
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Topology-Preserving Watermarking of Vector Data

Stefan Huber∗ Martin Held∗ Roland Kwitt† Peter Meerwald∗

Abstract

The embedding of a digital watermark in vector data
results in a perturbation of the vertices which needs to
be constrained in order to maintain geometric prop-
erties of the data. In this paper we investigate the
problem of computing so-called perturbation regions
in which the vertices of a planar straight-line graph
may be dislocated while still preserving the topology
of the input. We propose two different algorithms to
solve this problem and discuss how they can form the
geometric part of a watermarking framework.

1 Introduction

A standard way for watermarking digital data is to
embed imperceptible, yet detectable, information into
a digital signal. Since the watermark is only known to
the embedder, copyright holders can use this technol-
ogy to mark their content in order to prove ownership
by being able to detect the embedded signal.

Most watermarking research has been directed to-
wards techniques applicable to raster data and audio
content. However, complex vector data in computer-
aided design as well as maps and infrastructure data
in geographic information systems, for instance, con-
stitute equally valuable digital assets. When wa-
termarking vector data statistical features are im-
posed by dislocating vertices. Hence, novel geomet-
ric requirements are introduced, while still demand-
ing imperceptibility of the watermark and robustness
against different kinds of attacks. For example, one
needs to guarantee that watermarking does not intro-
duce overlaps among rivers and streets in a map.

Surprisingly, copyright protection of vector data
with distortion constraints has not received much at-
tention. Doncel et al. [2] consider multiple polygonal
chains sharing common vertices, such as the border
of neighboring countries, and discuss how to preserve
connectivity after watermarking. In [6, 7], methods
are proposed that avoid perturbing certain vertices to
preserve the visual appearance of the original data.

In [4] we presented a watermarking framework for
planar straight-line graphs which consists of a geomet-
ric part, a watermarking part and a final correction

∗Universität Salzburg, FB Computerwissenschaften, A-5020
Salzburg, {shuber,held,pmeerw}@cosy.sbg.ac.at. Work was
supported by Austrian FWF Grant L367-N15.
†Kitware Inc., NC, USA, {roland.kwitt@kitware.com}

step, cf. Fig. 1. In this paper we focus on the preser-
vation of the input topology, i.e., on ensuring that

[T1] the numbers of vertices and edges
[T2] all containment relations
[T3] all incidence orders at vertices

remain unchanged, and that
[T4] no intersections are introduced.

We discuss two algorithms for computing a so-called
maximum perturbation region (MPR) for every vertex
such that T1–T4 can be guaranteed: If all vertices
stay within their MPRs after watermarking then the
input topology is guaranteed to be preserved. Once
the MPRs are known, we embed the watermark into
the input data. Since this process need not respect
T2–T4, in a final correction step we use the MPRs
to correct the output of the watermarking step in or-
der to guarantee T1–T4. While the basic idea for
preserving the input topology is simple, the computa-
tional challenge is to efficiently compute MPRs that
are large enough such that the correction step does
not destroy the watermark embedding. Our approach
is general enough to work with any watermarking
method that does not insert or remove vertices or
edges of the input.

2 Maximum perturbation regions

Consider a planar straight-line graph G = (V,E) with
vertex set V := {v1, . . . , vn} and edge set E. The
process of embedding a watermark in G can be in-
terpreted as a transformation of the vertex set V to
a perturbed vertex set V ′ = {v′1, . . . , v′n}. We de-
note the graph given by the perturbed vertex set
by G′ = (V ′, E′) and by E′ the corresponding edge
set of G′. We seek maximum perturbation regions
(MPRs) as regions R1, . . . , Rn, with vi ∈ Ri ⊂ R2,
such that the following property holds: If v′i ∈ Ri

for all 1 ≤ i ≤ n then T1–T4 hold for G′. Thus,
R1, . . . , Rn are regions in which it is safe to perform
perturbations without violating the input topology.

MPR
computation

WM
embedding

Correction
OutputInput

Figure 1: Our watermarking framework.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

28th European Workshop on Computational Geometry, 2012

2.1 Computing MPRs using Voronoi diagrams

For the Voronoi-based computation of MPRs we con-
sider the vertices of V and the straight-line segments
of E as the set S of input sites. The Voronoi diagram
VD(S) of S decomposes the plane into Voronoi cells
VC(s, S), with s ∈ S. Our MPR algorithm relies on
the following observation: If the perturbed counter-
part e′ ∈ E′ of an edge e ∈ E does not intersect the
Voronoi cells of edges non-adjacent to e, then G′ is
planar as the Voronoi cells of different sites do not
overlap.

