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Abstract
CNN-based iris segmentations have been proven to be superior
to traditional iris segmentation techniques in terms of segmen-
tation error metrics. To properly utilize them in a traditional
biometric recognition systems requires a parameterization of
the iris, based on the generated segmentation, to obtain the nor-
malised iris texture typically used for feature extraction. This
is an unsolved problem. We will introduce a method to param-
eterize CNN based segmentation, bridging the gap between
CNN based segmentation and the rubbersheet-transform. The
parameterization enables the CNN segmentation as full seg-
mentation step in any regular iris biometric system, or alter-
natively the segmentation can be utilized as a noise mask for
other segmentation methods. Both of these options will be eval-
uated.
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1 Introduction
In past decades, iris recognition [1–3] has emerged as a rapidly
growing field of research. Due to its intricate structure, the iris
constitutes one of the most powerful biometric characteristics
utilized by iris recognition algorithms to extract discriminative
biometric reference data (templates). The ever-increasing de-
mand on biometric systems has entailed continuous proposals
of different iris recognition techniques [2]. Still, the processing
chain of traditional iris recognition systems has remained al-
most unaltered. In particular, generic iris recognition systems
consist of four major building blocks (see also Figure 2): (1) Iris
image acquisition, (2) Image preprocessing, (3) Iris texture fea-
ture extraction, (4) Comparison (feature matching).

Recent methods utilizing convolutional neural networks
(CNN) improve on different aspects of this pipeline. There are
CNNs for segmentation of the iris, [4–7], and for feature ex-
traction, [8, 9]. Some CNNs even replace the whole biometric
toolchain and directly compare two iris recordings, [10].

CNN based segmentation of the iris, i.e., a binary mask
separating iris from non-iris pixels, has shown great promise.
In such an approach, a segmentation network is trained on
ground-truth, manual iris segmentations, and evaluated on
similar ground-truth augmented databases. The quality of
segmentation is assessed based on type-1 and type-2 errors,
as used in the noisy iris challenge evaluation (NICE), or the
F-measure, i.e., the harmonic mean of recall and precision.

While these methods have shown good performance w.r.t.
segmentation measures, they have not been evaluated as part
of the biometric toolchain, i.e., not based on recognition per-
formance. The reason for this is that CNNs generate a mask
separating iris pixel from background pixels. However, the
biometric toolchain as described above almost universally re-
quires the transformation of the iris texture from polar coordi-
nates (basically an unrolling of the iris), such that the angular
dimension is mapped to the x-axis in a Cartesian coordinate
system. This is done for easier storage and the orientation of
radial features into a single direction, along the y-axis. Further,
this ’rubbersheet’ transformation stretches the iris texture to a
fixed rectangular size which constitutes a normalisation step.

To the authors’ best knowledge, there are no methods to cre-
ate a parameterization using the CNN based iris segmentation.
We will introduce a method to parameterize the iris based on
the CNN segmentation. While this is an easy task if the shape
is closed and large parts of the iris are visible, it can also be
challenging if there is a lot of obfuscation of the iris, e.g., by
eyelids or eyelashes. An example of this is shown in Figure 1,
where the upper iris image shows relatively little obfuscation
resulting in a nice mask where the circular pupillary region
can easily identified and the outer iris border is also of high
quality. In contrast, the lower image shows an example where
the pupillary border is no longer fully visible and the outer iris
border is largely cut off. The whole iris, not just the visible
part, should be parameterized, usually by a circle or an ellipse,
to generate a consistent representation during the ’rubbersheet’
transform. If not done in a consistent fashion over different iris
recordings, recognition performance will inevitably suffer [11].
A ’noise’ mask can be used to mark the parts of the iris which

image mask

Figure 1: Examples of iris and mask which are easy and hard
to parameterize for the rubbersheet transform.

are not visible, e.g., due to being overlapped by eyelids. These
parts will then not be used during biometric comparison. We
introduce our proposed method, and discuss the various steps
to avoid problem cases, in Section 3.

An alternative is to use traditional segmentation meth-
ods, e.g., circular or elliptical parameterization, and then use
the CNN based segmentation, interpreted as a pixel based
iris/non-iris classification, as a noise mask. This noise mask
is used during biometric comparison to omit non-iris areas,
e.g., eyelids, eyelashes and reflections. As the masks produced
by traditional segmentation methods are typically of relatively
low quality, high quality CNN segmentations have the poten-
tial to improve the biometric recognition. This will be tested,
along with the parameterization of the CNN segmentation, in
Section 4.

