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Abstract
There are numerous standards and recommendations when it
comes to the acquisition of visual quality assessment from human
observers. The recommendations deal with clearly visible im-
ages and try to keep the just-noticeable-difference between quality
steps as small as possible to facilitate an exact measurement of
image differences. When it comes to the assessment of selective
encryption schemes the question is the opposite. The quality is
not really of interest, the question is rather if the content of the
images is discernible at all. There are no recommendations in lit-
erature for this kind of task. In this paper we will outline different
protocols and setups, test them and form a recommendation for
the acquisition of the recognition threshold for encrypted images
from human observers.
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1 Introduction
Selective encryption (SEnc) is the encryption, utilizing state of the
art ciphers like AES, of a selected part of a media file or stream. The
goal is to secure the content, or parts thereof, while still maintain-
ing the file format, that is the file is still usable as the media file or
stream it actually is.

When it comes to recognizing content there are various target
levels in terms of quality: transparent encryption wants to reveal
a low quality version of the content, e.g., as a preview, sufficient
encryption wants to reduce the content to a level where a consump-
tion of the image or video is no longer possible but does not care
if potential content is leaked, e.g., consumers still recognize what
is going on in a movie but the quality is so low that a pleasurable
viewing experience is prevented (pay-per-view scenarios). Confi-
dential encryption is the next step where the goal is to actually make
the content of the data unrecognizable.

There are numerous SEnc encryption schemes, e.g., [1–4], and
an important assessment is always that of quality and recogniz-
ability. It has been pointed out, [5], that the quality assessment
is problematic since quality metrics are not usually built for such
low quality material. The same paper also points out that the au-
tomatic assessment of recognizability is not possible since there
are no metrics, databases or methods for the generation of such
databases in literature.

This is indeed our goal in this paper, we aim to produce a set
of guidelines for the acquisition of information pertaining to the
recognition threshold. That is, the threshold where the encryp-
tion is so strong that it crosses from a low quality but recognizable
image/video to a image/video where the content is no longer rec-
ognizable.

This can be formulated slightly differently, and in the style of
indistinguishability under chosen-plaintext attacks (IND-CPA), as:
When presented with both encrypted and non-encrypted data, can
one be mapped to the other?

We will present different methods to acquire the recognition
threshold and compare them. Furthermore, we will look at record-
ing conditions, which might influence the ease and quality of the
acquired data, by starting with recommendations for image qual-
ity evaluation tests, with very strict illumination restrictions, to
less controlled environments.

We will introduce these methods, environments and the rea-
soning for them in Section 2. In Section 3 we will describe and
perform the experimental analysis of the proposed methods and
discuss the findings. Section 4 will recap the findings and con-
clude the paper.

2 On the Acquisition of the Recognition
Threshold for Encrypted Images

The VQEG and ITU groups regularly issue recommendations [6–9]
concerning the subjective setups and protocols. There are numer-
ous protocols and each one is adapted to a particular viewing task
or image processing method. For instance, ACR (Absolute Cate-
gory Rating), DSIS (Double Stimulus Impairment Scale) or DSCQS
(Double Stimulus Continuous Quality Scale) protocols can be used
to rate the quality of an encoding (compression) method. The Two
Alternative Forced Choice (2AFC) protocol is commonly used to
track a visibility threshold, and can thus be used in a data hiding
framework.

Further, there are recommendations for the subjective test
setup which should adhere to several basic rules. The screen
should be calibrated, its luminance must be controlled. Surround-
ing illumination has to be limited. The viewing distance, the exper-
iment duration, the observers’ acuity, are among the parameters
that must be controlled.

In this section we will discuss the acquisition method (proto-
col) and environment and the differences in assessment of quality
and recognizability with the goal of evaluating different modali-
ties to find the easiest setup, in terms of practicality, which still
yields high quality results. Finally we will discuss the handling
of outliers and generation of a recognizability score based on the
acquired data.

2.1 Protocols for Acquisition

What we want to acquire is a score per image which reflects the
recognizability of it’s content. This score should ideally be on a
continuous scale so that we can track the transition from recogniz-
ablity to unrecognizability.

