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Iris Segmentation Using Fully Convolutional
Encoder-Decoder Networks

Ehsaneddin Jalilian and Andreas Uhl

Abstract As a considerable breakthrough in artificial intelligence, deep learning has
gained great success in resolving key computer vision challenges. Accurate segmen-
tation of the iris region in the eye image plays a vital role in efficient performance
of iris recognition systems, as one of the most reliable systems used for biometric
identification. In this chapter, as the first contribution, we consider the application of
Fully Convolutional Encoder-Decoder Networks (FCEDNs) for iris segmentation.
To this extent, we utilize three types of FCEDN architectures for segmentation of
the iris in the images, obtained from five different datasets, acquired under different
scenarios. Subsequently, we conduct performance analysis, evaluation, and compar-
ison of these three networks for iris segmentation. Furthermore, and as the second
contribution, in order to subsidize the true evaluation of the proposed networks, we
apply a selection of conventional (non-CNN) iris segmentation algorithms on the
same datasets, and similarly evaluate their performances. The results then get com-
pared against those obtained from the FCEDNs. Based on the results, the proposed
networks achieve superior performance over all other algorithms, on all datasets.

1 Introduction

Deep learning techniques and convolutional neural networks (CNNs), in specific,
are driving advances in artificial intelligence, as powerful visual recognition, clas-
sification and segmentation tools. Iris recognition is one of the most reliable and
accurate biometric technologies used for human identification and authentication.
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The iris encloses many unique features, which make it a good candidate for dis-
tinguishing one person from another. Primary, the trabecular meshwork of the iris
tissue is not genetically influenced during its development, has in excess of ”266
degrees of freedom,” [6] and it is protected behind the eyelid, cornea and aqueous
humour. Like any other biometrics system, the performance of iris recognition sys-
tems is highly depended on the accurate segmentation of the target region (iris) from
the rest of image [31] [51]. And, to a great extent, the success or failure of the entire
iris recognition system is considered to be directly dependent on the precision of
this stage [5] [16].

1.1 Conventional (non-CNN) Iris Segmentation Methods

Over the past decades, a lot of conventional (non-CCN) methods are proposed for
iris segmentation. A quick review of related literatures unveils a significant number
of these methods, which in turn enjoy versatile capabilities in iris segmentation [26]
[44] [50] [7] [36] [47] [1]. In general, segmentation methods can be roughly clas-
sified into two main categories: contour-based methods and texture-based methods.
The most well known contour-based methods are based on integro-differential op-
erators [8], and Hough transforms [49]. The principles of integro-differential algo-
rithms are based on search to find the largest difference of intensity over a parameter
space, which normally corresponds to pupil and iris boundaries. Hough transform
methods, however, try to find optimal circle parameters by exploring binary edge
maps.

Performance of these methods is highly dependent on the images’ clear contour
and the boundary contrast. Often, in normal conditions, limbic or pupillary bound-
aries in the images are of low-contrast, or may be of non-circular shape. In addition,
the occlusions and specular reflections may introduce further contrast defects to the
images. While plenty of improvement such as: occlusion detection [21] [18], circle
model improvement [45] [29], deformation correction [10], noise reduction [23],
boundary fitting [47], and many further methods are introduced to compensate for
such defects, yet due to their global approach in segmentation, the performance of
these methods can be undermined by these defects, or even in some cases, they may
result in total failure of system.

On the other hand, texture-based methods exploit the individual pixel’s visual
aspects information, such as intensity, color, etc to classify the iris pixels from the
rest of image. The most promising methods in this category use some commonly
known pixel-wise image classifiers such as: support vector machines (SVMs) [39],
Neural networks [4], and Gabor filters [34] to classify iris pixels from the rest of im-
age. In spite of the efforts to improve the performance of these group of algorithms
[26] [43], yet these methods similarly suffer from the same group of defects such as
diffusion, reflection, and occlusion.
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1.2 Convolutional Neural Networks (CNNs) for Segmentation

Convolutional neural networks (CNNs) have dramatically improved the state of the
art in many image interpretation and analysis tasks, such as image segmentation
and classification, since their early introduction [25] [24]. The principle of convo-
lutional neural networks is based on hierarchical explanatory factors, where higher
level, more abstract, concepts are learned from the lower level ones, with the help
of convolutional operators. Assuming Ai j as the data vector at location (i, j) in a
particular layer, and Bi j for the following layer, the output Bi j is computed as:

Bi j = fαβ ({Aβi+δi,β j+δ j} 0≤ i, j ≤ α)

where α is the convolutional kernel size, β is the stride or sub-sampling factor,
and fαβ specifies the layer type. As already mentioned, the core building blocks
of CNNs are the convolutional layers (Conv). The convolutional layers’ parameters
consist of a set of learnable filters. Each filter convolves the input volume and com-
putes the dot product between the entries of the filter and the input at any position,
and produces an activation map that gives the responses of that filter at every spatial
position. The output of this layer then can be further processed by additional layers
such as: non-linear down-sampling layer (Pool), non-saturating activation function
layer (ReLU), and further layers depending on the networks’ architectures. All to-
gether these layers form the networks’ encoder compartment. In addition to the
encoding compartment, each network includes a decoding mechanism, in which the
main task of labelling is performed, and the network’s output is delivered as the
classification scores.