2 Related Work and State of the Art
In this section, we will briefly describe the state of the art re-
garding the iris biometric toolchain and convolutional neural
networks, specifically in the setting of iris biometrics.

2.1 The Iris Recognition Biometric System
A schematic view of the biometric toolchain is shown in Fig-
ure 2. While steps relevant to the presented work will be de-
scribed in more detail, we refer the reader to [12] for a gen-
eral overview. Modern iris recognition algorithms operate
on normalised representations of the iris texture obtained
by mapping the area between inner and outer iris bound-
aries 𝑃, 𝐿 ∶ [0, 2𝜋) → [0, 𝑚] × [0, 𝑛], from a polar coordi-
nate system to a Cartesian one, i.e., to “Faberge” or “Rubber-
sheet” coordinates (using angle 𝜃 and pupil-to-limbic radial
distance 𝑟) [1]. These “Rubbersheet” coordinates are Carte-
sian (+normalized) and the texture is “streched” to fit into a
normalized representation independent of pupillary dilation:
𝑅(𝜃, 𝑟) ∶= (1 − 𝑟) ⋅ 𝑃(𝜃) + 𝑟 ⋅ 𝐿(𝜃). This transformation is then
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Figure 2: A schematic view of the biometric toolchain from image acquisition to matching.

used to generate a normalised image of the iris texture (𝑅) and a
noise masks (𝑁). The latter usually considers reflections, upper
and lower eyelid curves, and masks out occlusions caused by
eyelashes such that 𝑁(𝑥, 𝑦) ≠ 0 if and only if pixel (𝑥, 𝑦) refers
to an in-iris location. While normalisation is standardised,
there are several iris segmentation approaches for obtaining
𝑃, 𝐿 and 𝑁. Traditional approaches employ circular boundary-
based segmentation, such as Daugman’s integrodifferential
operator [1] and Wildes’ circular Hough Transform (HT) [13].
Current iris segmentation techniques are often more involved,
like the ellipsopolar transform for elliptical iris models [14].

2.2 CNNs in Iris Biometrics
Application of convolutional neural networks for iris segmen-
tation has recently received attention in the research commu-
nity, with different CNN based models proposed for this pur-
pose [6]. Liu et al. [4] proposed a CNN classifier composed
of three blocks of convolution and pooling layers, which takes
in a local patch around pixels to extract features, and labels
each pixel separately using a final fully connected layer (FC).
However, this model lacks speed and efficiency. The authors
proposed another model, which includes six blocks of intercon-
nected convolution and pooling layers. The outs of the blocks
then get fused together using a single fusion layer, which is
flowed by a soft-max layer. However, performance evaluation
is limited to a relatively small number of samples and does not
go beyond segmentation, i.e., they did not assess performance
in a recognition setup.

Jalilian and Uhl [6] used deep convolutional encoder-decoder
networks in different variants [15], SegNet and derivatives, and
trained them on annotated iris segmentation masks. The Seg-
Net network comprises an encoder part and a decoder part
and the ‘Basic’ and ‘Bayesian’ networks are just reduced ver-
sions of the same network to enable probabilistic pixel-wise
segmentation using Monte-Carlo sampling and drop-out. In
[7], the authors used the same ‘Basic’ network, and proposed
a domain adaption model for iris images, eliminating the need
for the annotated training masks.

Arsalan et al. [5] focus on the segmentation of visible light
unconstrained (on-the-move) iris recordings. The CNN specif-
ically focuses on the segmentation of the iris and requires a

prior ROI detection. An adapted version of a pre-trained VGG
network is then used to identify iris pixel.

Arsalan et al. [16] propose an IrisDenseNet for iris end-to-
end segmentation without preprocessing of the input image.
The network has two main parts: a densely connected encoder
and a SegNet decoder. While the network exhibits good per-
formance, yet it is computationally intensive to train (specially
when using bigger mini-batch sizes), due to dense connectiv-
ity.

Bazrafkan and Corcoran [17] propose a network for the seg-
mentation task, in particular, a deep U-shaped network with 13
layers. It starts with a 3 × 3 kernel; the kernel size increases to-
wards the center of the network to a maximum of 15 × 15; the
kernel size then decreases towards the output. The network
shows good performance and the authors found that the pool-
ing operation results in unwanted artifacts at the output of the
network.