The regular acquisition methods for quality estimation of im-
ages are not applicable to finding the recognizability threshold.
The question is not how good the quality is but rather: Is the
original image still recognizable from the encrypted image? The basic
transference of the methodology from quality assessment would
be to present an original and an encrypted image and ask the user
whether or not information from the original image is still retained
in the encrypted image. This approach suffers from apophenia,
the tendency to perceive connections and meaning between unre-
lated things.

To prevent this, a forced choice is suggested, where the par-
ticipant has to choose among a number of candidate images and
identify the “correct” one. If the contents of an image is truly not
recognizable then the participant has to guess. In other words the
ratio of observers which correctly identify the image will tend to-
wards the probability of random choice.

Three methods are conceivable, and will be tested in the exper-
imental section.

1. O3: Show a single original image and three encrypted im-
ages. The participant has to select the encrypted version of
the original image.

2. 3E: Three plain text images and one encrypted image is
shown. The participant has to select the correct original
image from which the encrypted image was derived.

3. Match2: Three originals and three encrypted images are
shown. One pair of images is an original and derived en-
crypted image, the other four images have to be unrelated.
The participant must select the matching pair.

The way these protocols display images is shown in Figure 1.
The reason the Match2 variant is used is that the one vs. three

methods might allow for exclusion type strategies where images
can be disregarded leading to a possible skew in probability. In
the long run this phenomenon should even out but it might lead
to a higher number of required participants for that to happen.

For all three methods it is required to have images with similar
encryption strengths to be shown simultaneously.

2.2 Environment for Acquisition

The environment in which to perform quality assessment is regu-
lated by standards, e.g., ITU-R BT.500-13 [10]. The standards are
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O3 3E Match2

Figure 1: Examples of the O3, 3E and Match2 protocols for the recognizability test.

aimed at high quality tests and generating an environment where
the just noticeable difference in images is as small as possible to en-
able an optimal quality assessment. Even for quality assessment,
strictly following these standards can be called into question in
part due to recent experiments. When building the TID database
[11, 12], laboratory setting were conform to ITU-R BT.500-13 [10]
and an off-site environment (via internet) was used as well. The
resulting data exhibited no conspicuous disagreement.

A less stringent control over the environment clearly leads to a
easier and more manageable set up of experiments which would
allow easier acquisition of datasets to help in research, as long as
the quality of the acquired data does not suffer.

The need for the use of strictly constrained subjective environ-
ment setups may make sense when the subjective task is to score
the quality of slightly distorted images/videos, or when the task is
to track a visibility threshold (such as in a data hiding framework).
However, in the context of recognition of selectively encrypted im-
ages, where the task is not to adjudicate a minute difference in
quality but to decide if two images contain the same content, the
viewing conditions may not significantly influence the results.

In order to evaluate the environmental influence on the record-
ing we will utilize three different setups:

1. Controlled (CE): The controlled environment uses a cali-
brated monitor in a closed room, i.e., no natural lighting is
present, and a strictly controlled artificial lighting to con-
form to ITU-R BT.500-13 [10].

2. Semi-controlled (SE): A regular working space, some mea-
sures were taken to limit extraneous light, e.g., blinds were
drawn.

3. Uncontrolled (UE): The uncontrolled environment is simply
what was available at the users own PC. The experiment was
set up to be used over the internet at the workstation of the
users PC.

Viewing distance: In both the CE and SE, a supervisor in-
structed the observer to keep a proper viewing distance. The view-
ing distance was set to 6 times the images’ height.

Scaling: Controlled and semi controlled environment have
screens which are sized so that the images are not scaled. The
uncontrolled environment scales down if necessary to display the
6 images in the 3x2 configuration but will not scale up.

Illumination and Calibration: Optimally a controlled envi-
ronment and a high quality calibrated monitor is recommended.
The specs in the CE were: illuminant white point CIE D65, maxi-
mum screen luminance of 200 cd/m2, screen gamma function of
2.20, contrast ratio/ black point of 2 cd/m2 and background illu-
mination of 10 lux. Our setup was thus compliant with the rec-
ommendations of ITU-T REC P.910 [13], ITU-R BT.500-11 [14] and
ITU-R BT.500-13 [10].

