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Eugen Trinka3,4,5 and Andreas Uhl1 for the ADNI

1Department of Computer Science, University of Salzburg, Austria
2UNC Chapel Hill, NC, USA

3Spinal Cord Injury & Tissue Regeneration Centre (SCI-TReCS) Salzburg,
Paracelsus Medical University, Salzburg, Austria,

4Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical
University, Salzburg, Austria,

5Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria

Abstract. We consider the task of constructing (metric) shape space(s)
from a topological perspective. In particular, we present a generic con-
struction scheme and demonstrate how to apply this scheme when shape
is interpreted as the differences that remain after factoring out transla-
tion, scaling and rotation. This is achieved by leveraging a recently pro-
posed injective functional transform of 2D/3D (binary) objects, based
on persistent homology. The resulting shape space is then equipped with
a similarity measure that is (1) by design robust to noise and (2) ful-
fills all metric axioms. From a practical point of view, analyses of object
shape can then be carried out directly on segmented objects obtained
from some imaging modality without any preprocessing, such as align-
ment, smoothing, or landmark selection. We demonstrate the utility of
the approach on the problem of distinguishing segmented hippocampi
from normal controls vs. patients with Alzheimer’s disease in a challeng-
ing setup where volume changes are no longer discriminative.

1 Introduction

Characterization and representation of shapes, cornerstones of human perception
of objects, are fundamental and well-studied problems in computer vision and
medical image analysis [14,9,5]. Applications range from recognition tasks to the
analysis of longitudinal changes. While computer vision mostly focuses on 2D
objects, medical image analysis typically studies shape in the context of (binary)
2D/3D segmentations of an anatomical structure (e.g., the hippocampus) that
has been extracted from some imaging modality.

Conceptually, to study shapes in a mathematical framework, we need a for-
malism, a shape space, which captures the semantics of the colloquial term
‘shape’ or ‘shape space’. In this work, we present a versatile construction scheme
for shape spaces and then follow Kendall [14] who informally defines shape as
“what is left when the differences which can be attributed to translations, rota-
tions, and dilations have been quotiented out”, to implement a concrete realiza-
tion of that scheme. Since, a mandatory property of a shape space is not only



to separate shapes, but also to assign some sort of similarity measure [21], we
equip the shape space with an appropriate metric.

In many applications, where the primary objective is to characterize 2D/3D
objects, a shape space is often not directly defined, but implicitly generated
through the invariances of features extracted from the objects of interest (cf.
[28,27,30]). In such approaches, the intermediate feature extraction step essen-
tially condenses some discriminative properties (e.g., local curvature) into a com-
pact representation that can be used in a subsequent learning step (e.g., using
SVMs). While these approaches work remarkably well for various tasks, it is
challenging to study the shape space due to the missing explicit definition.

In contrast, here we are specifically interested in a formal definition of shape.
Approaches along this line of research predominantly study landmark-based
representations [14,9] of objects, manifolds (e.g., planar curves and surfaces)
[19,15,25,3], and even point clouds [18]. In the seminal work of Kendall [14] for
instance, objects are represented via k landmarks in Rn and shapes are iden-
tified by quotienting out rotations, translations and scalings. This strategy has
led to various elegant approaches to study shapes, most prominently by intro-
ducing a Riemannian structure on the space of landmarks [22,13,12]. While this
allows to lift many concepts from statistics (e.g., regression) to the shape space,
the data needs to be carefully hand-labeled, or landmarks need to be found via
optimization. This is a challenging task on its own and typically requires care-
ful preprocessing (e.g., smoothing). In a conceptually different line of research,
shapes are considered as equivalence classes of manifolds [19,25] and then studied
by quotienting out reparametrizations. We refer the reader to [3] for a compre-
hensive review. While these approaches eliminate the need for landmarking, they
are mostly theoretical, require considerable preprocessing and are non-trivial to
implement. Alternatively, shapes can be represented via point clouds in Rn, and
distances can be established via a metric on the isometry classes of compact
metric spaces (e.g., Gromov-Hausdorff), cf. [18], where the shape representation
is invariant under rigid motions (excluding scalings). While this can be beneficial
in certain situations, the Gromov-Hausdorff metric is rather coarse and might
not allow to tease-out fine-grained differences. Recently, ideas from topological
data analysis [6] have emerged to study 2D/3D objects, either in the form of
computing topological invariants of features [16,24,23], or by directly analyzing
the object of interest [26]. The latter is particularly relevant to our work, as
the proposed persistent homology transform (1) is injective and (2) it allows to
directly analyze the raw data. This idea will enable us to formally define shape
space(s).

