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Abstract
We want to analyse the faces depicted in the Wenceslas Bible,
an illustrated bible from the late 14th century (circa 1390), how-
ever, this requires automatic finding of faces in the illustrations
of the bible. This is a difficult task due to the fact that we
are working with illustrations of human faces that are often
interwoven into the background and in odd poses. This paper
presents an analysis of prominent face detection methods and
how their performance translates from real-world facial images
to painted imagery. We will make use of a scale and rotation
cascade on top of these methods to see if the detection of faces
in odd poses can be improved. Finally, most methods are de-
signed to handle a particular face size, but for the purpose of
finding faces in the illustration of historical books the relative
size of the image and face differs from most real-world cases.
An attempt to fix this is to use tiling of the input image to adjust
for the relative scale difference. We will see that tiling, scaling,
and rotation help, and while no general “best” setting can be
given, we also see that these can boost somemethods fromnon-
working to being quite good.
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1 Introduction
Detection of faces in art is relevant to many art historic ques-
tions, see Section 2 for some examples. Our reason for wanting
face detection, and another example why it is of interest in an
art historic context, is as follows.

Thiswork is part of an attempt to digitize information about
the Wenceslas Bible[1]. The Bible is stored in the Austrian Na-
tional Library, it consists of six manuscripts with shelf marks
codex 2759 to 2764. One of the tasks is to try to figure out how
many people illustrated the Bible, as well as which parts each
person did. There is an attribution of illustrations to specific
artist [2], some of them identifiable by name, because they have
signed their illustrations with initials, however, this is not an
assured connection since in most cases there are no historical
records about the illustrators.

Our goal is to use computer vision, taking hints from face
biometry, similar to what [3] did for renaissance painters, to
find commonalities in how faces are painted. The basic as-
sumption is that recurring characters, such as Wenceslas and
the “bathmaid”, are painted similarly by the same painter. The
painters likely never saw the king, and figures like the bath-
maid are entirely fictional, we assume that an idealized version
is painted, resulting in a similar outcome for the same painter.
The assumption is that a similarity in face recognition indicates
that the same painter created the assessed faces.

Before we can analyse the faces we have to find them first,
ideally in an automated way. Face detection is a well estab-
lished area of research, but it is unclear how face detection
methods designed and trained on real faces will perform with
painted faces. The non-realistic style of the face illustrations,
with proportions being not quite right, exacerbates the detec-
tion problem. See figure 2 for a comparison of a real faces and
an illustration from the Wenceslas Bible. Note that sometimes
the faces are interwoven in the background or other parts of
the illustration, although this is more common in the margina-
lia, where Wenceslas and the bathmaids typically appear.

The relatively small faces, as compared to regular photos
where faces are often the focal point, and frequent slanted de-
piction, as a narrative device (bowed heads) or as part of the
story (sleeping, dead, …), suggest the use of a rotation and
scale cascade or tiling (to fix relative face size issues).

While our evaluation is driven by our own requirements
we will make general statements too, which will help others
with similar problems. Our contribution to a wider audience
thus are as follows. We show that single shot detectors are not
a good fit for art, but an additional rotation step is beneficial.
So can be a scaling or tiling approach depending on the image
size and relative scale of faces to the image. We give details
on how to aggregate detections from these detection steps. We
show that CNNs should not be excluded from a task based on
architecture alone, as the same CNN with a different training
can perform vastly better or worse. This is especially important
when working with few training samples of a specific art styles
or time periods where pre-trained networks are used.

2 Related Work

2.1 Face Detection in Art

Not a lot of work was done on face detection in 14th century
book illustrations but some on the more general topic of faces
in art. Srinivasan et al. [3] used facial landmarks and paint
styles to identify whether different Renaissance portraits are
from the same painter. Similarly, Zhong [4] applied face bio-
metric recognition to Song dynasty paintings as a further ar-
gument in art historical discussions, such as whether a painter
had self inserted their likeness into a painting. Liang [5] per-
formed age and gender classification of faces in Japanese art
starting from cropped faces, their result was that an ensemble
of different CNNs worked best. Sindel et al. [6] created Art-
FacePoints, a facial landmark detector on cropped facial images
in art. It takes a two-stage approach, using a coarse scale of the
image to generate a rough map of the landmarks and refining
them on the full resolution image. This work is a promising
next step, provided faces are detected properly, to obtain stable
facial landmarks for pose correction. The topic of face detection
was not a focus in any of these papers. InWechsler et al. [7], the
topic of face detection is more prominent. They introduced a
“faces in art” database and analysed a few face detectors. They
dealt with modern art, a different topic than ours, and they
highlighted that different art styles impact face detection dif-
ferently. Bengamra et al. [8] performed face detection on Tene-
brism style paintings using various networks. RestNet50 with
a retrained Faster RCNN yielded the best results. To handle
difficult poses, images in the augmented dataset were rotated
by by ±45∘ for retraining. In [9] they demonstrated that the re-
trained network can detect faces with more accuracy through
the use of perturbation based explainable AI. So far, there is
no systematic evaluation of face detectors for art that directly
compares real-world performance andperformance onpainted
faces. This is the goal of this work.

