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Christoph Hofer1, Roland Kwitt1, Yvonne Höller3,4, Eugen Trinka2,3,4, Andreas Uhl1 and ADNI

1Department of Computer Science, University of Salzburg, Austria
2Spinal Cord Injury & Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria,

3Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria,
4Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria

ABSTRACT

We consider the problem of domain shift in analyses of brain
MRI data. While many different datasets are publicly avail-
able, most algorithms are still trained on a single dataset and
often suffer the problem of limited and unbalanced sample
sizes. In this work, we propose a surprisingly simple strat-
egy to reduce the impact of domain shift – caused by dif-
ferent data sources and processing pipelines – that typically
occurs in cross-dataset analyses. We experimentally evaluate
our approach on the problem of using volumetric features to
distinguish neurodegenerative diseases and report results us-
ing three datasets in two practically relevant scenarios: (1)
cross-dataset learning and (2) leveraging pre-trained classi-
fiers across different datasets. We show that our adaptation
technique enables both scenarios with performance close to
the single-dataset case.

1. INTRODUCTION

Structural magnetic resonance imaging (MRI) is one of to-
days primary imaging modalities in the diagnosis and study
of neurodegenerative diseases, such as Alzheimer’s (AD)
(see, e.g., [1]). Throughout the past decade, both the number
and the sizes of open-access datasets has grown substantially.
Similarly, there is an abundance of automated methods to
process this data, ranging from registration and segmenta-
tion to strategies for automated diagnosis of diseases. With
the broad availability of computational power and the fact
that many processing pipelines can be trivially parallelized
on an image level, computationally demanding approaches
(such as multi-atlas segmentation [2]) have become practical
on a large scale and facilitate to leverage machine learning
techniques and full-scale data mining strategies.
Since learning algorithms improve with the amount of avail-
able training data, it would be beneficial if we could lever-
age and combine already pre-processed data from multiple
sources, possibly subjected to different processing pipelines.
This raises the fundamental question, in which manner these
datasets should be combined, such that differences along
these processing pipelines have little effect.

In the context of MR brain image analysis, a substantial
amount of different features for various tasks is at our dis-
posal; see, e.g., [3] for an overview of the state-of-the-art
in the classification of dementia diseases. Despite the diver-
sity of features, the majority of approaches share a common
component, namely the automated labeling of predefined
brain regions. In the spirit of leveraging publicly available
data, it seems reasonable to assume that this step is already
completed and the results are available, e.g., in the form of
already segmented regions. While, in this case, we apparently
have no control over the segmentation process, we still have
to demand a consistent label acquisition protocol (e.g., [4]);
otherwise comparability would, a-priori, not be given.

Related Work. In the context of obtaining segmentations
of the human brain, there has been a substantial amount of
work devoted to multi-atlas segmentation strategies, subsum-
ing steps such as registration, atlas selection, and label fusion,
just to name a few; see [2] for a survey of these techniques. In
the study of neuro-degenerative diseases, many strategies and
features to discriminate between healthy controls and patients
at various stages of mild cognitive impairment (MCI) and AD
[5, 6, 7, 8, 9] have also been proposed. A well-established
baseline is to investigate volume changes, i.e., cellular atro-
phy in predefined regions of the brain, such as parts of the
temporal lobe which are indicative of AD and MCI, resp.
[5, 6, 7, 8]. In other works, e.g., [9], features are extracted by
observing the center of mass of different brain regions and by
evaluating their connectivity, or network structure [10]. Nev-
ertheless, the problem of cross-dataset learning in the context
of neuro-degenerative diseases has gained little attention so
far. While, in [11], the authors do assess cross-dataset perfor-
mance of various features for random-forest based AD classi-
fication, the study primarily focuses on the impact of changes
in specific parameters of the processing chain, such as differ-
ent choices of atlases or feature selection/reduction strategies.
In our work, we investigate a strategy to mitigate the effects
of such differences, irrespective of its particular type.