Contribution. In detail, we develop a construction scheme in which Kendall’s
notion of shape can be easily translated into the persistent homology transform
framework of Turner et al. [26]. A suitable similarity measure with desirable
properties such as robustness (to noise) can then be defined and shown to be
an actual metric. This has important practical implications, as no preprocessing
steps are required to analyze shapes after data has been collected.



2 Theoretical background

While persistent homology (PH) is fundamental for our proposed shape space
construction, one does not need a deep understanding of many parts of this
framework to grasp the key ideas. In fact, we refer the interested reader to [10]
(and references therein) for a detailed introduction to persistent homology. We
only introduce a few necessary key concepts next.

Definition 1 (Filtration of a simplicial complex by a function). Let K be
a finite simplicial complex of dimension n and f : K(0) → R, where K(0) denotes
the 0-skeleton of K. If σ = [v0, . . . , vk] is a k−simplex of K, then we naturally
expand f to σ by setting f(σ) = max({vi, 0 ≤ i ≤ k}). If f(K) = {a1, a2 . . . , aN}
with ai ≤ ai+1, we call the sequence

K0 ⊂ K1 ⊂ · · · ⊂ KN

a filtration of K by f , where K0 = ∅, Ki = f−1((−∞, ai]) for 1 ≤ i ≤ N .

Definition 2 (Persistence diagram). Let ∆ = {(x, x) ∈ R2 : mult(x) =
∞} be the multiset of the diagonal in R2, where mult denotes the multiplicity
function. A persistence diagram is a multiset of the following form:

D = {(b, d) ∈ R2 : d− b > 0 and 1 ≤ mult((b, d)) <∞} ∪∆ .

For a (finite) n-dimensional simplicial complex K and a function f defined on
its 0-skeleton, we can interpret persistent homology as a mapping that associates
to the filtration of K by f , (K, f), a vector of persistence diagrams, i.e.,

(K, f)
PH7−−−−−→ (D0(K, f), . . . ,Dn−1(K, f)) . (1)

Each Di essentially encodes information about the homology of dimension i of
the complexes as the filtration parameter grows, i.e., as we progress from ∅ to
K. For instance, in dimension 0, D0(K, f) captures the evolution of connected
components of (K, f). Hence, (b, d) ∈ D0(K, f) identifies a connected component
which first occurs in f−1((−∞, b]) (i.e., it is born) and merges into an older one
in f−1((−∞, d]) (i.e., it dies). To understand why this construction is useful, we
briefly review the Bottleneck and Wasserstein distances.

Definition 3 (Bottleneck/Wasserstein distance). For two persistence dia-
grams D and E, we define their Bottleneck and Wasserstein distances by

w∞(D, E) = inf
η

sup
x∈D
||x− η(x)||∞ and wqp(D, E) = inf

η

( ∑
x∈D
||x− η(x)||pq

) 1
p

,

where p, q ∈ N and the infimum is taken over all bijections η : D → E.

Note that wqp → w∞ for p→∞. Using the Bottleneck distance, we can equip
the space of persistence diagrams with a metric structure [20], and hence with an



induced topology. In fact, Chazal et al. showed [7, Theorem 3.2] that (under rea-
sonable constraints) for two filtrated complexes (K, fK), (L, fL), the mapping in
Eq. (1) is stable; for finite complexes this means that w∞(Di(K, fK),Di(L, fL))
is bounded by the maximum of (1) the Gromov-Hausdorff distance, dGH(K,L),
and (2) the sup(x,y)∈K×L |fK(x)−fL(y)|. Further, the Wasserstein distance, wqp,
inherits those stability properties [8]. Informally, stability reflects the property
that small changes in the domain do not result in large changes in the co-domain.