The initial versions of convolutional neural networks were developed for clas-
sification tasks, where the networks’ output was a single class label [41] [22]. In
this type of networks, usually a fully-connected layer (FC), as an inner-product
function, was used to generate the classification scores. However, in many image
processing tasks, as in iris segmentation, pixel-wise labelling of the region of inter-
est was required. Prior approaches for pixel-wise segmentation used convents [15]
[14]. In more recent CNNs’ architectures, including the Fully Convolutional Neu-
ral Networks (FCNNs), usually a learnable upsampling layer (Upsample) is used
to retrieve the feature maps, and then a softmax layer (Softmax), which normally
computes the multinomial logistic loss of the softmax of its inputs, is employed
to generate the classification scores. There exist various methods for enabling such
upsampling mechanism [30] [46].

In Convolutional Encoder-Decoder Networks (CEDNs) the encoding mecha-
nism, already explained, is repeated in the reverse mode to upsample the low resolu-
tion output maps of the encoder network to full input resolution features of the input
volume. Likewise, various methods are proposed for the upsampling mechanism in
this type of networks. While some used switch codes to remap the features [32],
others, like Ronneberger et al. [40], simply used cropped feature concatenation to
generate the upsampled maps. In addition to using a primitive approach for upsam-
pling, the network proposed by Ronneberger et al. is not fully convolutional, as the
input and the output volumes do not match. The proposed mechanism to retrieve the
full input volume (Overlap-tile) affects the training process anyway, and introduces
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further pre and post processing work load. The idea of using max-pooling indices
from the corresponding encoder feature maps to generate the upsampled feature
maps in the decoder network, ”without learning,” and then convolving with train-
able filter banks, is recently proposed in a work by Badrinarayanan et al. [2]. The
key leverage of applying such technique is improving the boundary delineation and
preserving the edges with more precision.

2 CNNs in Iris Recognition

Nevertheless, when it comes to the application of deep learning techniques for iris
segmentation, to the best of our knowledge, there exists only one proposal work
on application of convolutional neural networks for iris segmentation. In [27] au-
thors proposed two CNN-based iris segmentation models, namely: Hierarchical
convolutional neural network (HCNN), and multi-scale fully convolutional net-
work (MFCN). The former network is a simple CNN network composed of three
blocks of alternative Conv and Pool layers, whose outputs are fed directly into a
FC layer. The latter network includes six blocks of interconnected alternative Conv
and Pool layers, whose outputs are simply fused through a single multiplication
layer and then fed into a Softmax layer. The proposed networks are used for seg-
menting noisy-distanced iris images acquired from the Ubiris.v2 1, and the Casia-
distance-v4 databases 2. Authors used a subset (500 and 400 images respectively)
of these two databases. For the evaluation, authors referenced average error rates
from other works, without carrying out direct experimental analysis on the same
databases. Therefore, their results have to be considered with care, when it comes to
the fair evaluation of segmentation accuracy. The ground-truth masks for the second
database are manually labelled by the authors.

In [13], authors introduced two convolutional neural networks for iris recogni-
tion. But, these are proposed for ”iris representation,” not for segmentation. The
networks are named ”DeepIrisNet-A,” which is based on the standard convolutional
layers, and ”DeepIrisNet-B,” which uses a stack of so called ”inception layers”.
Based on the results, the networks can model the micro-structures of iris well, and
primarily outperform strong baseline based on descriptor and generalize well to new
datasets.

In [35], authors used deep sparse filtering technique for iris feature extraction
in a smart-phone based visible iris recognition system. In this work two layers of
sparse filters are trained with 256 filters, with 16× 16 kernels, to generate the fea-
ture maps. The final feature vector is formed by concatenating the histograms of
these feature maps. They tested their system on many smart-phones and, depend-
ing on the smart-phone type, achieved different levels of accuracies. In [28] authors

1 Soft Computing and Image Analysis Lab, Univ. of Beira Interior, UBIRIS.v2 Dataset, see
http://iris.di.ubi.pt/ubiris1.html
2 The Center of Biometrics and Security Research, CASIA Iris Image Database, see
http://biometrics.idealtest.org
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proposed a CNN, called ”DeepIris,” for heterogeneous iris verification, which learns
relational features to measure the similarity between pairs of iris images. The net-
work’s architecture includes a pairwise filter layer, and a stock of alternative Pool,
Conv, and Normalization (NR) layers, to generate a similarity map between two
input images. The similarity measure is calculated as a scores with help of a FC
layer at the end. Their results show that the proposed method achieves promising
performance for both cross-resolution and cross-sensor iris verification.

3 A Fully Convolutional Encoder-Decoder Network

The architecture of the FCEDN networks used by us is similar to the work by Badri-
narayanan et al. [2]. However, here we redesigned the Softmax layer to classify the
outputs only into two classes (iris, and non-iris). Basically, this architecture proposes
a fully convolutional encoder-decoder network, representing a core segmentation
engine for pixel-wise semantic segmentation [2].