Practical considerations. Lets consider two processing
pipelines P1 and P2, where Pi subsumes all processing steps
required to obtain features that can later be used by a machine



learning algorithm. Pi might include data acquisition, (multi-
atlas) segmentation, and feature extraction. In other words,
Pi can be interpreted as some sort of mapping from the space
of subjects to some feature space F . As already mentioned,
there is a broad variety of possible differences between P1 and
P2. Hence, in most constellations P1(s) 6= P2(s), for some
subject s, even if the type of extracted feature is the same.
This prevents us from directly fusing data in F to increase
sample size for training some learning algorithm. However,
under the assumption that there is some mapping ϕ, such that
P1(s) = ϕ

(
P2(s)

)
, it is desirable to know as much as possi-

ble about ϕ, since this would facilitate a direct fusion of data,
processed by P1 and P2. Without loss of generality, we let
S1, S2 be two sets of subjects, each separated into two groups
A andB, i.e., Si = Si,A∪Si,B. For example, S1 and S2 could
be two datasets from different hospitals containing healthy
controls (A) as well as non-healthy (B) subjects. If subject
data has already been processed, by P1 and P2, our goal is
to work with P1(S1) and P2(S2), although large parts of the
parametrization of Pi might be unknown. Intuitively, to study
(and possibly correct for) differences in P1 and P2, we could
assess differences in P1(s) and P2(s) for some s ∈ S1 ∩ S2

in order to learn more about ϕ. Unfortunately, however, a
common situation in medical imaging is that S1 ∩ S2 = ∅,
since data was acquired by different sources. Hence, a direct
comparison of the same subject under both P1 and P2 cannot
be done. This raises the question of how (and to what extent)
ϕ can be approximated. In this work, we study that problem
in a classification setting.

Setup. Given two datasets, D = P1(S1) and D = P2(S2)
in the aforementioned setting of S1 ∩ S2 = ∅, we use sta-
tistical invariants to characterize the so called domain shift
[12]. We assume that both datasets have at least one com-
mon group. This is realistic, since healthy controls are typi-
cally available in most cases, however, the number of controls
might be (very) limited. Let Dh, Dh be those groups. We fur-
ther assume that any reasonable processing pipeline will not
change the (relative) statistical behavior of these groups in F
with respect to samples of non-healthy subjects. Under this
assumption (which we will assess later), we aim to find ϕ̂
such that Dh ∼ ϕ̂ (Dh). We evaluate this approach on two
scenarios, which reflect two common situations in practice.

Scenario I (Control group substitution). As gathering data for
an upcoming study of some disease is typically a resource in-
tensive procedure, it is desirable to reuse existing data from
previous studies. This is particularly true in situations where
data from patients with some disease is already available (as
this data might be collected as part of clinical routine), but
data from control patients is only available in a small amount.
To avoid bias in classification results, typically we require
a balanced control-to-disease ratio. Hence, in this scenario,
we assume availability of a large (external) dataset of healthy
controls, denoted as H, and a large unbalanced dataset D =

Dh ∪ Dd, where the number of diseased subjects, |Dd|, is far
bigger than |Dh|. Given an estimated ϕ̂, we could train on the
combined dataset H ∪ ϕ̂(D).
Scenario II (Pre-trained classifiers). Here, we consider two
balanced datasets D = Dh∪Dd and D = Dh∪Dd, with |D| >>
|D|. In this situation, it would be desirable to train a stable
and well-generalizing classifier on the larger dataset D and
later use it on ϕ̂(D) directly.

2. ANALYSIS FRAMEWORK

We first have to define a common feature space F , which is
the endpoint of each processing pipeline that we consider in
this work. While, in principle, our framework is agnostic to
the particular type of feature that is used, we focus on vol-
umetric changes in brain regions as an indicator for (neuro-
degenerative) diseases, as this is among the customary tech-
niques in previous works. Specifically, we take a holistic view
on volumetric changes over a collection of brain regions, i.e.,
we define a relational volumetric signature (RVS)

V(s) :=
(
λ(R1), . . . , λ(RN )

)

||
(
λ(R1), . . . , λ(RN )