Persistent Homology Transform. Our approach is based on the persistent
homology transform (PHT), introduced by Turner et al. [26]. It uses the fact
that for each direction v ∈ Sn−1 the mapping x 7→ 〈x|v〉 induces a filtration
on complexes (in Rn). Let Mn be the set of all subsets of Rn which can be
written as finite simplicial complexes, where we assume two elements ofMn are
equivalent if their linear embeddings1 are equal. Then, the PHT assigns to each
K ∈Mn a mapping, PHT(K), given by

PHT(K) : Sn−1 → Dn, v 7→ (X0(K, v), . . . ,Xn−1(K, v)) ,

where Xk(K, v) = Dk(K, 〈·|v〉) and D denotes the space of persistence diagrams.
[26] showed that this mapping is injective forM2/M3. With this and the afore-
mentioned stability results, they introduce a family of metrics onM2,M3, i.e.,

m(K,L) = mdist,n(K,L) =
n−1∑

k=0

∫

Sn−1

dist
(
Xk(K, v),Xk(L, v)

)
dv , (2)

where n = 2, 3 and dist is either w∞ or wqp. When not necessary, we will omit the
subscripts (dist, n) for readability. Fig. 1 illustrates the PHT for two filtration
directions v1, v2 ∈ S1 and shows the corresponding persistence diagram(s). The
metric space (M3,m) will be the basis for our shape space construction.

3 Constructing shape spaces

To build a shape space on top of the metric space (M3,m), we follow a group-
theoretic construction. In particular, let (G,�) be a group, S be a set and
. : G× S → S, (g, s) 7→ g . s a (left) action of G on S. For s ∈ S we denote by

G . s = {g . s : g ∈ G} and G . S = {G . s : s ∈ S}
the orbit of s and the set of orbits of S, resp., under the action . of G on S.
The following two lemmas will enable us to (1) obtain a metric on partitions
of a metric space (Lemma 1) and (2) to establish a metric on the set of orbits
induced by a group action on a metric space (Lemma 2).

Lemma 1 (Selection of representative). Let (X, d) be a metric space with a
partition P = {Xi : i ∈ I}, i.e., Xi ⊂ X, Xi ∩Xj = ∅ for i 6= j and

⋃
Xi = X.

If ι : P → X is an injective mapping then

d̃(Xi, Xj) = d(ι(Xi), ι(Xj)) is a metric on P.
1 For dimension k > 0, we can take the interior of the convex hull of the defining

vertices and, for dimension 0, a simplex is mapped to its defining vertex.
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Fig. 1: Illustration of the PHT [26] for a hippocampus slice, represented as a (cubical)
simplicial complex K, along two filtration directions v1 and v2. The corresponding
persistence diagram(s), X0(K, v1) and X0(K, v2), are shown on the right. For direction
v1, we artificially added noise to the hippocampus; the corresponding points in the plot
are highlighted in red (best-viewed in color).

Proof (Sketch). The identity of indiscernibles follows from the injectivity of ι;
the remaining metric axioms follow immediately from d. ut
Lemma 2. Let (X, d) be a metric space, (G,�) a compact topological group and
let . : G×X → X be a (left) action of G on X, such that

(i) d(x, g . y) is continuous in g, and
(ii) d(x, y) = d(g . x, g . y), ∀x, y ∈ X,∀g ∈ G .

Then
d̃(G . x,G . y) = min

g∈G
d(x, g . y)

is a metric on G . X.

Proof. The proof consists of two parts.