The core segmentation engine includes a 44-layered encoder network, and the
corresponding decoder network. The encoder network’s architecture is organized
in five stocks. Each stock is comprised of a set of blocks, whose architectures are
formed by a Conv layer, which convolves the input image with a kernel to produce
the inputs’ feature maps, followed by a batch normalized layer (BN), to normalize
the layer input and avoid the ”internal covariate shift” [19], and an element-wise
rectified-linear non-linearity layer (ReLU), as an activation function. The blocks
then end up in a Pool layer (with a 2×2 window and stride 2), which applies non-
linear down-sampling to the input and achieves translation invariance over small
spatial shifts. While applying several Pool layers can help to obtain robust trans-
lation invariance, yet applying each layer leads to the loss of spatial resolution,
specially in the boundary regions. This issue is resolved by storing max-pooling
indices, which are latter used for up-sampling in the decoding network, in these
networks.

The corresponding decoder network, likewise, has a 44-layered structure, which
encompasses five stocks. Similarly, each stock is comprised of a set of blocks, whose
architectures are formed from an Upsample layer, and trainable banks of decoder
filters, including Conv, BN and ReLU layers, to generate the dense feature maps.
As already specified, the Upsample layer uses max-pooling indices from the corre-
sponding encoder feature maps to generate the up-sampled feature maps, without
learning and then the filter banks convolve the maps. Finally, the results are fed into
a trainable Softmax layer (SoftmaxWithLoss). The Softmax layer classifies each
pixel independently, so that the output of this layer is a N channel image of prob-
abilities, where N is the number of classes. The output segmentation corresponds
to the class with highest probability at each pixel. Applying this technique directly
results in improvement of the boundary delineations and preservation of the edges.
At the same time, this technique reduces the number of parameters, enabling end-
to-end training.
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3.1 Basic Variant

As we specified in the previous section, the overall structure of the network is or-
ganized as set of blocks, which in fact represent the network’s learning units. Such
a distinct unified structure expedites the modification of the Original network’s ar-
chitecture to best fit the required segmentation tasks. To this extent, and with the
primary goal of facilitating the network analysis, an abstract variation of the Origi-
nal network called ”Basic” was introduced [2]. Using such an abstract architecture
enables us to evaluate the effect of using less learning, and as the result, less con-
volutional and down-sampling units in the segmentation process. At the same time,
such an architecture can offer faster and less computational expensive segmenta-
tion capabilities also. The overall network architecture, similarly, is composed of
an encoder and the corresponding decoder networks. The encoder comprises four
stocks, whose structures are similar to the Original network’s blocks, incorporating
Conv, BN , ReLU, and Pool layers. The decoder network’s blocks, as well, include
Upsample, Conv, and BN layers. The decoder network finally ends up to a Soft-
maxWithloss layer.

3.2 Bayesian Variant

As another extension to the Original network, and as an attempt to propose a prob-
abilistic pixel-wise segmentation model based on the deep learning technique, an-
other variation of the Original network called ”Baysian” was developed [20]. This
network enables the probabilistic pixel-wise segmentation using Monte-Carlo sam-
pling and the drop-out technique [42] [12]. The aim here is to find the posterior
distribution over the convolutional weights w, given the observed training data x
and the labels z.

p(w|x,z)

In practice, such a posterior distribution can only be approximated, for example,
with variational inference techniques, such as minimization of the Kullback-Leibler
(kl) divergence between the desired approximated distribution and the full posterior
distribution [9].

kl(q(w) || p(w|x,z))

Gal et al. [11] have already shown that minimizing the cross entropy loss objec-
tive function pretends to minimizing the Kullback-Leibler divergence term. Accord-
ingly, they have proved that training neural networks with the stochastic gradient
descent will promote the model to learn the distribution of weights, while avoiding
over-fitting. Using the same technique, the overall architecture for the ”Bayesian-
Basic” network would be the same as the Basic network, except for this network
includes extra drop-out layers, which are added to the two last blocks of the en-
coder, and the first two blocks of the decoder networks, as demonstrated in figure 1.
Using this architecture, the posterior distribution over the weights would be sampled
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at the test time to generate the distribution of softmax class probabilities. The mean
of this samples are taken for the segmentation prediction, and the variance is used to
output the model uncertainty for each class. Monte-Carlo sampling is used for this
purpose as it enables the qualitative understanding of the model uncertainty.

Fig. 1 Architectural difference of the third block in the Bayesian-Basic (up), and the Basic (down)
networks (Images are generated using Caffe framework)

4 Experimental Framework

The main objective of this research is the application of FCEDNs for iris segmenta-
tion, and subsequently, providing evaluation and analysis of these networks’ perfor-
mance for different scenarios. For these purpose, after design and implementation
of networks, each network was run on five different iris datasets, containing images
acquired under different scenarios. The detailed specifications of these datasets are
discussed in section 4.1. The segmentation capability of each network then was
evaluated and analysed with the help of three different segmentation scores, whose
details are specified in section 4.2. Next, in order to facilitate true assessment of
the performance of networks for iris segmentation, a collection of conventional iris
segmentation algorithms, whose details are specified in section 6, got run on the
same datasets’ testing subsets, and their corresponding performance analysis and
evaluation was presented, and compared against those of the FCEDNs.
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4.1 Datasets

