and
the manual labels (see Table 5, and the corresponding DET
curves in Figure 1 for more details). Nevertheless, Unet
and SegNet outperform the GF, RLT, and DTFP algorithms
when trained with distinct number (i.e. 80, 16 receptively)
of GF labels, and RefineNet only outperforms the RLT al-
gorithm when trained with 80 pcs of this type of labels.

| Networks| Unet |  RefineNet | SegNet |
|Labels |EER FMR ZFMR|EER FMR ZFMR |EER FMR ZFMR |
200pes [0.79 273 379 |2.13 504 875 [1.20 2.68 555
160pes |1.02 3.14 1277 |2.77 6.85 10.13 |0.78 259 5.74

120 pes  |3.33 64.30 95.23 [3.74 9.35 12.08 |1.47 337 5.60
80 pcs 0.74 2.08 6.71 |1.84 5.00 833 |221 6.25 12.82
40 pcs 1.61 356 6.15 |236 4.07 7.50 |6.57 12.31 17.31

Table 6: Networks performance, trained with different num-
ber of labels generated by GF algorithm.

Similarly, as it can be seen in Table 7, training networks
jointly with labels generated by RLT algorithm and man-
ual labels just results in limited improvement in SegNet’s
preference (when trained with 160 or more pcs of automat-
ically generated labels), as compared to the results in Table
5. However, comparing the results to those obtained when
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Figure 1: DET curves for: Unet (left column), RefineNet (middle column), and SegNet(right column) networks, trained whit
automatically generated labels using: MC (first row), GF (second row), and RLT (third row) algorithms.

‘ Networks ‘ Unet ‘ RefineNet ‘ SegNet ‘
|Labels |EER FMR ZFMR|EER FMR ZFMR|EER FMR ZFMR|
200pes [2.09 11.62 24.86 [1.10 2.82 3.75 [ 129 3.00 7.59
160 pes |2.45 1578 23.33 |1.61 3.05 5.00 | 129 3.14 6.48
120pes [116 546 11.20 [0.78 1.89 351 | 143 351 5.69
80pes 236 1495 35.09 |1.38 3.00 4.90 | 4.87 1231 19.02
40pes  |1.57 8.61 17.96 |1.80 3.47 620 |13.41 3523 43.19

Table 7: Networks’ performance, trained with different
number of labels generated by RLT algorithm.

training networks jointly with labels generated by GF algo-
rithm and manual labels (Table 6), interestingly we can ob-
serve that, while RefineNet gains up to 50% improvement,
yet Unet suffers a considerable degradation up to the same
order of magnitude. This is mostly due to the effect of la-
bels quality (accuracy) and the architectural specifications
of the networks, which will be discussed later in section 6.

6. Discussion

When analyzing our results, the first issue to be dis-
cussed is the quality/accuracy of the manual labels (see Fig-
ure (2b) for an example). Human annotators have been in-

structed to only annotate vein pixels without any ambiguity
in order to avoid false positive annotations. Thus, manual
labels are restricted to rather large scale vessels, while fine
grained vasculature is entirely missed/avoided. The corre-
spondingly segmented vein patterns are rather sparse and it
may be conjectured that these patterns simply do not contain
sufficiently high entropy to facilitate high accuracy recogni-
tion. In contrast, more accurate labels such as MC labels,
and their corresponding outputs of CNNs trained with these
labels, exhibit much more fine grained vasculature details,
reflected in much better recognition accuracy.

As reflected in the tables, the performance of the net-
works is quite different using a changing number of man-
ual training labels. RefineNet maintains a certain level of
performance almost in all cases and seems to stay invariant
with respect to the quantity of the training labels. The net-
work converges well and exhibits its optimal performance
even with a limited number of (5) manual training labels.
Nonetheless, the network’s capability to learn the target pat-
tern significantly improves in case of introducing a higher
quantity of more precise labels (i.e. MC labels). This seems
to be owed to the multi-path refinement architecture used in
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Figure 2: Sample finger-vein image (2a), its manual ground-truth (2b), and the corresponding automatically generated labels
using: MC (2¢), GF (2d), and RLT (2e) algorithms, along with outputs of RefineNet when trained with manual (2f), and in

joint with these lables (2g), (2h), (2i) respectively.

this network, which exploits the information available all
along the down-sampling process to enable high-resolution
prediction, emphasizing on preservation of veins’ edges and
boundaries, and thus retaining the veins’ main structure.

Unet’s architecture is designed to converge fast with a
limited number of training labels. When trained with pre-
cise labels (i.e. MC labels), this network is able to deal
well with the ambiguous boundary issue between vein and
non-vein regions in finger-vein images. The network bene-
fits from the large number of feature channels built into its
architecture, which allow for propagating key context infor-
mation to higher resolution layers. However, such an archi-
tecture seems to be very sensitive to the quality of the input
images. A simple comparison of the very different results
obtained by this network when trained with labels generated
by MC, and RLT algorithms underpins this fact clearly.

SegNet enjoys a stable (however not optimal) perfor-
mance, reflecting the network’s ability to deal with low
quality training labels (i.e. RLT labels). Meanwhile, the
network’s performance considerably improves by introduc-
ing actual vein pixel labels, and removing outliers (non-vein
pixels) using automatically generated labels. This ability
of the network is mainly owed to the up-sampling mecha-
nism used in this network, which uses max-pooling indices
from the corresponding encoder feature maps to generate
the up-sampled feature maps without learning. Neverthe-
less, the network seems to be comparably more sensitive
to the quantity of the training labels, and regardless of the
quality of the input labels, requires a minimum of 60 to 120
labels to converge to its optimal performance.

7. Conclusion

In the context of training three different FCN architec-
tures, utilizing a varying number of manual and additional
automatically generated labels, we have found that results
vary significantly among the different networks. First, the
number of required training labels is highly network archi-
tecture dependent and second, only Unet and RefineNet are

able to outperform the best considered classical recogni-
tion technique (MC). We have demonstrated that using auto-
matically generated labels in training in addition to manual
ones can significantly improve the networks’ performance
in terms of achieved recognition accuracy and only in this
configuration clearly outperforms classical feature extrac-
tion schemes. Furthermore, we observed that the quality of
training labels has a significant impact, also when compar-
ing the usage of different automatically generated labels.
In future works we will assess the strategy to use labels
generated by different automated feature extraction tech-
niques in a single training process. Also, an evaluation
of cross-vessel type (using training data of different vessel
types, e.g. retinal vasculature) training will be conducted.
Finally, we will look into augmentation techniques specifi-
cally tailored to the observed problem with the manual la-
bels, i.e. scaling the data to model finer vessel structures.
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