Part (1). First, we have to show that ming d(x, g . y) is well-defined, i.e., the
minimum exists, and second, it does not depend on the representative of G . x
and G.y, respectively. The first property follows directly from condition (i) and
the extreme value theorem, as d is continuous in g and G is compact. To show
the second property, we choose two representatives u . x ∈ G . x, v . y ∈ G . y,
with u, v ∈ G and consider

min
g∈G

d(u . x, g . (v . y))
(ii)
= min
g∈G

d(u−1 . (u . x), u−1 . (g . (v . y)))

= min
g∈G

d(u−1 � u . x, u−1 � g � v . y)

= min
g∈G

d(x, u−1 � g � v . y)

(∗)
= min
g∈G

d(x, g . y) .



The last identity (∗) follows from the fact that if g runs through all of G, so
does u−1 � g � v.

Part (2). We will now verify the metric axioms.

Non-negativity. Follows from the non-negativity of d.

Symmetry. This is a consequence of condition (ii) as d(x, g . y) = d(g . y, x) =
d(g−1 . (g . y), g−1 . x) = d(y, g−1 . x) which does not affect the minimum by
the same arguments as above, see (∗).
Identity of indiscernibles. First let G . y = G . x. Then ∃g′ ∈ G such that
y = g′ . x. Hence,

d̃(G . x,G . y) = min
g∈G

d(x, g . (g′ . x)) = 0 ,

as (g′)−1 ∈ G. Second, let d̃(G . x,G . y) = 0, then there exists some g0 such
that d(x, g0 . y) = 0. Hence, x = g0 . y which means that G . x = G . y.

Triangle Inequality. Consider G . x,G . y,G . z ∈ G . X. For g′ ∈ G we get

d̃(G . x,G . y) = min
g∈G

d(x, g . y)

(∗∗)
≤ min
g∈G

(
d(x, g′ . z) + d(g′ . z, g . y)

)

= d(x, g′ . z) + min
g∈G

d(g′ . z, g . y)

(ii)
= d(x, g′ . z) + min

g∈G
d(z, (g′)−1 . (g . y))

(∗)
= d(x, g′ . z) + d̃(G . z,G . y).

As g′ is arbitrary, this inequality holds also for g′0 ∈ G with d(x, g′0 . z) =

ming′ d(x, g′.z) = d̃(G.x,G.z); further, (∗∗) holds due to the triangle inequality
of d and (∗) holds with the same argumentation as in Part (1). ut

4 Practical implementation

In this section, we show a practical realization of the concepts introduced in
Sec. 3. In particular, we (1) construct a shape space in the spirit of Kendall,
where translations, scalings and rotations are factored out and (2) show how the
metric m can be pushed forward in this construction. At the end of the section,
we demonstrate how these ideas translate into an implementation for binary
segmentations defined on a pixel/voxel grid.

Remark 1. We follow the convention that if we interpret K ∈M as a simplicial
complex, applying ϕ : Rn → Rn to K means to apply ϕ to each defining vertex,
e.g., if K =

(
{[v1, v2], [v1], [v2]

}
) then ϕ(K) = {[ϕ(v1), ϕ(v2)], [ϕ(v1)], [ϕ(v2)]}.

Definition 4. Let S be a subgroup of the homeomorphism group H of Rn and
K ⊂Mn such that S(K) = {s(K) : s ∈ S,K ∈ K} ⊆ K for all s ∈ S. Then

.S : S×K → K, (s,K) 7→ s .S K = s(K)



is well-defined and we call S a group of similarity transformations on K. We
further define by

S(S,K) = S .S K
the (simplicial) shape space of K with respect to S. If S(S,K) is equipped with
a metric d then we call it a metric (simplicial) shape space.

If it is clear from the context, we will omit the subscript S in .S and simply write
.. Also, we write S instead of S(S,K) if the particular selection of S and K is
not of specific importance. We now fix K = M3 (using metric m) and build a
shape space that is invariant under translations Tr(∼= Rn), barycentric scalings
Sc(∼= R+) and barycentric rotations Ro(∼= SO(3)).

Remark 2. If (S, d) is a metric shape space and ι is a (bijective) isomety to

some metric space (X, d̃) then we will identify ι(S) with X and d with d̃. This

simplifies notation, as we can refer to (X, d̃) as a metric simplicial shape space.