In this work we have selected five well known iris datasets. The datasets were se-
lected to include versatile iris image acquisition scenarios. The Notredame dataset
(subset of ND-Iris-0405 database 3) includes 835 iris images of 30 different sub-
jects. The image acquisition was done in near-infrared spectrum, in an indoor en-
vironment, with the LG 2200 iris biometric system. For our experiments we used
670 images (24 subjects) for the training, and 165 images (6 subjects) for the test-
ing of the networks. The Casia-iris-interval-v4 dataset 4 contains a total of 2640 iris
images belonging to 249 subjects. Images are acquired under near-infrared illumi-
nation, with a close-up iris camera. For our experiments 1307 instances of the right
eye images were used, out of which 1045 images (192 subjects) were used for the
training, and 262 image (57 subjects) were used for the testing of the networks.

The IITD database 5 consists 1120 iris images corresponding to 224 subjects. All
these images are acquired in the indoor environment, with the Jiris, Jpc1000 digi-
tal CMOS camera in near-infrared spectrum. For our experiments 900 images (180
subjects) were used for the training, and 220 images (44 subjects) were used for the
testing of the networks. The Ubiris dataset (subset of the Ubiris.v2 database) con-
tains 2250 iris images, from 100 different subjects. The images were acquired with
a Nikon E5700 camera and splitted into two parts. The first part includes iris images
taken under controlled condition, simulating the enrolment stage. The second part
includes iris images which are captured under real-world setup, with natural lumi-
nosity corresponding heterogeneity in reflections, contrast and focus. The dataset
also contains off-angle iris images captured from various distances with occlusions.
For our experiments we used 2055 images of this dataset for the training and 225
images for the testing of the networks.

And finally, the Casia-iris-ageing-v5 dataset 6 contains 120 images per eye and
user from video sequences captured in 2009, and 20 images per eye and user from
video sequences captured in 2013. For our experiments we used total of 1880 im-
ages of both eyes of 94 users from both sessions. Out of that, 1500 images of 75
users were used for the training, and 380 images, corresponding to 19 users, were
used for the testing of the networks. Special attention should be paid to the fact that
the selection of the datasets was subject to availability of the ground-truth masks re-
quired for the training process. For this work the ground-truth masks were acquired
from the Irisseg-ep database provided by WaveLab of the University of Salzburg
[17]. The selection of the training and testing subsets followed the Pareto principle,
where of total instances, approximately 80% of the data was used for training and
20% for testing, while subjects are not overlapped, and no instances are included in

3 Computer Vision Research Lab, Univ. of Notre Dame, Iris Dataset 0405, see
https://sites.google.com/a/nd.edu/public-cvrl/data-sets
4 The Center of Biometrics and Security Research, CASIA Iris Image Database, see
http://biometrics.idealtest.org
5 Indian Institute of Technology Delhi, IIT Delhi Iris Database, see
http://www4.comp.polyu.edu.hk/ csajaykr/database.php
6 see http://www.biometrics.idealtest.org
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other’s set. Also in order to maintain fair spatial input to the networks, images in all
datasets was resized to 480×360.

4.2 Metrics and Measurements

In order to facilitate holistic statistical analysis and proper assessment of the capabil-
ities of the FCEDNs and the other conventional algorithms on iris segmentation, we
have considered a set of evaluation metrics, which cover key segmentation measures
such as: true positives (t p), false negatives ( f n), and false positive ( f p). To this ex-
tent, primarily the NICE.I protocol, which is widely accepted for evaluation of iris
segmentation accuracy, got adapted. The segmentation error score nice1 calculates
the proportion of corresponding disagreeing pixels (by the logical exclusive-or op-
erator) over all the image as follows

nice1 =
1

c× r ∑
c′

∑
r′

O(c
′
,r
′
)⊗C(c

′
,r
′
) (1)

where c and r are the columns and rows of the segmentation masks, and O(c′,r′)
and C(c′,r′) are, respectively, pixels of the output and the ground-truth mask. The
second segmentation error score intends to compensate the disproportion between
the priori probabilities of iris and non-iris pixels in the images. The type-I and type-
II error score nice2 averages between the ( f p) and ( f n) rates as follow

nice2 =
1
2
( f p+ f n) (2)

The values of nice1 and nice2 are bounded in the [0, 1] interval, and in this con-
text, 1 and 0 are respectively the worst and the optimal values. Additionally, in order
to provide comprehensive synopsis of the networks’ performances, three more stan-
dard measures of segmentation accuracy were considered, namely: precision, recall,
and f1 measure, which are well known measures in the field of information retrieval
[38]. Precision gives the percentage of retrieved iris pixels which are correctly seg-
mented as follow

p =
t p

t p+ f p
(3)

Alternatively, recall provides the same measure using false-negatives as follow

r =
t p

t p+ f n
(4)

Last but not least, the f1 measure is the harmonic mean of p and r, and is calcu-
lated as follow

f 1 =
2rp

r+ p
(5)
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The values for these three measures are bounded in the [1, 0] interval, and in this
context, 0 and 1 are the worst and the optimal values respectively.