Liu et al. [10] proposed a CNN classifier, called ‘DeepIris’,
for heterogeneous iris verification, which learns relational fea-
tures to measure the similarity between pairs of iris images.
The network generates a similarity map between two images,
and a similarity measure is calculated with help of a FC layer at
the end. Minaee et al. [8] investigated the application of a VGG-
style model as an iris feature extraction engine. They applied
principal component analysis, and multi-class support vector
machines on the extracted features to perform recognition.

Gangwar and Joshi [9] introduced two CNN classifiers for
iris recognition (not for segmentation). The DeepIrisNet-A net-
work is based on convolutional layers, and DeepIrisNet-B net-
work uses a similar architecture, except using two inception
layers after the convolutional layers. Both networks feed into a
C-way softmax layer (where C is the number of classes) which
produces a distribution over the class labels. Likewise, [18],
proposed a smart-phone based iris recognition system using
deep sparse filtering techniques to generate iris feature maps.
None of the latter two works, however, do iris segmentation,
and instead use the OSIRIS1 algorithm for this purpose.

Zhao and Kumar [19] developed two fully convolutional
networks (FCN) for feature extraction in the regular biomet-
ric toolchain. Specifically, they developed a feature extraction
FCN, FeatNet, which takes a normalized iris texture as input

1http://svnext.it-sudparis.eu/svnview2-eph/ref-syst/
Iris-Osiris-v4.1
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CNN Database E1 E2 F1

RefineNet

casia4i 0.009 0.011 0.984
casiaA 0.005 0.012 0.972
iitd 0.015 0.018 0.974
protI 0.013 0.036 0.823

iFCEDN[6]

casia4i 0.021 0.028 0.962
casiaA 0.007 0.020 0.966
iitd 0.018 0.022 0.970
protI 0.051 0.030 0.947

Table 1: Average scores per dataset based on type 1 (E1) and
type 2 (E2) errors as used in the noisy iris challenge evaluation
(lower is better) and the F1-measure (F1, higher is better).

Parameter Batchsize Epoch Momentum Learning rate

Values 8 1000 0.1 0.9

Table 2: The training parameters for the network.

and generates an iris code which can be used in matching.
In addition to that, they developed a second FCN, MaskNet,
which also takes a normalized iris texture and generates a noise
mask for use in matching.

3 Description of Algorithms

3.1 CNN-based Mask Generation
We considered RefineNet since it exhibits good performance
for semantic segmentation (see experiments and comparison
in [20]), which is an arguably harder task than iris segmen-
tation (multiple versus two classes), and iFCEDN which was
used in iris segmentation with good results in the past. Both
have, in their respective publications, shown their superiority
over a host of other architectures.

In this work, we use RefineNet [20], i.e., a multi-path re-
finement network, which employs a cascaded architecture with
four RefineNet units, each of which directly connects to the out-
put of one Residual net [21], as well as to the preceding Re-
fineNet block in the cascade. Each RefineNet unit consists of
two residual convolution units (RCU), whose outputs are fused
into a high-resolution feature map, and then fed into a chained
residual pooling block. The final part of each RefineNet block
is another residual convolution unit.

RefineNet was chosen over other CNN architectures, like
the improved FCEDN [6] (iFCEDN), for it’s higher segmenta-
tion performance, i.e., higher F-measure for generated masks,
compared to a mask produced by human annotation (ground-
truth). Table 1 lists a comparison of iFCEDN vs. RefineNet per-
formance. For information about the ground-truth and data
sets, we refer the reader to Section 4.

To assess segmentation performance,i.e., the generation of
binary iris masks, we tested the CNN on all samples in each
database, without overlapping training and testing sets, using
five-fold cross-validation. To do so, we initially partitioned
each database into five equal-sized subsets. Of the five subsets,

a single subset was retained as the testing data, and the remain-
ing four subsets were used for training. The cross-validation
process was then repeated five times, with each of the five sub-
sets used exactly once as the testing data. In this way results for
the whole database were generated without ever overlapping
test and training data. Additional parameter settings relevant
for training are listed in Table 2, the network architecture is
unmodified from [20] as provided by the authors2.

3.2 Parameterizing the Masks for Normaliza-
tion

The parameterization process involves the following steps: (1)
preprocessing by median blurring to smooth out the edges, (2)
generation of candidate segmentations using a circular Hough
transform [22], and (3) selecting the best candidate as a final
parameterization. An example for the pupillary parameteriza-
tion is shown in Figure 3. The annuli (see below) belonging to
the chosen pupillary parameterization are also shown.