2.2 Face Detectors in this Work

There are a lot of face detection frameworks, see recent surveys
[10, 11] for an overview, so a selection had to be made. The
Deepface/Lightface framework [12] provides a good selection
of face detectors which is why we chose it as a basis for this
evaluation. Since RetinaFace is used a number of times in the
Deepface framework, and the author shows a slight drop in
performance (1-2%) in relation to the original implementation,
we also included the original implementation in the evaluation.
Below we will give a brief summary of the methods used and
their references for further detail.

We use two versions of RetinaFace, one provided by the
authors in the Insightface toolkit [13], and one implementa-
tion provided by the Deepface [12] toolkit. Both versions are
based on ResNet50, however, differences in training results in a
slightly different performance, see Figure 2a for a comparison.
The differences are significant enough that we included both in
our evaluation. The Deepface implementation will be referred
to as retinaface and the Insightface version as insightface. A fur-
ther version of ResNet will be used as the backbone of a single
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shot detector (SSD) [14]. The SSD automatically generates dif-
ferent scales and generates multiple patches on each scale to
find face candidates.

The multitask cascade convolutional network (MTCNN)
[15] uses an image pyramid to perform single-stage detection.
The images are then fed through a series of three networks to
propose bounding boxes, perform regression on the proposed
bounding boxes, and a final network that produces the output
of facial position and landmark localizations. We also use the
“you only look once” CNN version 8 for faces (YOLO v8). The
YOLO series of CNNs are general detector networks instead
of repurposed classifiers. Thus, the networks are smaller and
faster, yet still produce good results. YOLO was introduced in
2016 [16] but has since seen constant development, including
various offshoots. See [17] for an overview of the different
YOLO CNNs and their development. The YuNET [18] is also
a custom-built face detector with the goal of minimizing hard-
ware usage and maximizing speed in a speed/accuracy trade-
off. The trade-off in accuracy usually means it is less tightly
targeting human faces, which might be a benefit when using it
to find drawings of human faces instead of photos of human
faces.

In addition, we also use traditional detectors. The used im-
plementations are from the Deepface package [12]. For tradi-
tional methods, we utilized OpenCV’s Viola Jones, which em-
ploys Haar cascades to detect faces and eyes [19], and the DLib
face detector, which is based on the histogram of oriented gra-
dients (HOG) [20]. Both methods have numerous extensions
and improvements. A comparison and more in depth details
can be found in [21].

3 Experiments and Discussion
We will use the F1-score to assess the accurate detection of
faces, which is a well known measure from the field of infor-
mation retrieval, e.g., [22], and is also typically used for face
detection assessment. The F1-score is the harmonic mean of
precision, i.e., facial areas that match the ground truth, and
recall, i.e., the amount of the ground truth which was correctly
found. Let tp be the number of correctly detected faces, fp be
the number of wrongly detected faces and fn be the number of
faces not detected. The precision is defined as 𝒫 ∶= tp

tp+ fp , and
the recall as ℛ ∶= tp

tp+ fn , and finally the F1-score F1 ∶= 2𝒫ℛ𝒫+ℛ .
In our case the true/false positive/negative are not so straight-

forward, as we are not dealing with retrieved pixels but with
rectangular facial areas. Specifically, two retrieved face regions
can overlap a single ground truth area. When we use a pixel
based precision and recall we lose the information about corre-
spondence, butwewant a single retrieved face area per ground
truth faces area, i.e., a one on one correspondence. So we use
the following method to gain the precision and recall values
which match our purpose.