4.3 Network Implementation

In the first step, we implemented the FCEDNs on the ”Caffe” deep learning frame-
work. Caffe is one of the most favourited deep learning frameworks, which at its
core, is written in c++. Models and optimizations are defined by configuration with-
out hard-coding, which in turn accelerate the training and testing process. Switching
between CPU and GPU can be done just by setting a single flag, and the interface
is extensible to python (Pycaffe) and matlab (Matcaffe). Network architecture is de-
fined in separate ”prototxt” files, and training and testing parameters are defined in
another similar file called ”solver”. The prototxt files get loaded during the training
and testing using caffe commands.

Table 1 Architecture and Specification of the Original Encoder(left)-Decoder(right) Network

Layer Information Layer Layer Layer Information Layer Layer

Convolution Output Batch-Normalization ReLU Convolution Output Batch-Normalization ReLU

Conv1-1 64 Conv1-1-b Rlu1-1 Conv5-3-D 512 Conv5-3-D-b Rlu5-3-D-b

Conv1-2 64 Conv1-2-b Rlu1-2 Conv5-2-D 512 Conv5-2-D-b Rlu5-2-D-b

Conv2-1 128 Conv2-1-b Rlu2-1 Conv5-1-D 512 Conv5-1-D-b Rlu5-1-D-b

Conv2-2 128 Conv2-2-b Rlu2-2 Conv4-3-D 512 Conv4-3-D-b Rlu4-3-D-b

Conv3-1 256 Conv3-1-b Rlu3-1 Conv4-2-D 512 Conv4-2-D-b Rlu4-2-D-b

Conv3-2 256 Conv3-2-b Rlu3-2 Conv4-1-D 256 Conv4-1-D-b Rlu4-1-D-b

Conv3-3 256 Conv3-3-b Rlu3-3 Conv3-3-D 256 Conv3-3-D-b Rlu3-3-D-b

Conv4-1 512 Conv4-1-b Rlu4-1 Conv3-2-D 256 Conv3-2-D-b Rlu3-2-D-b

Conv4-2 512 Conv4-2-b Rlu4-2 Conv3-1-D 128 Conv3-1-D-b Rlu3-1-D-b

Conv4-3 512 Conv4-3-b Rlu4-3 Conv2-2-D 128 Conv2-2-D-b Rlu2-2-D-b

Conv5-1 512 Conv5-1-b Rlu5-1 Conv2-1-D 64 Conv2-1-D-b Rlu2-1-D-b

Conv5-2 512 Conv5-2-b Rlu5-2 Conv1-2-D 64 Conv1-2-D-b Rlu1-2-D-b

Conv5-3 512 Conv5-3-b Rlu5-3 Conv1-1-D 2 Conv1-1-D-b

Pooling Stride Kernel Size Upsample Width Height Scale

Pool1 2 2 Upsamp5 30 23 2

Pool2 2 2 Upsamp4 60 45 2

Pool3 2 2 Upsamp3 - - 2

Pool4 2 2 Upsamp2 - - 2

Pool5 2 2 Upsamp1 - - 2
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Table 2 Architecture and Specification of the Basic Encoder(left)-Decoder(right) Network

Layer Information Layer Layer Layer Information Layer

Convolution Output Batch-Normalization ReLU Convolution Output Batch-Normalization

Conv1 64 Conv1-b Relu1 Conv4-D 64 Conv4-D-b

Conv2 64 Conv2-b Relu2 Conv3-D 64 Conv3-D-b

Conv3 64 Conv3-b Relu3 Conv2-D 64 Conv2-D-b

Conv4 64 Conv4-b Relu4 Conv1-D 64 Conv1-D-b

ConvC-D 2

Pooling Stride Kernel Size Upsample Scale

pool1 2 2 Upsamp4 2

pool2 2 2 Upsamp3 2

pool3 2 2 Upsamp2 2

pool4 2 2 Upsamp1 2

Architectural implementation and the technical specification for the Original, Ba-
sic, and Bayesian-Basic networks are presented in Tables 1, 2, and 3 respectively.
The convolutional kernel size for the Original network was set to 3×3, and in order
to provide a wide context for smooth labelling, this value was set to 7× 7 for both
of the Basic networks.

Table 3 Architecture and Specification of the Bayesian-Basic Encoder(left)-Decoder(right) Net-
work

Layer Information Layer Layer Layer Information Layer

Convolution Output Batch-Normalization ReLU Convolution Output Batch-Normalization

Conv1 64 Conv1-b Relu1 Conv4-D 64 Conv4-D-b

Conv2 64 Conv2-b Relu2 Conv3-D 64 Conv3-D-b

Conv3 64 Conv3-b Relu3 Conv2-D 64 Conv2-D-b

Conv4 64 Conv4-b Relu4 Conv1-D 64 Conv1-D-b

ConvC-D 2

Pooling Stride Kernel Size Upsample Scale

pool1 2 2 Upsamp4 2

pool2 2 2 Upsamp3 2

pool3 2 2 Upsamp2 2

pool4 2 2 Upsamp1 2

Drop-out Ratio Drop-out Ratio

encdrop3 0.5 D-drop4 0.5

encdrop4 0.5 D-drop3 0.5
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We trained our networks by Stochastic Gradient Descent (SGD) back propaga-
tion algorithm:

Ut+1 = µUt −α∇L(W ) (6)

Wt+1 =Wt +Ut+1 (7)

Formally, at each iteration t + 1 the SGD algorithm computes the update value
Ut+1 and the updated weights Wt+1, given the previous weight update Ut and current
weights Wt . The algorithm updates the weights W by linear combination of the neg-
ative gradient ∇L(W ) and the previous weight update Ut . The learning rate α is the
weight of the negative gradient, and the momentum µ is the weight of the previous
update.