We denote by |e| the length of the line segment e
and define for any r > 0 and any line segment e the
set B(e, r) ⊂ R2 as the rectangle with width 2r and
length |e| that has e as its center-line. Next, we denote
by Dv(r) the open disk with center v and radius r.
Our MPR-algorithm consists of two phases:

Phase 1: For each vertex vi ∈ V , we consider the
incident edges ei1, . . . , e

i
di

and we denote by êij the half

of eij that is incident to vi. Then we compute for each

vertex vi ∈ V the largest ti ≤ min1≤j≤di
|êij | such that

Dvi(ti)∪
di⋃
j=1

B(êij , ti) ⊆ VC(vi, S)∪
di⋃
j=1

VC(eij , S). (1)

Let T (vi) := Dvi(ti) ∪
⋃di

j=1B(êij , ti), cf. Fig. 2. In
order to compute t1, . . . , tn we first cut the Voronoi
cell VC(e, S) of every edge e ∈ E, with e = vivj , into
two halves along the bisector of vi and vj and insert
the two points of intersection as Voronoi nodes. Every
parabolic Voronoi edge is also split by a node at its
apex. Then we traverse all halved Voronoi cells and
compute the (non-zero) distances of the nodes of the
halved Voronoi cells to their input sites.

Lemma 1 The interiors of T (vi) and T (vj) do not
overlap for different vi and vj .

Phase 2: For every vertex vi we consider its adjacent
vertices vi1, . . . , v

i
di

and compute the value

ri := min{tvi , tvi
1
, . . . , tvi

di

}. (2)

Then we define the maximum perturbation region Ri

of the vertex vi as

Ri := Dvi(ri). (3)

In Fig. 3, we illustrate all MPRs as dashed circles.
For an edge e ∈ E we call the area that is bounded
by the MPRs of the incident vertices vi, vj of e and
their bitangents the hose He around e. In fact, He

represents the valid area in which the perturbed edge
v′iv
′
j may lie. All hoses are shown as shaded areas

in Fig. 3. In order to avoid hoses that touch we can
simply multiply all radii ri by 1−ε, for a small positive
constant ε < 1.

Figure 2: Phase 1: The regions T (vi) for vertices
vi are shaded in gray levels. The circles Dvi(ti) are
shown dashed.

Figure 3: Phase 2: The MPRs are shown dashed. The
union

⋃
e∈E H(e) of all hoses is shaded.

Lemma 2 A hose H(e) of an edge e = vivj is con-
tained in T (vi) ∪ T (vj).

Corollary 3 H(ei) and H(ej) do not overlap if ei
and ej have no common vertex.

Theorem 4 If the perturbation v′i of the vertex vi ∈
V is constrained to Ri as defined in (3), for 1 ≤ i ≤ n,
then T1–T4 are guaranteed for G′.

Proof. Since no vertices or edges are added or re-
moved, T1 is met. The hoses of one connected com-
ponent of G are separated from all other hoses by the
Voronoi diagram, thus enforcing T2. Similarly, due
to the Voronoi diagram, the cyclic order of the hoses
of edges incident upon a vertex is identical to the or-
der of those edges and, therefore, T3 is guaranteed.
Finally, Cor. 3 ensures T4. �

The Voronoi-based approach assigns the MPRs in a
fair manner in the following sense: If two hoses touch
each other then they touch at the apex of a parabolic
Voronoi edge. Hence, both hoses are equally wide.

This approach does not necessarily determine the
largest possible MPRs, though: Phase 2 is easy to
implement but rather conservative. (For example, the
MPR of the vertex in the upper left-hand corner of
Fig. 3 could be chosen larger.) In general, we could
increase individual MPRs in an additional third phase

EuroCG 2012, Assisi, Italy, March 19–21, 2012

vi

Figure 4: The triangulation-based approach: Ri is
defined by triangles incident to vi.

as long as Lemma 2 remains valid. We did not study
this strategy in more detail, though.

We can compute all t1, . . . , tn in O(n) time as the
Voronoi diagram VD(S) is of linear size. The compu-
tation of the Voronoi diagram itself takes O(n log n),
which leads to a total runtime of O(n log n) for the
Voronoi-based MPR-algorithm. We implemented this
approach in C++, based on the Voronoi package
Vroni [3] to compute the Voronoi diagram. Comput-
ing all MPRs on a dataset with 60 000 vertices takes
about a second on a mid-range personal computer.

The Voronoi-based approach also permits generali-
sations to input elements more general than straight-
line segments. For example, one could consider circu-
lar arcs, which can also be processed by Vroni.