We have two sets of axis-parallel rectangular areas, one for
the ground truth𝒢 and one for the detected faces𝒟 by detector𝑓 (see Section 2). We then need the correct intersection of de-
tected vs. ground truth areas in a one on one correspondence,
denoted as intersect, with 𝐴(𝑟) denoting the area of rectangle

Algorithm 1Calculation of intersect in a one on one correspon-
dence.𝐺 ← 𝒢𝐷 ← 𝒟

intersect ← 0
while |𝐺| > 0 and |𝐷| > 0 do𝑅𝑔, 𝑅𝑑 ← argmax𝑅𝑔∈𝐺, 𝑅𝑑∈𝐷

𝐴(𝑅𝑔∩𝑅𝑑)
max(𝐴(𝑅𝑔),𝐴(𝑅𝑑))𝐷 ← 𝐷\{𝑅𝑑}𝐺 ← 𝐺\{𝑅𝑔}

intersect ← intersect+𝐴(𝑅𝑔 ∩ 𝑅𝑑)
end while
return intersect

bathmaid Wenceslas servant

Rebecca wildman wildman

Figure 1: Ground truth samples from Genesis, Codex 2759
sheet 21 front.

𝑟 as given in algorithm 1. We can then calculate our precision
and recall with 𝒫 ∶= intersect∑𝑅∈𝒟 𝐴(𝑅) , and ℛ ∶= intersect∑𝑅∈𝒢 𝐴(𝑅) .

The algorithms we use all follow this basic idea: a single
stage detects a face only once. To combine multiple detections
there must be a one on one correspondence, consequently, we
cannot combine a face representation more than once. This is
reflected in the set reduction part of the algorithms. To pre-
vent small overlaps of adjacent faces from being counted as ref-
erencing the same face, we work from the largest match in an
ordered fashion. To prevent overlapping faces in crowd situ-
ations from being counted as belonging to the same face we
only count overlapping rectangles as indicating the same face
when they are either a) overlapping with at least 50% area (cal-
culated on the largest rectangle) or b) one is fully contained in
the other and the area is at least 20% of the larger area. For an
evaluation of how overlap affects performance, although for
modern art, refer to [7].

For the evaluation we need a ground truth, thus we man-
ually segmented Genesis from the Wenceslas Bible with axis-
parallel bounding boxes. We segmented all human andhuman-
like, e.g., monkeys and wildmen, faces. Some faces, in illustra-
tions depicting crowds, are quite obfuscated, so we only used
faces showing two of the following four features: left eye, right
eye, mouth, nose. This resulted in 415 faces on 50 pages, some
examples can be seen in Figure 1.
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3.1 Evaluation of face detectors

A common comparison of our selected face detection methods
is not known to us. So we will perform an evaluation and com-
parison between methods and source material, i.e., real and
painted faces. For real faces we use the face detection data set
(FDDB) [23], containing 5171 faces in 2845 images with corre-
sponding ground truth and for art faceswe use themanual seg-
mentation of the Genesis chapter of the Wenceslas Bible as de-
scribed above. Average F1-scores over the database are given
per method. For art faces, due to the large image size and tex-
tured page, many small details are detected as faces. We drop
any rectangle which is not at least 75 × 75 pixels in size. We
calculated the F1-score per page, then averaged them for the
final score per detector. Scores for the evaluation are given in
Table 1 and sample detections are given in Figure 2, note that
we used a crowd image for real faces rather than an image from
the FDDB to better showcase the detection performance of the
algorithms.

For real faces the CNN-based methods outperform the tra-
ditional methods (DLib and OpenCV), YuNet, being built for
speed sacrifices accuracy. The retinaface implementation is
about 2% below the insightface implementation as stated by its
author. Only the SSD,which also has a ResNet50 as a backbone,
like RetinaFace, exhibits a poor performance when compared
to retinaface and insightface, which is also reflected in the sample
image.

For art faces the performance is very different. The YuNet
sacrifices accuracy for speed, so the assumption was that it is
not as well adapted to specifically realistic human faces and
would generalize better, a faulty assumption. The RetinaFace
based methods are interesting in that they perform so differ-
ently, insightface, while slightly worse compared to real faces,
performs well, retinaface, which was comparable to insightface
on regular images, has a large drop in performance, below even
the traditionalmethods, and SSD fails to detect any face. This is
likely a combination of training data and scaling assumptions,
suggesting that refinement training is useful, or in some cases
required. The decision how to handle different scale can have
a huge impact, which can be seen in the different performance
drops, when compared to the FDDB F1-scores, of MTCNN (≈−0.25), YOLOv8 (≈ −0.75) and SSD (a drop to 0). The com-
monality here seems to be that the pyramidal CNNs are outper-
forming the one-step networks (YOLOv8 and SSD). The archi-
tectures of MTCNN (cascade networks) and RetinaFace (sin-
gle stage) are different, but both use a pyramidal approach, the
MTCNN to generate face candidates and RetinaFace uses a fea-
ture pyramid. But YuNet also utilizes a feature pyramid (tiny
feature pyramid network) so that alone cannot be the only ex-
planation.