For our experiments, the momentum value for the SGD algorithm was set to
0.9. In order to investigate the networks’ training process, we have considered two
learning rates for the different variations of the networks. For the Original network
the learning rate was set to 0.001, and for the Basic networks this value was set
to 0.1. The learning rates are set optimally based on the work by Badrinarayanan
et al. [2]. The direct effect of such a small learning rate is slow but more stable
convergence of the network.

Fig. 2 Overall loss value in the first 4000 iterations of the training process for the Original (up),
and the Basic (down) architectures on different datasets

Figure 2 clearly illustrates this effect on these two network architectures during
the training process. Table 4 summarizes the training parameters, which were set in
the solver files. The setting criteria for these parameters is investigated in the work
of Leon Bottou in this regard [3].
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Table 4 Solver Parameters for the Networks
Parameter Original Bayesian-Basic Basic
Iterations 10000 10000 10000
Momentum 0.9 0.9 0.9
Learning Rate 0.001 0.1 0.1

In our experiments the networks were trained per single image till the conver-
gence point, where the overall loss for both segmentation classes decreased to less
than 4%.

5 The First Segmentation Experiment Results

We have presented the segmentation results of the FCEDNs in Table 5 and Table
6, as average segmentation scores per iris dataset, and per network respectively. As
Table 5 demonstrates, the best results are obtained on the Notredame and the Ca-
sia5a datasets, and the worst ones on the Ubiris dataset. This is simply due to the
difficulty level of these datasets. On the other hand, as it can be seen in Table 6, the
Bayesian-Basic network outperforms the other two networks, with lower (mean)
µnice1, µnice2 and higher µf1 scores (0.0316, 0.0571, and 0.8985 respectively),
on overall datasets. This is directly due to the probabilistic technique used in this
network, and the results clearly endorse the enhanced segmentation capability of
the Basic network after applying this technique. The Basic network has compara-
tively moderate performance on the iris datasets with mean sores of 0.0321, 0.0616,
and 0.8905 for µnice1, µnice2, and µf1 respectively. This is principally due to the
simple structure of this network, which relays on the appearance information from
shallow, fine layers to produce segmentations.

Table 5 Average FCEDNs’ Segmentation Scores per Dataset

FCEDN Dataset nice1 nice2 f1

Original

iitd
notredame
casia4i
ubiris
casia5a

0.0591
0.0213
0.0561
0.0342
0.0160

0.0659
0.0424
0.0588
0.1249
0.0420

0.8661
0.8617
0.8826
0.7691
0.8951

Basic

iitd
notredame
casia4i
ubiris
casia5a

0.0539
0.0107
0.0448
0.0423
0.0086

0.0594
0.0269
0.0438
0.1517
0.0261

0.8892
0.9351
0.9072
0.7700
0.9510

Bayesian-Basic

iitd
notredame
casia4i
ubiris
casia5a

0.0682
0.0095
0.0391
0.0306
0.0105

0.0701
0.0282
0.0407
0.1116
0.0351

0.8489
0.9426
0.9192
0.8407
0.9413
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Table 6 Average FCEDNs Segmentation Scores per Network

FCEDN µ nice1 µ nice2 µ f1
Bayesian-Basic 0.0316 0.0571 0.8985
Basic 0.0321 0.0616 0.8905
Original 0.0373 0.0668 0.8549

The Original network comes at the end, with mean sores of 0.0373, 0.0668, and
0.8549 for µnice1, µnice2, and µf1 respectively. This is meanly due to the compar-
atively deep structure of this network, which combines semantic information from
deep, coarse layers with appearance information from shallow, fine layers to pro-
duce segmentations.

Fig. 3 The best (b) and the worst (d) performance samples of the Bayesian-Basic network on the
notredame (a) and the ubiris (c) datasets’ samples respectively. And the best (f) and the worst (h)
performance samples of the Basic network on the casia5a (e) and the ubiris (g) datasets’ samples
respectively. And the best (g) and the worst (l) performance samples of the Original network on
the casia5a (i) and the ubiris (k) datasets’ samples respectively

Figure 3 demonstrates the networks’ best and worst performances samples for
different datasets. More detailed performance analysis of the networks for iris seg-
mentation per dataset is presented in figure 4, which provides further statistical in-
formation such as: min, max, median, quantiles, and outliers in the form of Box-
plots. The outliers are classified based on the following mechanism, where q3 and
q1 are the 25th and 75th percentiles of the scores, and w corresponds to approxi-
mately +/−2.7 of the standard deviation (σ): The scores are classified as outlier if
they are greater than Z1 or smaller than Z2.
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Z1 = q3 +w× (q3−q1) (8)

Z2 = q3−w× (q3−q1) (9)

Furthermore, in order to assess how well the segmentation results generalize to
the entire datasets, we trained and subsequently tested the networks on each dataset,
applying the K-Fold cross-validation technique. For this purpose, we partitioned
each dataset into five complementary subsets, and performed the training with four
subsets, and validated the results on the remained subset. Likewise, five rounds of
cross-validation were performed on each dataset separately without overlapping.