Viewing Time: We restricted viewing time to prevent a timely
conclusion, which is important for the acquisition of large amounts

Table 1: Conformance to constraints by the acquisition environ-
ments.

Lumi- Viewing Scale Vision View Observ-
nance Distance Check Time ers

CE 3 3 3 3 8 sec 45
SE 7 3 3 ~ 8 sec 30
UE 7 7 7 7 ∞ sec 41

of data. The viewing time restriction also serves to prevent fatigue
for the observers. The time chosen was 8 seconds in opposition to
the recommended 10 sec (ITU-R BT.500-11 [14]). The reasons for
this are twofold: 1) the recognizability framework is easier than
quality assessment and consequently takes less time and 2) it al-
lows for more comparison before observer fatigue sets in which is
an important practical consideration. We did not control for time
in the uncontrolled environment.

Vision Check: For the CE environment a proper vision test
was performed: Observers were screened to ensure perfect visual
acuity and detect possible color deficiencies. The Snellen eye chart
was used to control the acuity, and the Ishihara color plates were
used to validate a normal color vision. For the SE setup the means
were more limited but we utilized an online vision test to check
visual acuity, near vision and color vision. No vision check was
performed for the uncontrolled environment.

Number of Observers: The minimum number of observers
recommended by all standards is 15 and was exceeded in all envi-
ronments.

The conformance of the various environments to the suggested
setup of the standards as described above is summarized in Table 1.
The experiment of the acquisition protocol uses the UE setup from
the table but we could only procure sixteen observers for this test.

2.3 Analysis of Data

The handling of the data is also somewhat different from usual
quality experiments. The main difference is that during quality
evaluation each observer gives a rating for each image. Based on
these ratings the outliers can be detected. For each recognition
task, the observer only generates a binary output, content recog-
nized or not. The final score is an aggregate over all observers,
and is expected to trend towards the randomness in case of un-
recognizability. The probability of a randomly correct guess ( 𝑝𝑟)
depends on the setup, each choice of images is one in three result-
ing in 𝑝𝑟

3𝐸 = 𝑝𝑟
𝑂3 = 1

3 = 0.33̇, and 𝑝𝑟
Match2 = 1

3
1
3 = 0.1 ̇1.

Outlier detection: Outlier detection in the classical sense will
not work, since the data being collected are not numerical scores,
but rather some binary information representing correct or incor-
rect recognition. A simple error aggregate also won’t work since
two observers can have the same number of errors while not agree-
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ing on a single image. Given that we have essentially a vector with
binary values the Hamming distance comes to mind, then we can
at least compare two observers and get a meaningful score. An
outlier in this context can then be seen as an observer whose opin-
ions strongly differ from the majority of the other observers. To
find outliers we can perform a hierarchical clustering which starts
with the smallest distance and continues to cluster the elements
together until a single cluster has formed. The outliers can then be
detected based on statistics of similarity between observers like so:
with 𝑂 the set of observers and 𝐷 = {𝐻𝐷(𝑂𝑖, 𝑂𝑗) |∀𝑂𝑖, 𝑂𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗}
the set of pairwise distances we use the z-score 𝑧𝐷 = 𝜇(𝐷)+3𝜎(𝐷)
to find observers which are very far from the group consensus.

Depending on the aggregation of clustering it might be useful
to use the ℓ1 measure as a generalized version of the Hamming
distance, as long as no merging of vectors is performed, i.e., if for
a vector 𝑣, 𝑣𝑖 ∈ {0, 1}, 𝑖 = 1, … , #𝑣 holds, then ‖𝑣 − 𝑤‖1 = ∑#𝑣

𝑖=0 |𝑣𝑖 −
𝑤𝑖| = ∑#𝑣

𝑖=0 𝑣𝑖 ⊕ 𝑤𝑖 = 𝐻𝐷(𝑣, 𝑤), with #𝑣 being the dimension of
the vector 𝑣 (and 𝑤). This method might however be useful if a
different clustering or aggregation method is used.

As aggregation of cluster size, and distance to cluster calcu-
lation, it is suggested to use the maximum over all pairwise dis-
tances. That means that all pairwise distances in the cluster are
below the chosen threshold 𝑧𝐷 = 𝜇 + 3𝜎 .