3.2 Combining Tiling, Scaling and Rotations

While we have too little data with ground truth to perform re-
finement training at this stage we can implement a scaling and
rotation cascade on top of the detector methods. The reason
to include rotation is that people look down or up, as a narra-
tive device, and people lying down, dying, sleeping and forni-

cating, are surprisingly frequent, cf. Figure 2b. We include a
scaling step because the scale of the page and the size of the
faces in the pages are outside the typical scenarios of real im-
ages. Also, face size varies depending on how prominent the
face is in a given illustration. The small relative size of faces
to the overall page, can also be fixed by tiling, i.e. overlapping
crops of the page. If we use a crop of the page the relative size
of the face is returned to (roughly) in the same relation as in
real photos. The tiles we use are square and of size 3000, which
is similar to digital photoswhich are typically in the 4000×3000
range, while pages from the Wenceslas Bible are three to four
times that size. As an example the ratio of face to image height
for person focused images (like our FDDB) is around 1 ∶ 4 and
around 1 ∶ 20 for regular images containing people, like the
large crowd image (Fig. 2a). The ratio in the Wenceslas Bible
is around 1 ∶ 122 which is reduced to 1 ∶ 25 with tiling. We
use a 50% overlap of tiles to prevent the non-detection of faces
which otherwise would be cut in half on the border of the tile.

In essence we will build a multistage detector since the sin-
gle shot detectors we tested do not work. However, we don’t
blindly test multiple options and optimize classification like
with test-time augmentation [24], rather we investigate mul-
tiple options in a targeted manner to get an optimal set of oper-
ations for detection, and also runtime cost, by minimizing the
number of stages required. When a face is found on multiple
scales, rotations or tiles it will have more than one rectangle
representing it, this has to be solved. The solution is quite easy:
either average the rectangles to get a more stable representa-
tion or to use the rectangle with the highest confidence score
to get the best localization. We chose the first, by averaging left,
right, top and bottom coordinates of the rectangle respectively,
to allow for methods which do not provide confidence scores.

The results of the test are given in Table 2 using a scale (S)
and rotation (R) cascade as given. Once without tiling (Ta-
ble 2a) and once with tiling (Table 2b). The F1-scores, with
the best score per detector marked in bold, are given for each
possible combination of rotations and scales to get a sense for
how a given scale and/or rotation impacts the results. Note
that S1 in Table 2a is the same as art faces in Table 1. The re-
sults for SSD and YuNet are not included since they reflected
the results in Table 1, i.e., they did not work at all. We kept
the scaling and rotation relatively simple, ±45∘ and ±90∘ for
rotation and down scaling by 2 and 4 (and unscaled 1).

Let us first look at the non-tiling cascade (Table 2a). Except
for the Viola-Jones based OpenCV, which has downsampling
built in by the Haar cascade, all detectors benefit from scaling,
however, the gain is mostly small. Interestingly retinaface and
insightface benefit differently from scale/rotation even though
they have the same architecture, whichmeans that this is amat-
ter of training rather than architecture.

If we add tiling (Table 2b), it is of interest whether scaling
is still helpful even if the method-inherent handling of scales
works due the relative scale being fixed. Two things are of note:
1) as suspected additional scaling steps are no longer necessary.
And 2) tiling does little for methods which already performed
well on the untiled version, but it improvesmethodswhich had
problems before (retinaface and YOLOv8). Tiling seems to be
better mostly for methods which had serious problems before,
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Table 1: Baseline results for the face detectors on real faces (FDDB) and art faces (Wenceslas Bible) given as F1-score.

faces DLib insightface MTCNN OpenCV retinaface SSD YOLOv8 YuNet
real 0.686 0.840 0.805 0.659 0.821 0.789 0.832 0.789
art 0.521 0.798 0.586 0.287 0.264 0.000 0.062 0.000

Table 2: F1 scores for rotation, scale and tiling experiments. Highest value per detector bolded.

(a) Rotation and scaling without tiling.

scale and
rotation

F1-score
DLib insightface MTCNN OpenCV retinaface YOLOv8

S1 0.521 0.798 0.586 0.287 0.264 0.062
S1,2 0.529 0.800 0.586 0.267 0.292 0.066
S1,2,4 0.514 0.794 0.581 0.257 0.322 0.082
S1,2,4 R45 0.435 0.765 0.337 0.156 0.282 0.061
S1,2,4 R45,90 0.323 0.708 0.280 0.101 0.296 0.053
S1,2,4 R90 0.375 0.735 0.470 0.148 0.335 0.071
S1,2 R45 0.476 0.790 0.397 0.179 0.246 0.048
S1,2 R45,90 0.370 0.743 0.337 0.113 0.246 0.049
S1,2 R90 0.402 0.760 0.511 0.154 0.292 0.066
S1 R45 0.488 0.804 0.483 0.206 0.221 0.046
S1 R45,90 0.415 0.764 0.426 0.134 0.221 0.046
S1 R90 0.443 0.768 0.552 0.177 0.264 0.060