Fig. 4 Performance of the FCEDNs per dataset using segmentation errors: nice1 (n1), nice2 (n2),
and f1 (f1)

Fig. 5 Five-Fold cross-validation results on the notredame dataset, demonstrating segmentation
scores nic1, nice2 (left), and f1 (right) per round
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Figure 5 demonstrates the results for the cross-validation per segmentation score
on the Notredame dataset. Table 7 demonstrates the average cross-validation results
for all different datasets. As the results show, the average scores are quiet similar to
those of the one-fold experiments, and while most scores show around 2% differ-
ence, the maximum differences in the scores doe not exceed over 4%.

Table 7 Average cross-validation results for all datasets

Network Original Basic Bayesian-Basic
Dataset nice1 nice2 f1 nice1 nice2 f1 nice1 nice2 f1
Casia5a 0.0135 0.0392 0.9000 0.0197 0.0385 0.9250 0.0112 0.0332 0.9400
Casia4i 0.0415 0.0492 0.9175 0.0330 0.0382 0.9375 0.0412 0.0362 0.9250
Iitd 0.0365 0.0353 0.9400 0.0277 0.0322 0.9510 0.0292 0.0337 0.9500
Notredame 0.0220 0.0655 0.8775 0.0135 0.0387 0.9225 0.0132 0.0367 0.9300
Ubiris 0.0305 0.0898 0.7200 0.0262 0.0687 0.7900 0.0187 0.0675 0.8625

Table 8 Running time, per Segmentation for FCEDNs

FCEDN Original Bayesian-Basic Basic
Running time (s) 18.075 58.661 10.162

Furthermore, we measured the average running time, per segmentation, of dif-
ferent networks for a system with Intel-Xeon E5-1620 3.50GHz cpu, and 32GiB
memory. The results are presented in Table 8 respectively. Basically caffe is not op-
timized for the inlet processors. While based on the developers, using suitable GPUs
and cuDNN, Caffe is considered as the fastest convent implementations available 7.

6 The Second Segmentation Experiment Results

Next, in order to streamline the proper assessment of the capabilities of FCEDNs
for iris segmentation, and to enable the comparative analysis of these networks’ per-
formance, a set of conventional iris segmentation methods (Convs) was considered
to be run on the same datasets’ testing subsets.

Osiris is an open-source iris recognition software, that includes an iris segmenta-
tion algorithm, which uses the Viterbi algorithm on the gradient map of anisotropic
smoothed image for iris segmentaion [33]. Caht (contrast-adjusted hough transform)
[36], Wahet (weighted adaptive Hough and ellipsopolar transform) [47], and Ifpp
(iterative fourier-series push pull) [48] are further open-source iris segmentation al-
gorithms used in this experiment, which are acquired from the Iris-Toolkit package
provided by Wavelab at the University of Salzburg [37]. The performance of these

7 Caffe Deep learning framework, see http://caffe.berkeleyvision.org/
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Table 9 Average Convs’ Segmentation Scores per Dataset

Algorithm Dataset nice1 nice2 f1

Wahet

iitd
notredame
casia4i
ubiris
casia5a

0.1377
0.0248
0.0608
0.2743
0.0248

0.1762
0.0875
0.0842
0.4498
0.0836

0.7337
0.8619
0.8949
0.1977
0.8648

Caht

iitd
notredame
casia4i
ubiris
casia5a

0.1138
0.0361
0.1161
0.1226
0.0369

0.1560
0.1408
0.1470
0.4809
0.1514

0.7767
0.7941
0.7651
0.1048
0.7753

Ifpp

iitd
notredame
casia4i
ubiris
casia5a

0.1142
0.0294
0.1532
0.2379
0.0288

0.1508
0.1113
0.2372
0.3970
0.1123

0.7965
0.8359
0.6278
0.2899
0.8504

Osiris

iitd
notredame
casia4i
ubiris
casia5a

0.0555
0.0131
0.0565
0.1827
0.0181

0.0757
0.0231
0.0673
0.4095
0.0331

0.8817
0.9194
0.8862
0.2328
0.8917

algorithms was evaluated using the same segmentation scores used in the first ex-
periment. The performance results of the conventional algorithms are represented
in Table 9 and Table 10, as average classification score per iris datasets and per
algorithm respectively.