)
||1

, (1)

where λ(·) denotes the natural volume in R3 and Ri are the
brain regions. This feature is motivated by the fact that vol-
ume relations between regions can provide useful informa-
tion, especially if a disease does not influence every region
Ri in the same way. By taking the L1 norm, we minimize the
distorting influence of body/head size and project the volume
vector to the positive face of the N -dimensional unit simplex.
To simplify any subsequent statistical analysis [13], we fur-
ther define a slightly modified RVS as

Ṽ(s) :=
(
log

(
λ(R1)

λ(RN )

)
, . . . , log

(
λ(RN−1)
λ(RN )

))
. (2)

In summary, Ṽ is derived from V by smoothly stretching the
positive face of the N -unit simplex to RN−1.
We remark that for specific neuro-degenerative diseases, a re-
duction of the feature vector to some particular regions may
improve classification accuracy. However, in the sense of in-
vestigating a generic approach for handling the domain shift
between MRI brain datasets, we decided to use all regions.

Dataset(s). We use three datasets in our study: two publicly-
available datasets and one third-party dataset. Each dataset
has its own characteristics which reflects the scenarios out-
lined in Sec. 1. First, IXI1 contains brain MR images for a
collection of (569) healthy controls; we use the T1-weighted
scans in our experiments. Second, we use an already pre-
processed portion of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), denoted as ADNI. This dataset contains

1http://brain-development.org/ixi-dataset



Control LMCI MCI AD TLE

IXI 569 – – – –
ADNI 284 178 307 226 –
PMU 22 – 19 – 17

Table 1: Meta-information for the datasets used in this study.

T1-weighted scans from 995 subjects, automatically seg-
mented using MAPER [14]. We use all subjects labeled
as healthy controls, MCI and AD and refer to these sub-
sets as ADNI-CON, ADNI-MCI and ADNI-AD, resp. Our
third dataset, denoted as PMU, is a small collection of T1-
weighted scans of healthy controls, MCI and temporal lobe
epilepsy (TLE) patients. For our purposes, we only use
the subjects labeled as healthy controls or MCI, denoted as
subsets PMU-CON and PMU-MCI. While ADNI is already
pre-segmented, we processed IXI and PMU via a multi-atlas
segmentation pipeline, using the same 30 atlases as in [14]
(to guarantee a consistent labeling protocol). In detail, we
performed brain extraction2, and diffeomorphically3 regis-
tered all atlases to each image. Meta information about the
datasets is listed in Table 1. For all subjects from the three
datasets, we obtain a parcellation of the brain into N = 83
regions. Consequently, F ⊂ R82, as Ṽ(·) uses the last coordi-
nate for standardization. With respect to our setup of Sec. 1,
H = IXI, Dh ⊂ ADNI-CON and Dh ⊂ PMU-CON.

Assessing domain shift. To assess domain shift, we first vi-
sualize the group of healthy controls of each dataset in feature
space F via canonical 2D projections, an example is shown
in Fig. 1. Qualitatively, the visualizations indicate that all
three datasets are approximately Gaussian distributed in F ,
but have different means and covariance structures. Since it
is hard to test for multivariate normality in high-dimensional
spaces, we conducted a series of univariate Kolmogorov-
Smirnov tests on the marginal distributions at 5% significance
(with less than 10% rejections).

Fig. 1: Exemplary (canonical) 2D-projections of Ṽ(·) for healthy
controls. We chose dimensions with obvious domain shift.

This shift in the distribution of the data has an undesirable
effect on classification as it is, e.g., possible to separate IXI
from ADNI-CON with a simple discriminant classifier, such
as an SVM. Nevertheless, according to our tests for normal-
ity and a first qualitative visual assessment, the distributions