If the core parameters for the Hough transformation are set
appropriately, i.e., pupillary radius no larger than 1/4th of the
smallest image dimension and iris radius greater than pupil-
lary radius, then the resulting circles almost certainly contain
the correct parameterization. The selection process then is key
to finding well fitting and stable parameterizations.

Given that the pupillary boundary is more complete than
the iris boundary (simply because it is less obfuscated by eye-
lids and eyelashes), we start with that. The goal is to find the
best parameterizations for which the parameterized circle ful-
fills the following properties: (a) surrounded by iris pixels, and
(b) containing no iris pixels. We can use annuli adjacent to the
circle candidate 𝑐, with center at 𝑐𝑥, 𝑐𝑦 and radius 𝑐𝑟, and mea-
sure the number of iris pixels contained therein. Let the inner
annulus be 𝐴𝑖(𝑐) with radii 𝑐𝑟 and 0.5 × 𝑐𝑟, and likewise the
outer annulus 𝐴𝑜(𝑐) with radii (1.5 × 𝑐𝑟, 𝑐𝑟). Let 𝑁(𝑎) count the
number of iris pixels in area 𝑎 and 𝑁(𝑎) be maximum possible
number of iris pixels in area 𝑎. We can then use these (pupil-
lary) value functions (normalized to [0, 1]) as a quality measure
for each circle:

𝑉𝑝(𝑐) =
𝑁(𝐴𝑜(𝑐)) − 𝑁(𝐴𝑖(𝑐))

̂𝑁(𝐴𝑜(𝑐))
. (1)

The circle candidate with the highest value will be the cir-
cle we choose as parameterization for the pupil 𝑐𝑝. If two can-
didates have the same value, the one with the smaller radius
shall be chosen, in order to maximize the available iris texture.

The selection of the limbic circle is done in a similar man-
ner, but changing the role of outer and inner annulus, since the
limbic boundary should contain all the iris pixels. The largest
radius candidate should be used in case of multiple candidates
having the same value. Furthermore, there is an additional con-
straint which can be added to the selector function: the limbic
and pupillary parameterizations should be roughly concentric.
This leads to the limbic value function

2https://github.com/guosheng/refinenet
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(a) Iris image (b) Mask image (c) 𝑐𝑝 Candidates (d) 𝑐𝑝, 𝐴𝑖(𝑐𝑝) and 𝐴𝑜(𝑐𝑝) (e) Final parameterization

Figure 3: Outline of the parameterization process.

𝑉𝑙(𝑐, 𝑐𝑝) = max(0,

border of iris texture term
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴𝑁(𝐴𝑖(𝑐)) − 𝑁(𝐴𝑜(𝑐))

̂𝑁(𝐴𝑖(𝑐))

−
√(𝑐𝑥 − 𝑐𝑝

𝑥)2 + (𝑐𝑦 − 𝑐𝑝
𝑦)2

𝑐𝑟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
relative radial offset term

). (2)

The lower cap of zero needs to be in place to keep it nor-
malized in a [0, 1] range, since, of course ̂𝑁(𝐴𝑜) > 𝑁(𝐴𝑖). We
further reduce the score by the relative radial offset. The cases
where 𝑉𝑖 would be less than zero are clearly not good param-
eterization candidates and as such the loss in differentiation
does not impact the result. Like above, we choose the high-
est value circle 𝑐𝑙 as the selected parameterization of the lim-
bic boundary, and normalization is then done by transforma-
tion to “Faberge” coordinates in the regular fashion with 𝑃 ∶=
𝑐𝑝, 𝐿 ∶= 𝑐𝑙.

A few notes on the algorithm and parameter settings are
worth pointing out. The first is to start with the pupillary
boundary no matter which light source is used, near infrared
or visible light. There are two reasons for this: i) the circular
shape is more intact for the pupil which makes it easier to find
a stable starting point and ii) the CNNs, at least over all the
databases we looked at, do a very good job of generating an ac-
curate pixel mask independent of the illumination wavelength.
The second choice was to use a circular Hough transform in-
stead of an elliptical curve fitting which is problematic for off-
angle recordings. The main reason is that ellipses fitted to the
iris masks would tend to be overly oblong due to occlusion of
the iris by eyelids or eyelashes, see Figure 1 (lower right) for an
example of this. To avoid abnormal ellipse formation would re-
quire more complicated value functions, which would be fine,
but differences between strong off-angle recordings and minor
occlusions would be almost impossible to detect. This, in turn,
would lead to a more inconsistent parameterization which is
detrimental to the overall process, see [11].