Translations. We start by factoring out translations.

Definition 5. Let, for K ∈ K, bK be the barycenter of K. Then, we set

ιTr : Tr .K → K, Tr . K 7→ K − bK .

Remark 3 (ιTr is well defined and injective). Let t ∈ Tr, then bt.K = bK+t =
bK + t. Now let t . K be a representative of Tr . K; then we get t . K − bt.K =
K+ t− bK+t = K+ t− bK − t = K− bK which implies that ιTr does not depend
on the representative of Tr.K. If ιTr(Tr.K) = K−bK = K−bL = ιTr(Tr.L),
then L = K − bk + bL ∈ Tr . K which implies Tr . K = Tr . L, and injectivity
follows.

Since ιTr is injective and Tr .K is a partition of K we can invoke Lemma 1
and therefore define a metric dTr on S(K,Tr) by setting dTr(Tr . K,Tr . L) =
m(ιTr(K), ιTr(L)). This metric simplicial shape space is isometric to (KTr,m)
where KTr = ιTr(S(K,Tr)). After this first step, we have a subset of M3

equipped with m.

Scalings. In order to factor-out barycentric scalings, we construct the next shape
space S(KTr,Sc) from (KTr,m) and equip it with a metric based on m. This is
possible, as the barycenter remains unchanged by scalings.

Definition 6. Let, for K ∈ KTr, radK be the radius of K, i.e.,
radK = maxx∈K ||x||2. Then, we set

ιSc : Sc .KTr → K, Sc . K 7→ 1

radK
·K .

Remark 4 (ιSc is well defined and injective). For s ∈ Sc it holds that rads.K =
rads·K = s · radK . Now let s .K be a representative of Sc .K, then rad−1s.K · (s .
K) = s−1 ·rad−1K ·s ·K = rad−1K ·K. This implies that ιSc does not depend on the
representative in Sc . K. If ιSc(Sc . K) = rad−1K ·K = rad−1L · L = ιSc(Sc . L),
then L = radL ·rad−1K ·K ∈ Sc.K which implies Sc.K = Sc.L, and injectivity
follows.



In the same manner as above, we can invoke Lemma 1. In detail, we set KSc =
ιSc(S(KTr,Sc)) and get the translation- and barycentric scaling-invariant metric
simplicial shape space (KSc,m).

Rotations. In our final step, we factor-out barycentric rotations.

Lemma 3. For r ∈ Ro and K,L ∈ KSc, it holds that

(i) m(K, r . L) is continuous in r, and
(ii) m(K,L) = m(r . K, r . L) .

Remark 5. In the following proof, we use two identities: (1) for a metric space
(X, d) and x, y, y′ ∈ X, we have |d(x, y) − d(x, y′)| ≤ d(y, y′); (2) Xk(K, d) =
Xk(r . K, r . d) for r ∈ Ro (as our filtration uses inner products, see Sec. 2).

Proof (of (i)). Consider Eq. (2); it suffices to show that dist
(
Xk(K, d),Xk(r .

L, d)
)

is continuous in r. Let r, r′ ∈ Ro. For ε > 0, we obtain

|dist
(
Xk(K, d),Xk(r . L, d)

)
− dist

(
Xk(K, d),Xk(r′ . L, d)

)
|
Rem. 5 (1)

≤

dist
(
Xk(r . L, d),Xk(r′ . L, d)

) Rem. 5 (2)
=

dist
(
Xk(L, r−1 . d),Xk(L, r′−1 . d)

) [26][Lem. 2.1]

≤
CL||(r−1 . d)− (r′−1 . d)||2 ≤ CL||r−1 − r′−1||F ≤ ε ,

(3)

where CL > 0 is a constant dependent on L. Since, Ro is a topological group,
the last term in this transformation depends continuously on r and r′ and hence,
for ||r − r′||F < δ sufficiently small, Eq. (3) is always fulfilled. ut

Proof (of (ii)). It was shown in [2][Proposition 2 (iv)] that for f : Sn−1 → R, the
integral over the spherical surface is rotation invariant, i.e.,

∫
Sn−1 f =

∫
Sn−1 f ◦ r

for r ∈ Ro. In combination with Rem. 5 (2), this is sufficient for (ii) to hold. ut

Most importantly, Lemma 3 now enables us to invoke Lemma 2 with (X, d) =
(KSc,m) and G = Ro. Consequently, we can equip S(KSr,Ro) with the metric

m̃(Ro . K,Ro . L) = min
r∈Ro

m(K, r . L) .