(b) Rotation and scaling with tiling.

scale and
rotation

F1-score
DLib insightface MTCNN OpenCV retinaface YOLOv8

S1 0.508 0.796 0.585 0.265 0.634 0.595
S1,2 0.405 0.649 0.474 0.207 0.566 0.479
S1,2,4 0.386 0.634 0.469 0.197 0.584 0.466
S1,2,4R45 0.235 0.609 0.195 0.129 0.649 0.243
S1,2,4R45,90 0.178 0.537 0.163 0.079 0.653 0.170
S1,2,4R90 0.254 0.554 0.371 0.101 0.599 0.288
S1,2R45 0.247 0.643 0.222 0.162 0.635 0.252
S1,2R45,90 0.191 0.570 0.183 0.095 0.638 0.202
S1,2R90 0.280 0.582 0.383 0.105 0.581 0.332
S1R45 0.337 0.815 0.378 0.244 0.724 0.358
S1R45,90 0.264 0.775 0.318 0.145 0.732 0.273
S1R90 0.369 0.772 0.502 0.145 0.654 0.454
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DLib insightface MTCNN OpenCV

retinaface SSD YOLOv8 YuNet
(a) Samples of a real faces on the large crowd image.

DLib insightface MTCNN

OpenCV retinaface YOLOv8
(b) Art face samples on a crop of sheet 53r, codex 2759, Wencelsas Bible. SSD and YuNet are not included, they did not detect any faces.

Figure 2: Samples of face detection in art faces and real faces.
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but insightface also improves from 0.804 to 0.815 F1-score with
tiling. For any given method it is not known a-priori what the
cause of the problem is, i.e., is the problem internal scale han-
dling which cannot deal with the large relative scales or is the
problem the inability to detect painted faces. Therefor, an eval-
uation is necessary for any given method, i.e., the findings can
not be generalized, but testing on some cropped images seems
to be sufficient.

Whether a rotation step is beneficial again strongly de-
pends on the method but seems to be independent of scal-
ing. Tiling can help by reducing the number of false positives,
which allows retinaface to use two rotation steps with tiling vs.
one without. However, it is also training related, as can be
seen by the difference between insightface and retinaface which
otherwise have the same architectures.

A further note on the generalization of these results. Not
shown in Table 2 are the components of the F1-score which are
based on finding all faces andmiss-detection of faces. Rotation
and scale in all cases improved the detection rate but also the
miss-detection rate. Aproblemwith rotation is thatwhile there
are rotated faces, they are relatively few in number, and while
they are now properly detected the miss-detection rate is also
increased, but that can happen anywhere. Thus the F1-score
does not improve. For works where there is a higher rate of
rotated faces the result may well be different.

Also note that tiling, rotation and scaling only optimize per-
formance, in no case did they boost detection performance in
a major way. That is, it is best to start with a well perform-
ing method. Unfortunately, the performance on real-world im-
agery does not determine the performance on painted faces, al-
though the performance on painted faces only ever dropped in
relation. Also, from the differences in retinaface and insightface,
same architecture but different training, it is clear that refine-
ment training should be performed if possible.

4 Conclusion
The performance on real world-images generally does not
transfer over to painted images. An evaluation on the target
imagery is required to find methods fit for use. The problems
are not based on architecture, the original implementation of
Retinaface (insightface in the paper) and the reimplementation,
Retinaface by lightface/deepface (retinaface in the paper), show
this. While insightface performed well, retinaface does not, and
that is despite a comparable performance of both methods on
real-world images. In our evaluation the original Retinaface im-
plementation [13] was the best performingmethod for painted
faces.

We have seen that the relative size of faces to the size of the
page can affect detection rates. Both retinaface and YOLOv8 suf-
fer from this, although they otherwise show good performance
on painted faces, as does MTCNN. A tiling approach, in which
the relative size of the faces in the image is closer to regular
photography, helps to address this problem. But, tiling does
not improve matters for all cases, it must be evaluated for each
algorithm.

We have shown that rotation or scaling improves the perfor-
mance of most methods, though combining scaling and tiling
does not improve the performance. The exact settings, again,
differ for each method, so no general advice can be given. For
general use it seems the best method is insightface with tiling
and a rotation of ±45∘.
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