4 Experimental Evaluation
We used USIT 2 [23] as our main toolkit, since it is modular
and allows to switch the segmentation without changing other
parts of the system [24]. This allows for an analysis of only
the change in segmentation. We used wavelet based (qsw) [25]
and log-Gabor features (lg) [26]. For segmentation compari-
son, we used the circular (CAHT) [1] as well as the weighted
adaptive ellipsopolar Hough transform (WAHET) [14]. Fur-
thermore, we employed a method based on a total variation

model (TVMIRIS) [27] which also produces a parameteriza-
tion3. The parameters used were those from the source code
suggested for the UBIRIS database. These settings resulted in
the best segmentations. The CNN-based segmentation with
the parameterizations described in Section 3.2 will be denoted
as CNNHT. The flexibility of the USIT, which allows to eas-
ily switch parts of the toolchain, has a cost, usually a slightly
higher error rate, depending on the combination of algorithms
[24]. To show this cost we also included a well known method
from the literature, i.e., the OSIRIS [28] biometric toolchain.

The databases used are the well known IIT Delhi Iris Database
version 1.04 (iitd), the Interval subset of the CASIA Iris Image
Database version 4.05 (casia4i), and a subset of the ND-0405 Iris
Image dataset (ndi)6 for which the segmentation ground-truth
is available (837 iris images from 30 different subjects). In addi-
tion, we used a subset of the CASIA Iris Subject Ageing Version
1.0 Database (casiaA)7. The ground-truth for the segmentations
is available for all three databases, for iitd, casia4i and ndi refer
to [29]8 and for casiaA refer to [30]9.

Further, we included the PROTECT Multimodal DATABASE10

([31]). Since this database is new we will give a brief overview.
It contains different modalities, of which we only used the iris
images (protI), from 47 subjects of great variety w.r.t. several
aspects, including age and gender. The age interval is 21 to 76
and the distribution male/female is 57%/43%. The database
is a visible light iris database at a distance with off angle ac-
quisition and was included specifically because it is a very
challenging database. The ground-truth is based on one hu-
man annotator with ellipse+polynomial contours, cf. [29]. The
ground-truth of this database will be published jointly with
this paper and will be made available at the Wavelab home-
page11.

4.1 Impact of CNN Segmentation on the Recog-
nition Rate

Table 3 lists the results of this evaluation. The parameteriza-
tion and the noise mask is produced by the given segmentation
tool. The evaluation was performed on the full statistics of the

3available online at http://www4.comp.polyu.edu.hk/~csajaykr/
tvmiris.htm

4http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_
Iris.htm

5http://biometrics.idealtest.org/dbDetailForUser.do?id=4
6http://www3.nd.edu/~cvrl/CVRL/Data_Sets.html
7http://biometrics.idealtest.org/dbDetailForUser.do?id=14
8http://www.wavelab.at/sources/Hofbauer14b
9http://www.wavelab.at/sources/Hofbauer16d

10http://www.projectprotect.eu/database/
11http://www.wavelab.at/sources/ProtI-GT
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Table 3: Biometric recognition performance, with segmenta-
tion masks, for the EER and FNMR@FMR=0.01% operation
points. Segmentation and mask errors are also given.

Testset Feat. Seg. EER OP0.01 SE ME
casiaA lg OSIRIS 2.216 99.998 0 1406
casiaA lg TVMIRIS 22.036 99.975 13 20657
casiaA lg CAHT 4.786 12.009 0 85951
casiaA lg WAHET 13.899 99.563 0 0
casiaA lg CNNHT 2.613 13.770 0 0
casiaA lg Groundtruth 1.455 12.565 0 0
casiaA qsw OSIRIS 2.289 99.998 0 1406
casiaA qsw TVMIRIS 19.948 99.974 13 20657
casiaA qsw CAHT 4.636 8.617 0 85951
casiaA qsw WAHET 14.822 86.820 0 0
casiaA qsw CNNHT 2.685 9.451 0 0
casiaA qsw Groundtruth 1.310 5.761 0 0