2using BET, available from http://fsl.fmrib.ox.ac.uk
3using ANTS, available from http://stnava.github.io/ANTs

appear similar. To reduce the impact of the mean, it seems
reasonable to consider mean-corrected data, i.e., IXI’ =
IXI−µ̂(IXI) and ADNI’ = ADNI−µ̂(ADNI-CON), where
µ̂ is the sample mean. We then fitted a multivariate Gaus-
sian N (0,Σ) with diagonal covariance to the data, i.e., Σ =
diag([σ1, . . . , σN ]), and let MIXI’ and MADNI’ be the corre-
sponding models, estimated from IXI’ and ADNI’, respec-
tively. This simple model can be easily estimated, especially
in consideration of the sample sizes (cf. Table 1) and the di-
mensionality (N = 82) of the data.
To quantify our initial assumption (cf. Sec. 1) that different
groups in the data show similar statistical behavior, regard-
less of the domain shift, we considered the (average) squared
Mahalanobis distance

dM (X) :=
1

|X|
∑

x∈X
(x− µM )TΣ−1M (x− µM ). (3)

of the control, MCI and AD group from ADNI with respect to
the two Gaussian models, i.e., MIXI’ and MADNI-CON’. The
results, listed in Table 2, reveal that the relative behavior of
the diseased groups to the controls is indeed similar, regard-
less of the particular model.

AD’/CON’ MCI’/CON’

dMADNI-CON’ 1.65 1.32
dMIXI’ 1.71 1.36

Table 2: (Average) of relative squared Mahalanobis distances.

Correcting domain shift. Considering the results of Table 2,
we conjecture that a translation followed by a scaling inF is a
sufficient approximation ϕ̂ of ϕ such that ϕ̂(Dh) ∼ Dh. With-
out loss of generality, we set E[Dh] = 0. Consequently, our
estimate for the mean shift t is the negative sample mean of
Dh. Hence, let ϕ̂t(x) := x− µ̂(Dh) and thus Dh ∼ N (0,Σh)
and ϕ̂t (Dh) ∼ N (0,Σh). Next, we need to find λ ∈ R to
define ϕ̂s(x) := λx, such that the distribution of ϕ̂s ◦ ϕ̂t(Dh)
is similar to the distribution of Dh. To quantify similarity, we
reuse Eq. (3), which is proportional to the average likelihood,
i.e.,

1

|Dh|
∑

x∈Dh

(λ · x)>Σ−1h (λ · x)
︸ ︷︷ ︸

= dMh (λ·Dh)

=
1

|Dh|
∑

x∈Dh
x>Σ−1h x

︸ ︷︷ ︸
= dMh (Dh)

. (4)

where Mh is the model estimated from Dh with covariance
Σh. Hence, our estimate for λ follows as

λ =
√
dMh(Dh) · dMh(Dh)

−1 . (5)

In other words, λ is determined such that the average like-
lihood of λ · ADNI-CON’ (a translated + scaled version of
ADNI-CON) equals the average likelihood of IXI’ with re-
spect to MIXI’. Equivalently, the covariance of the estimated



Gaussian could be transformed by λ−2. This would lift the
adaptation from F to the model space where it can be in-
terpreted as moving the model along a geodesic [15] until
the mentioned criterion is fulfilled. With this model adapta-
tion in mind, our approach can be extended to Fisher vectors
[16]. We evaluated this approach and observed performance
on par with our technique. We also remark that under non-
Gaussian distributed data, we could leverage the approxima-
tive power of a Gaussian mixture model (GMM) combined
with the Bayesian adaptation technique of [17, 18], to ex-
tended our approach to handle this scenario. The simplicity
of our data, even in the 82-dim. space, does not support the
use of GMMs, though, which tend to be unstable to estimate
given limited samples sizes.

3. EXPERIMENTAL STUDY

First, it is imperative to understand the behavior of a classi-
fier (SVM with RBF kernel, parameters not optimized) with-
out domain shift. For that purpose, we only train and test on
ADNI. Table 3 lists the results of this reference experiment
with an increasing number of training samples (for AD and
MCI vs. healthy controls; equally-sized samples per class,
remaining samples used for testing). Not surprisingly, small
sample sizes in the training data have a strong negative effect
on the classification accuracy.

Ntrain 5 10 15 50 100 150

AD / CON 65.4 67.7 69.2 75.8 79.9 82.5
MCI / CON 56.7 58.8 59.9 62.8 64.6 65.8

Table 3: Classification accuracy as a function of the number of train-
ing subjects per group.