Table 10 Average Convs’ Segmentation Scores per Algorithm

Algorithm µ nice1 µ nice2 µ f1

Osiris 0.0652 0.1217 0.7624

Caht 0.0851 0.2152 0.6432

Wahet 0.1045 0.1763 0.7106

Ifpp 0.1127 0.2017 0.6801

Generally, Osiris tends to underestimate the iris boundaries, as it tries to mask
the obstructions out, leading to high precision but lower recall. However, Wahet
and Caht lean to overestimate the iris boundaries, resulting in higher recall than
precision. The reason for this is that these two algorithms do not utilize eyelid filters.
Similarly, in the Ifpp algorithm, less pronounced boundaries are largely affected by
noise or eyelids. Therefore, the less expressive boundaries are reconstructed from
the more stable ones.

As it can be seem in Table 9 the algorithms perform better on less difficult
datasets such as the Notredame and the Casia5a, while the worst results are obtained
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Table 11 Running time, per Segmentation for Convs

Algorithm Osiris Wahet Caht Ifpp

Running time (s) 0.583 0.602 6.730 0.470

on the Ubiris dataset. In both cases the algorithms’ performance results conform
with the FCEDNs’ results, which endorses the equity of the experimental scheme.
As it can be seen in Table 10 the Osiris algorithm outperforms the other threes, with
lower (mean) µnice1, µnice2 and higher µf1 scores (0.0652, 0.1217, and 0.7624
respectively). Figure 6 provides further statistical information such as: min, max,
median, quantiles, and outliers, about the segmentation performances of these algo-
rithms per dataset in the form of Box-plots. Furthermore, we measured the average
running time, per segmentation, of the conventional algorithms for the system spec-
ified previously. The results are presented in Table 11 respectively.

Fig. 6 Performance of the conventional algorithms per dataset using segmentation errors: nice1
(n1), nice2 (n2), and f1 (f1)

7 Analysis and Discussion

Simple statistical comparison of the segmentation results of the FCEDNs with the
conventional algorithms’ results demonstrates the superiority of the FCEDNs for
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iris segmentation over the other conventional algorithms. As it can be seen in Ta-
ble 6 and Table 10, even the worst FCEDNs’ performance result, which is shown
by the Original network, scoring: 0.0373, 0.0668, and 0.8549 for nice1, nice2, and
f1 respectively, is better then the best conventional algorithms’ result, which is ob-
tained by the Osiris algorithm scoring: 0.0652, 0.1217, and 0.7624 for nice1, nice2,
and f1 respectively. Yet if we consider the best FCEDNs’ result, which is obtained
by the Bayesian-Basic network (0.0316, 0.0571, and 0.8985 for nice1, nice2, and
f1 respectively), the prominence of the proposed FCEDNs over the conventional
algorithms would be consolidated by power of two or three.

The greatest supremacy of the proposed FCEDNs is revealed when analysing the
segmentation results per dataset in Table 5 and 9. As it can be seen in the tables, the
worst segmentation scores for almost all conventional algorithms and FCEDs are
obtained on the Ubiris dataset, which deliberately contains samples of off-angle iris
images recorded from various distances with different types of occlusions, including
glasses. While most conventional algorithms such as Wahet, Caht, and Ifpp even
fail to satisfy the minimum segmentation scores, all FCEDNs demonstrate robust
segmentation capabilities on such a difficult and divergent iris dataset.

This can be easily interpreted from Table 12, which summarizes the segmentation
results of the conventional algorithms along with the FCEDNs on the Ubiris dataset.
A simple visual comparison of the Box-plots for the Ubiris dataset in figure 4 and
6 demonstrates this fact clearly also. Figure 7 displays a sample iris image with
glasses from the Ubiris dataset, along with the corresponding output masks of all
segmentation methods (FCEDNs and Convs).

Table 12 Average Segmentation Scores of all Methods on the Ubiris dataset

Method nice1 nice2 f1

Bayesian-Basic 0.0306 0.1116 0.8407
Original 0.0342 0.1249 0.7691
Basic 0.0423 0.1517 0.7700
Osiris 0.1827 0.4095 0.2328
Caht 0.1226 0.4809 0.1048
Wahet 0.2743 0.4498 0.1977
Ifpp 0.2379 0.3970 0.2899

8 Conclusion

Accurate segmentation of the iris region from the rest of image plays a vital role in
efficient performance of iris recognition systems, and success of the total system is
considered to be directly related to the precision of this stage. In this work we have
presented the application of deep learning techniques and FCEDNs for iris segmen-
tation. To this extent, we applied three types of networks for iris segmentation. The
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Fig. 7 A sample iris image with glasses (a) from the ubiris dataset versus the output segmentation
masks of: Bayesian-Basic (b), Basic (c), Original (d), Caht (e), Wahet (f), Ifpp (g), and Osiris (h)

performance of the networks was tested and evaluated on five different datasets. The
evaluation was carried out using three popular segmentation error scores. Further-
more, in order to streamline proper assessment of the performance of the networks,
we presented statistical analysis and the performance evaluation of four well known
conventional iris segmentation algorithms on the same datasets, and compared the
results against those obtained from the networks. Results demonstrate the superior-
ity of the networks for iris segmentation over all other algorithms. Yet the greatest
supremacy of the proposed networks unveils when dealing with difficult iris images
such as off-angle images recorded from various distances with different types of
occlusions including glasses. In future work we plan to perform more application
specific analysis on these types of networks, and at the same time carry out further
research to optimize their design and architecture, and improve their performance
for different segmentation tasks.
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