2.2 Computing MPRs using triangulations

Our second approach to compute MPRs is based on
triangulations. The algorithm starts with a con-
strained triangulation T of the convex hull of G, with
E forming the line segments of the constraints. Hence,
G can be interpreted as a subgraph of T , see Fig. 4.

Let us denote by T ′ the graph that results from T
by replacing V by V ′. The key observation in the
triangulation-based approach is the following: If dis-
locating the vertices violates T2–T4 then at least one
triangle in the triangulation has changed its orienta-
tion. Hence, the objective is to restrict the perturba-
tions of the vertices to MPRs such that no orientation
of a triangle changes.

Consider a triangle ∆ of T and denote by I(∆) the
radius of its incircle. If the vertices of ∆ are dislocated
by a distance of less than I(∆), then the orientation
of ∆ remains the same. Hence, we compute the MPR
Ri of the vertex vi ∈ V as

Ri := Dvi(ri), (4)

where ri := min1≤j≤Di
I(∆i

j), with ∆i
1, . . . ,∆

i
Di

de-
noting all triangles incident to vi. Since for each tri-
angle ∆ in T it holds that the MPRs of its vertices are
disks with radii at most I(∆), we get that all triangles
in T preserve their orientations.

Theorem 5 If the perturbation v′i of the vertex vi ∈
V is constrained to Ri as defined in (4), for 1 ≤ i ≤ n,
then T1–T4 are guaranteed for G′.

Proof. Consider the Voronoi diagram of T : all
Voronoi nodes coincide with the centers of the incir-
cles of the triangles of T , and every Voronoi cell of
an interior edge e = vivj is given by two triangles
formed by vi, vj and one of the incircle centers of the
two triangles of T that have e as an edge. Hence,
the triangulation-based approach can be interpreted
as a slightly modified variant of the Voronoi-based ap-
proach applied to the edges of T , allowing us to confer
the correctness result of Thm. 4. �

We note that this algorithm works with any con-
strained triangulation T of G. However, in order
to permit perturbations to robustly embed the wa-
termark, we seek MPRs that are as large as possi-
ble. Hence, the question arises which triangulations of
G have large incircles and subsequently large MPRs.
Obviously, among all triangles with fixed circumcircle,
the equilateral triangle has the largest incircle. This
observation motivated us to employ the (constrained)
Delaunay triangulation for our actual implementation
of the above algorithm.

Guaranteed-quality triangulations that use Steiner
vertices in order to guarantee a lower bound for the
smallest angle in a triangulation are known, see, e.g.,
[8]. However, maximizing the smallest incircle and
maximizing the smallest inner angle of a triangle are
not the same objectives. For example, a skinny trian-
gle may be fine for us if it is just large enough and, in
further consequence, contains still a large incircle.

To the best of our knowledge, maximizing the
smallest incircle did not attract attention so far. Note
that successively adding Steiner vertices may increase
the smallest angle, but, at some point, certainly does
not enlarge the smallest incircle any further.

We implemented the following heuristic approach
in order to enlarge the incircles: After computing the
triangulation of G, we determine a list of triangles
∆, where I(∆) is by a factor of f > 1 larger when
compared to its three neighboring triangles and in-
sert Steiner points at the centers of their incircles. In
practice, we observed that using f = 1.5 increases the
average incircle radius by a few percent. However,
applying this refinement step multiple times did not
lead to a further improvement in our experiments.

The constrained Delaunay triangulation can be
computed in O(n log n) time. Computing r1, . . . , rn
can be done in O(n) time as a triangulation contains
O(n) triangles. Hence, we end up with a total time
complexity of O(n log n). For our C++ implementa-
tion of the triangulation-based algorithm we used the
GNU Triangulated Surface (GTS) library [5], which
implements a semi-dynamic algorithm. Computing
all MPRs on a dataset with 60 000 vertices and run-
ning one refinement step with f = 1.5 takes about a
second on a mid-range computer.

The triangulation-based method can also be ex-

28th European Workshop on Computational Geometry, 2012

tended to R3, if we want to embed a watermark on
a polyhedron P with n vertices. Chazelle and Palios
[?] showed that there exists a tetrahedralization of P
that employs up to O(n+ r2) Steiner vertices, where
r denotes the number of reflex edges of P , and that it
can be computed in O(nr+ r2 log r) time. The radius
of the MPR of a vertex v of P is then defined as the
minimum of the radii among the inscribed spheres of
the tetrahedra incident to v.