casia4i lg OSIRIS 0.320 0.619 0 0
casia4i lg TVMIRIS 21.658 99.993 29 342080
casia4i lg CAHT 0.638 0.902 0 5277
casia4i lg WAHET 1.843 17.305 0 0
casia4i lg CNNHT 1.085 2.699 0 0
casia4i lg Groundtruth 0.244 0.414 0 0
casia4i qsw OSIRIS 0.352 0.515 0 0
casia4i qsw TVMIRIS 22.296 99.993 29 342080
casia4i qsw CAHT 0.694 0.837 0 5277
casia4i qsw WAHET 1.679 7.630 0 0
casia4i qsw CNNHT 1.284 3.141 0 0
casia4i qsw Groundtruth 0.213 0.224 0 0

iitd lg OSIRIS 1.629 24.974 0 0
iitd lg TVMIRIS 21.430 99.994 77 722481
iitd lg CAHT 1.308 20.726 0 71424
iitd lg WAHET 7.547 58.927 0 8956
iitd lg CNNHT 1.103 37.183 0 0
iitd lg Groundtruth 0.357 25.253 0 0
iitd qsw OSIRIS 1.521 26.503 0 0
iitd qsw TVMIRIS 23.028 99.994 77 722481
iitd qsw CAHT 1.173 19.491 0 71424
iitd qsw WAHET 7.783 47.782 0 8956
iitd qsw CNNHT 1.385 43.470 0 0
iitd qsw Groundtruth 0.305 29.068 0 0

protI lg OSIRIS 22.422 69.662 0 19980
protI lg TVMIRIS 25.929 58.076 2 0
protI lg CAHT 20.573 46.434 0 192071
protI lg WAHET 30.887 100.000 0 0
protI lg CNNHT 8.220 31.829 0 0
protI lg Groundtruth 7.899 29.565 0 0
protI qsw OSIRIS 21.698 62.473 0 19980
protI qsw TVMIRIS 26.556 59.056 2 0
protI qsw CAHT 23.022 47.359 0 192071
protI qsw WAHET 32.167 100.000 0 0
protI qsw CNNHT 9.701 32.692 0 0
protI qsw Groundtruth 9.309 30.466 0 0

ndi lg OSIRIS 25.466 39.272 0 0
ndi lg TVMIRIS 30.777 99.985 3 3199
ndi lg CAHT 27.046 46.340 0 47705
ndi lg WAHET 27.706 99.742 0 0
ndi lg CNNHT 24.703 40.758 0 0
ndi lg Groundtruth 24.212 36.923 0 0
ndi qsw OSIRIS 24.863 36.306 0 0
ndi qsw TVMIRIS 28.763 99.984 3 3199
ndi qsw CAHT 26.461 43.568 0 47705
ndi qsw WAHET 26.238 86.191 0 0
ndi qsw CNNHT 23.492 37.218 0 0
ndi qsw Groundtruth 23.906 33.557 0 0

database, that is all possible comparisons were performed. The
results are given at two operation points of the ROC curve, i.e.,
the equal error rate (EER) and the false non match rate (FNMR)
at a false match rate (FMR) of 0.01% (as OP0.01 in the table).
All results listed in Table 3 are given in percentages. We fur-
ther provide the number of errors produced by the system, of
which there are two types. First, segmentation errors (SE) are
errors where the segmentation fails to produce a usable param-
eterization. Second, masking errors (ME) are errors where the
overlap of the two noise masks from the enrolled image and the
probe presented to the system, leaves no pixel for comparison.
Since only pixels not rejected by either mask are used for com-
parison, no score can be determined. It should be noted that,
depending on system design, errors happen at different points
in the system. Specifically, CAHT and WAHET are designed to
be robust and will generally generate a parameterization. Fail-
ure in these cases is postponed to a mask error. The CNNHT,
on the other hand, fails at the segmentation stage, since the pa-
rameterization used in the segmentation is directly based on
the iris/noise mask.

It should be stated that the table also includes results from
a ground-truth segmentation, i.e., a segmentation by a hu-
man observer who went over each image, delimited pupillary
and iris boundaries and marked the upper and lower eyelid.
This was done to assess the near optimal score which can be
achieved given the texture quality of the database.

The first conclusion drawn from the results (Table 3) must
be that the segmentation performance, in terms of segmenta-
tion and masking errors, of the CNNs in combination with the
proposed parameterization algorithm, is very good. In fact,
not a single error is produced, counting both segmentation
and masking errors. Comparing the methods, we can see that
WAHET produces less errors than CAHT, but still more than
CNNHT. For WAHET, this comes at the expense of recognition
performance and it shows the highest error rates over all fea-
ture extraction methods and databases. OSIRIS also produces
no errors except for a low number of masking errors on casiaA.