In summary, we obtain the following sequence of metric spaces

(K,m)
ι−→ (KTr,m)

ι−→ (KSr,m)
π−→ (S(KSr,Ro), m̃) (4)

where π is the canonical mapping K 7→ Ro . K. For K,L ∈ K we can thus
calculate the distance between K and L as

m̃(K,L) = min
r∈Ro

m

(
1

radK−bk
(K − bK), r .

(
1

radL−bL
(L− bL)

))
. (5)



Implementation. To use the constructed shape space in the context of binary
voxel data (e.g., segmentations of some anatomical structure), we need a tran-
sition of the binary voxel structure, V , to KV ∈ K. In detail, V 7→ KV ∈ K is
achieved by interpreting each voxel as a cube in R3 and setting the 0-skeleton

of KV , K
(0)
V , as the union of the centers of those cubes. Then we choose a con-

struction procedure, denoted as Build, which iteratively constructs the higher

dimensional skeletons from K
(0)
V , i.e., K = Build(K

(0)
V ). However, the choice of

Build is not canonical. In our experiments, we used the algorithm in [29] to com-
pute persistence diagrams for cubical data (implemented in DIPHA2) from which
we obtain the PHTs. Fig. 2 (right) illustrates this particular choice of Build. To
calculate the integral in Eq. (2), we decided to use a Lebedev integration scheme
with 26 points, which is a quadrature rule optimized for functions defined on a
sphere. The key idea is to integrate f : S2 → R by sampling on a point set which
is invariant under the octahedral symmetry group O (including reflections), i.e.,
a Lebedev grid. The resulting quadrature formula (see [4] for theoretical details)
is invariant under O. To improve efficiency, we calculated the PHT for each
object with respect to the 26 directions contained in the Lebedev grid. The min-
imization in Eq. (5) to calculate m̃ can then be approximated by reducing the
original minimization domain from SO(3) to R, where R ⊂ O is the octahedral
rotation group. The stability of the Lebedev grid under O guarantees that the
application of each r ∈ R just causes a permutation of the 26 directions. Since
R has rank 24, this means each evaluation of m̃ results in (less than) 24 · 26
evaluations of dist. In our experiments, we set dist = w2

2, but remark that other
choices might be better, depending on the specific application. In addition, we
map points of the form (b,∞) ∈ Xk(K, v), see Fig. 1, to (b,maxx∈K(0)(〈x|v〉)).

5 Experiments

We demonstrate the utility of our approach on (1) a simple toy example and
(2) on the problem of separating binary 3D segmentations of the hippocampus
obtained from healthy controls and patients with Alzheimer’s disease (AD). As
it is well-known (cf. [1]) that volume changes of the hippocampus are indicative
of AD, we construct a particularly challenging setup where we only consider
hippocampi from patients that are close in volume; in other words, volumetric
changes are no longer discriminative in this setup.

Toy example. Fig. 2 presents a toy example of one hippocampus slice, repre-
sented as K. The distance plot shows the behavior of the metric m̃ when com-
puting m̃(K,K ′) where K ′ is obtained by rotating the hippocampus in steps of
(360◦/64) · k, for 0 ≤ k ≤ 64 (with nearest-neighbor interpolation). For com-
parison, we list the distances to two artificially modified versions of the hip-
pocampus (changes in orange). As we can see, the distances m̃(K,K ′) are lower
than the distances to the modified hippocampi (i.e., m̃(K,M), m̃(K,L)). As the
hippocampus is rather small (< 500 pixel) this behavior is important, as the
interpolation creates artifacts that are similar in size to salient object features.