In a second experiment, we assess whether our classifier is
sensitive to the domain shift, i.e., the difference in distribu-
tion of ADNI-CON and IXI. For example, if we randomly
partition ADNI-CON into two groups, we obtain the expected
result of ≈ 50% (100 samples each, 100 runs). However,
distinguishing IXI/ADNI-CON succeeds with an accuracy
of ≈ 100% (150 samples each, 100 runs). This artificial
separability is indicative of the domain shift. Third, we
evaluate the impact of the size of the adaptation training set
Tadapt (i.e., the small subset of ADNI-CON used to esti-
mate ϕ̂). Table 4 lists the results in separating IXI from
ϕ̂(ADNI-CON). While we do not reach the desired accuracy

|Tadapt| 2 5 10 15 30 60

IXI / ϕ̂(ADNI-CON) 98.8 92.1 81.8 74.8 67.3 61.6

Table 4: Accuracies for separating controls, IXI vs. ADNI-CON,
after adaptation (std. dev. ranges from 1.3 to 5.7).

of 50%, we argue that ϕ̂ sufficiently reduces the distance
between IXI and ϕ̂(ADNI-CON), even if |Tadapt| is small.

Scenario I . To simulate Scenario I from Sec. 1, we create
an unbalanced dataset by randomly choosing subjects from
ADNI-CON, denoted as Tadapt, 150 from ADNI-AD and 150
from ADNI-MCI, resp., for training. We use Tadapt to esti-
mate ϕ̂ and map ADNI-AD and ADNI-MCI to the domain of
IXI. Interestingly, as we can see from Table 5, classification
accuracy becomes similar to our reference experiment of Ta-
ble 3, even for small samples (colouring).

|Tadapt| 2 5 10 15 60

IXI / ϕ̂(ADNI-AD) 53.8 71.8 78.8 80.8 81.3
IXI / ϕ̂(ADNI-MCI) 50.8 58.3 64.7 66.2 66.7

Table 5: Impact of adaptation set sizes on classification (std. dev.
ranges from 1.8 to 5.9).

Scenario II . To assess Scenario II of Sec. 1, we use all data
available from ADNI-CON and ADNI-MCI to train a SVM.
Small subsets, denoted as Tadapt, from PMU-CON are then
used to estimate ϕ̂ and balanced test sets are randomly drawn
from the remaining subjects of PMU. Finally, we inject these
test sets via ϕ̂ into the domain of ADNI, and try to classify
them. Results are listed in Table 6 (top).

|Tadapt| 2 5 10 15

ϕ̂(MCI) / ϕ̂(CON) 59.1±6.4 60.58±6.5 62.2±7 64.2±10.8

Ntrain 2 5 10 15

MCI / CON 54.3±15.5 56.0±16.5 57.1±15.9 55.5±14.9

Table 6: Impact of adaptation set sizes drawn from PMU-CON on
classification (top) in relation to the impact of training set size when
using just PMU data (bottom).

As a reference, Table 6 (bottom) lists the accuracy we get
if we train only on PMU with balanced training sets of size
Ntrain = 2·|Tadapt| per class. We remark that reasonable clas-
sification on PMU appears impossible, given only PMU data
for training. However, under adaptation, classification perfor-
mance on PMU becomes similar to the ADNI-only case (Table
3), demonstrating the utility of our approach.

4. DISCUSSION

Our experiments show that it is possible to combine different
MRI brain datasets using a surprisingly simple strategy, if vol-
umetric features are used. Our approach performs adaptation
in feature space directly, but might as well be interpreted as
model adaptation (cf. Sec. 2). Most notably, we can largely
mitigate the negative effect of domain shift, observed in pre-
vious studies (e.g., [11]). While more complex models might
allow for further compensation, estimation issues due to sam-
ple size become a problem. Our model, on the other hand, is
simple and can be easily estimated. Nevertheless, additional



complexity might be needed in situations where the data can-
not be modeled by single Gaussians.
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