The second conclusion is that the more complex TVMIRIS
approach results in fewer errors (SE+ME) when it comes to
the difficult test sets (ndi and protI), while maintaining a sim-
ilar, but slightly worse, EER compared to CAHT and WAHET.
However, this does not apply to all databases. For the diffi-
cult casiaA, it shows a similar rate of errors with a 5× higher
EER compared to CAHT. Similarly, for high quality databases,
CAHT and WAHET outperform TVMIRIS substantially with an
error rate that is an order of magnitude lower.

The comparison of CNNHT and CAHT is a more interesting
one. While CAHT produces a lot more errors, this could also be
interpreted as rejecting low quality images. A masking error
means the combined mask of both images does not allow for
matching. In case of casia4i, a single image produced a failed
segmentation, and consequently a noise mask rejecting every
pixel. That image will then produce a masking error whenever
it is used in a matching attempt. That this is a failure of the
algorithm rather than the rejection of an image (which is of bad
quality) is easily verified by looking at Figure 4. The figure also
includes a sample from protI on which CAHT fails.
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Figure 4: Sample images from the casia4i and protI databases
on which CAHT failed to generate a proper segmentation.

The CAHT segmentation algorithm utilizes texture infor-
mation as well as structure of the iris for segmentation and
mask generation. With CNNHT the texture information is lost
and can not be used during segmentation. For high quality
images, in terms of biometric quality (i.e., open eyelids, clear
iris texture and few obfuscations), this benefits the traditional
segmentation algorithms. The less the texture can be used,
the more similar the data during parameterization becomes
between CAHT, WAHET and CNNHT. In such circumstances,
the CNNHT has a better segmentation performance which in
turn leads to a better parameterization. The results show this
clearly: casia4i and iitd are high quality databases with frontal
NIR images, and the results indicate that CAHT mostly outper-
forms CNNHT and WAHET. For the more difficult databases,
i.e., casiaA and ndi, CNNHT starts to outperform CAHT as well.
Importantly, on the protI database, which uses visible light
and contains extremely difficult images, CNNHT segmenta-
tion shows great promise, with the next best segmentation
more than doubling the EER. It should also be noted that the
CNNHT almost reaches the performance of the ground-truth
on this database (EER 7.9% versus 8.2%). The complexity and
resulting performance of OSIRIS is between CAHT/WAHET
on the one side and CNNHT on the other. On high quality
databases (iitd, casia4i), it shows roughly the same performance
as CAHT, on more difficult databases (ndi and casiaA) the per-
formance is close to CNNHT, and on difficult databases (protI)
the CNNHT is substantially better. This is further exempli-
fied on the ndi database using qsw features, where the CNNHT
(EER 23.492) actually improves on the Groundtruth (EER 23.906)
by a statistically significant margin (assess by a McNemar test:
𝜒2 ≈ 12.7, 𝑝∗ ≈ 0.04%).

Overall, the segmentation performance of the CNN and
the proposed parameterization algorithm is excellent and the
recognition performance is high. It is only surpassed on very
high quality iris images where the traditional segmentation
methods are expected to perform well.

4.2 CNN Iris Detection as Replacement Noise
Masks

Noise masks are used to exclude parts of the normalised iris
texture during biometric comparison which are occluded, e.g.,
by eyelids. Segmentation tools like CAHT, produce a basic
noise mask and a parameterization of the iris. The more so-
phisticated CNN based iris/noise masks can be used as re-
placement noise masks by ’normalizing’ them according to

the segmentation/parameterization. The expectation is that
higher quality noise mask of the CNN will result in better bio-
metric recognition.

Table 4: Biometric recognition performance, with the CNN-
based mask instead of the original noise mask.