2 available online at https://github.com/DIPHA/dipha
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Real data. We use segmentations of the left hippocampus, obtained from the
ADNI dataset via MAPER [11]. All segmentations are publicly available. To
focus on actual shape changes, we restrict the data to hippocampi with voxel
volumes 1000 ± 50. Under this constraint, we obtain 18 hippocampi associated
with AD and 24 hippocampi associated with healthy controls. By design, a
Wilcoxon rank-sum test for equality of the median volume does not allow to
reject the null-hypothesis at any reasonable significance level (e.g., 0.01, 0.05).

Setup. We consider two setups: First, we assess a setup where rigid pre-alignment
(implemented via NiftiReg; one healthy control randomly selected as target) is
used and minimization of rotations is omitted in the metric. In other words, we
work in the shape space (KSr,m), see Eq. (4). In the second setup, we invoke
the full metric m̃ (w/o pre-alignment). For classification, we use a simple k-NN
classifier and report average classification performance over 1000 balanced cross-
validation splits, i.e., 15/15 AD and controls are randomly chosen to configure
the k-NN classifier, 3/3 AD and controls are chosen for testing in each run.

Results. Table 1 lists the classification results over a range of k for the k-NN
classifier. Several points are worth pointing out. First, the results indicate that
rigid pre-alignment performs worse than letting the metric take care of rota-
tions. This can be attributed to the fact that the metric does not rely on any
registration procedure which, in case of small objects such as the hippocampus,
can easily lead to slight misalignment and consequently confound the similarity
measure used for classification. Second, although volumetric changes cannot sep-
arate the groups (as previously shown by the hypothesis test), our metric still
allows to distinguish subjects from the AD and control group with performance
comparable to what has been previously reported in the literature (although
our approach is not specifically-tailored to the problem). Third, we highlight
that raw segmentations, as produced by MAPER, were used in the experiment.
While segmentation artifacts might still be present, we argue that it is undesir-
able to eliminate them during preprocessing, as we cannot reliably distinguish
between noise and potentially discriminative/salient features a-priori.



k(-NN) Pre-Align Ours (full metric m̃) Ours (full metric m̃, LOO)

3 0.78 ± 0.15 0.81 ± 0.15 0.81 ± 0.39
7 0.79 ± 0.16 0.83 ± 0.14 0.88 ± 0.32
11 0.75 ± 0.15 0.84 ± 0.14 0.83 ± 0.37
15 0.78 ± 0.14 0.85 ± 0.13 0.83 ± 0.37
19 0.75 ± 0.14 0.84 ± 0.15 0.83 ± 0.37

Table 1: Classification accuracies for distinguishing hippocampi of subjects with AD
vs. healthy controls: (1) via (rigid) pre-alignment of segmentations where the metric
does not take care of rotations (first column) and (2) by using the full metric m̃
(second/third column). LOO denotes leave-one-out cross-validation.

6 Discussion

We introduced a versatile construction scheme for shape spaces (equipped with
appropriate metrics) on top of a functional transform for objects, based on per-
sistent homology. In a sense this framework (1) is exact, as no preprocessing is
required and (2) allows to easily refine/coarsen the metric by choosing a higher
or lower number of filtration directions, respectively. We argue that avoiding
preprocessing is a desirable property, as the data processing theorem [17] specif-
ically advises against reducing information in early stages of a processing chain.
While we focused on the construction of a shape space in the sense of Kendall,
the principles outlined in Sec. 3 constitute a generic construction kit to build all
sorts of different shape spaces, with one particular realization shown in Eq. (4).
At this stage, it is however unclear if our particular choice of base metric, i.e.,
the w2

2 distance, is the most appropriate choice. In fact, a data-driven approach
to select the parameters of the metric might be better. Another, conceptually
interesting, extension could be to lift the metric to reproducing Kernel Hilbert
spaces (cf. [24]), which would readily enable statistical computations.
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