3 Application to watermarking

We conclude with an outline of a watermarking
scheme that was proposed in the context of vector
data, cf. [2, 4]. The common basis of many water-
marking approaches is to transform the input in a way
such that conventional strategies can be applied. For
this purpose, we regard all vertices V of G as points
in the complex plane C. To foster embedding a long,
and consequently more robust, watermark sequence
we only consider chains of G of a certain length as
our input data and then perform a Discete Fourier
Transform (DFT). This gives us a frequency-domain
representation of the chains in the form of a set of
Fourier coefficients. A scaled bipolar {+1,-1} random
sequence (generated using the secret seed K belong-
ing to the copyright holder) is then added to the DFT
magnitudes and the inverse DFT is computed to fi-
nally reclaim the points in C and, consequently, the
perturbed vertex set V ′.

If all vertices perturbed by the watermarking stay
within their MPRs then nothing needs to be done.
Otherwise, if a vertex is outside of its pre-computed
MPR, we can choose between two correction methods
which both aim at preserving most of the watermark
signal: (i) project each vertex onto the boundary of
its corresponding MPR disk, and (ii) only perform the
correction for the vertices of edges that actually inter-
sect. Method (i) runs in O(n) time, while the condi-
tional correction (ii) can be done in O(kn) time, where
k ∈ O(n) denotes the number of edges of G which
have at least one vertex not in its MPR. (Very recent
results suggest that O(n log n+m) time is achievable
for (ii), where m denotes the number of intersections
among E ∪ E′.)

This trade-off between time and strength of the
watermark needs to be evaluated in the context of
the desired application. Imposing the topology con-
straints T2–T4 on the watermarked data dampens the
watermark. To get an impression of detection perfor-
mance for both strategies, we embedded a watermark
in a vector graphic of roughly 24000 vertices and only
considered chains of length > 200. With a modest
watermark embedding strength, this led to ≈ 1600
vertices subject to MPR correction. Using correction
strategy (i), the probability of missing the watermark
is ≈ 10−20, while strategy (ii) yields ≈ 10−60.

4 Discussion

Our experiments with both MPR computations allow
the following conclusions: First, using a Voronoi tes-
sellation yields larger MPR regions and consequently
gives more freedom for the watermarking process.
Further, it can be extended to more general input,
such as circular arcs for instance. Using triangula-
tions, on the other hand, leads to potentially smaller
MPRs and less freedom for watermarking. However,
in consideration of a potential 3-D extension, one
might favor this approach due to the simpler imple-
mentation.

Our work also reveals two interesting problems for
future research: How can we compute a triangulation
such that the radii of the incircles are maximized?
And, more generally, how can me make the water-
marking respect other important geometric properties
of vector data, such as right angles or parallelism?

References

[1] B. Chazelle and L. Palios. Triangulating a Non-Convex
Polytope. In Proc. 5th Annu. ACM Sympos. Comput.
Geom., pages 393–400, Saarbrücken, Germany, Sept.
1989.

[2] V. Doncel, N. Nikolaidis, and I. Pitas. An Opti-
mal Detector Structure for the Fourier Descriptor Do-
main Watermarking of 2D Vector Graphics. IEEE
Trans. Visualizat. Comput. Graph., 13(5):851–863,
Sept. 2007.

[3] M. Held and S. Huber. Topology-Oriented Incremental
Computation of Voronoi Diagrams of Circular Arcs
and Straight-Line Segments. Comput. Aided Design,
41(5):327–338, May 2009.

[4] S. Huber, R. Kwitt, P. Meerwald, M. Held, and A. Uhl.
Watermarking of 2D Vector Graphics with Distortion
Constraint. In IEEE Int. Conf. on Multimedia & Expo
(ICME 2010), pages 480–485, Singapore, July 2010.

[5] S. Popinet. GTS – The GNU Triangulated Sur-
face Library. Online available from http://gts.

sourceforge.net/.

[6] Y.-C. Pu, W.-C. Du, and I.-C. Jou. Perceptually
Transparent Polyline Watermarking Based on Normal
Multi-Resolution Representation. IEICE Trans. In-
formation and Systems, E89-D(12):2939–2949, Digital
Press 2006.

[7] C. Y. Shao, H. L. Wang, X. M. Niu, and X. T.
Wang. Shape-Preserving Algorithm for Watermarking
2-D Vector Map Data. In Proc. 7th IEEE Workshop on
Multimedia Signal Proc., pages 1–4, Shanghai, China,
Oct. 2005.

[8] J. Shewchuk. Delaunay Refinement Algorithms for Tri-
angular Mesh Generation. Comput. Geom. Theory and
Appl., 22(1-3):21–74, May 2002.