Testset Feat. Seg. ΔEER ΔOP0.01 ΔME
casiaA lg TVMIRIS −2.935 +0.019 +239759
casiaA lg CAHT −0.219 +87.979 −51890
casiaA lg WAHET −1.51 +0.433 +22876
casiaA qsw TVMIRIS −2.28 +0.019 +239759
casiaA qsw CAHT −0.117 +91.373 −51890
casiaA qsw WAHET −1.22 +13.159 +22876

casia4i lg TVMIRIS −9.464 −68.37 −336861
casia4i lg CAHT + 0.023 +0.07 −5277
casia4i lg WAHET −0.444 −15.328 0
casia4i qsw TVMIRIS −8.799 −71.067 −336861
casia4i qsw CAHT −0.002 +0.059 −5277
casia4i qsw WAHET −0.252 −5.773 +0

iitd lg TVMIRIS −13.205 −68.125 −718156
iitd lg CAHT + 0.368 +10.769 −66915
iitd lg WAHET −1.356 +40.495 −4425
iitd qsw TVMIRIS −14.203 −65.663 −718156
iitd qsw CAHT +0.415 +9.197 −66915
iitd qsw WAHET −1.557 +31.717 −4425

protI lg TVMIRIS −2.32 +41.913 4005
protI lg CAHT +11.972 +53.556 −185599
protI lg WAHET +0.771 −0.002 +11093
protI qsw TVMIRIS −1.258 +40.93 +4005
protI qsw CAHT +10.078 +52.631 −185599
protI qsw WAHET +1.059 −0.002 +11093

ndi lg TVMIRIS −1.908 +0 +17011
ndi lg CAHT +0.8 +9.433 −47701
ndi lg WAHET −2.42 −38.427 0
ndi qsw TVMIRIS −1.166 +0 +17011
ndi qsw CAHT +0.502 +8.924 −47701
ndi qsw WAHET −1.932 −28.36 0

Table 4 gives the change in EER, OP0.01 and ME compared
to Table 3 when the CNN-based mask is used instead of the
mask produced by the actual segmentation. OSIRIS does not
output a parameterization and as such the CNN noise mask
could not be interjected into the toolchain.

Overall, the use of the CNNHT as a drop-in mask is pos-
sible, but the results are somewhat mixed. The improvement
is small, see casiaA, since the mask only reduces comparison
errors due to obfuscations and can not correct the actual seg-
mentation, which is of prime importance [11]. On less difficult
databases, the masks produced by the regular algorithms are
sufficient and only minor improvements happen, but not on a
consistent basis. Likewise, for difficult databases, the change
of masks does not help at all since the segmentation is incon-
sistent. Examples of this can be seen in Figure 5. In particular,
Figure 5a shows an example where the segmentation of CAHT
is simply wrong which is not changed by a mask centered
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CAHT CAHT CNNHT
Segmentation mask mask

(a) Sample from the protI database.
CAHT CAHT CNNHT

Segmentation mask mask

(b) Sample from the casia4i database.

TVMIRIS TVMIRIS CNNHT
Segmentation mask mask

(c) Sample from the iitd database.

Figure 5: Comparison of CAHT and TVMIRIS segmentation
and mask with CNNHT mask.

around a different part of the image. Figure 5b, on the other
hand, shows an example of a high quality iris image and its cor-
responding segmentation where both masks are basically the
same. In this second case, the CNNHT mask is slightly better
since it correctly includes the lower eyelid, but the difference
is marginal. This leads to the occasional marginal improve-
ments seen in Table 4. Figure 5c shows that true improvement
happens (TVMIRIS on iitd EER from 21% to 8%) when the
original algorithm has errors in the mask generation, or is too
conservative. In both cases, the CNNHT can supply a better
mask.

5 Conclusion
We introduced a parameterization method which works well
and, over all tested databases, produced no failures (to param-
eterize).

On high quality databases, specifically NIR images with
open eyelids and frontal acquisition, the traditional iris seg-
mentation methods outperform the CNN segmentation plus
parameterization. However, on slightly lower quality databases,
the CNN segmentation and parameterization outperform all
other methods tested.

The use of CNN based segmentation as a noise mask for tra-
ditional, parameter based, segmentations leads to an improve-
ment in a large number of cases. However, two cases clearly do

not show an improvement. First, when the biometric record-
ing is of high quality, the CNN based noise mask shows no
improvement. This is due to the low amount of occlusion to
begin with. Second, on difficult data, the traditional methods
often failed to properly segment the iris. In this case, the correct
mask of the CNN based segmentation could not compensate
the parts missed by the traditional methods.

Overall, CNN based segmentation and the proposed pa-
rameterization improves over traditional segmentation meth-
ods, except on very high quality biometric recordings. Using
the CNN based segmentation as a noise mask improves the tra-
ditional methods, except on very high quality biometric record-
ings (where the original noise mask was sufficient), or very
difficult recordings (where the traditional segmentations meth-
ods fail).
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