The way this looks in practice can be seen in Figure 5 later in
the paper. The clustering is displayed as a dendrogram, a tree of
merge decisions, the y-axis gives the merges at the height of the
new cluster size. If the tree is cut off at a height matching 𝑧𝐷 it
will split into sub clusters where each cluster does not contain out-
liers. The largest such cluster is then used as the “correct” set of
observers, the others are considered outliers (marked in red in the
dendrograms).

3 Experiments
We have set up experiments to evaluate the different methods of
acquisition and environments as specified in Section 2. We will
analyze the setups and results and try to give recommendations if
more than one method was proposed.

The database of encrypted images: Figure 2 shows samples
of encryption for one method and image to give the reader an
idea about the makeup of the database. We used images from
the Kodak database1 having a landscape format, specifically im-
ages numbered 6,8,13,14,16,21,23,24 (reduced data set). This was
augmented in later stages with images id, 11, 20, 22 from the Ko-
dak database, furthermore gray-scale versions of images number
23 and 24 as well as a Philips PM5544 test pattern2 cropped to the
Kodak image size were included. This extended data set was used
later in the test when the setup was fixed and a larger data set could
be accommodated due to a more limited number of experiments.

A Note on the Datasets: The choice of data set in our case was
to use images which are known in the vision community. Since
SEnc strongly depends on the content of the image and the algo-
rithm used we decided to also include the Philips PM5544 test pat-
tern since it contains blocks of color and frequency information
and allows a more clean separation of content type than a natural
image.

1http://r0k.us/graphics/kodak/index.html
2https://commons.wikimedia.org/wiki/File:PM5544_with_

non-PAL_signals.png

It is interesting to notice that the recognizability rate strongly
depends on the image content. For instance, all images in Fig-
ure 3 are encrypted with the same parameters, but, as can be ob-
served, this induces very different recognizability rates, also re-
ported in the figure. The color patches influence the recognition,
as observed in the third row of Fig. 3. While the influence of uni-
formly colored areas is clearly apparent in the third image it can
also happen in natural images, as exemplified in the second row
where uniform dark areas remain visible. For the generation of
a testset it is therefore recommended to also include artificial im-
ages, like the test pattern, which allow for the clear identification
of the process leading to a higher recognition rate. While such cir-
cumstances can be deduced from natural images as well, row two,
it is a far simpler task when the results are as clear as the example
in the third row.

A Note on the Encryption: To describe the three encryption
methods, [2–4], used would only clutter the paper without giv-
ing any new insight. It should suffice that the encryption strength
ranges from a relatively high quality to a non recognizable quality,
illustrated in Fig. 2 and 3.

3.1 Evaluation of the Acquisition Protocol

Three layouts were tested, O3, 3E and Match2, as described in Sec-
tion 2.1 and illustrated in Fig. 1.

A web-based version of the experiment was tested with sixteen
observers. The tests were conducted in normal office/home view-
ing conditions, i.e. varying sunlight illumination, various screen
resolutions, uncalibrated monitors, varying viewing distances, in
essence similar to the UE setup.

The experiment was composed of 8 images (reduced data set),
each one being distorted with a single encryption method with 6
different encryption parameters, thus composing a dataset of 56
images. The collected outputs were the number of mis-detections.
In Figure 4, we show how the detection errors were distributed
across the three setups. Overall, the decision appeared to be more
difficult for the Match2 protocol.

Our goal is to collect a set of recognizability scores that will be
continuously distributed. The recognizability score is in essence
the percentage of observers who recognized the content. If the
decision process is too simple, few if any errors will happen and
the resulting score will almost be binary. This would allow us to
state that there are recognizable and unrecognizable images, but
not what happens between these two states. A result that is con-
tinuous allows us to perform research at the transition from recog-
nizable to unrecognizable. Match2 spans a wider range of missed
detections, resulting in more errors and a higher number of scores
which are between recognizable/nonrecognizable. More errors al-
low for a better approximation of a continuous score, insofar as
that is possible with a countable number of observers.

This work is part of a wider project, where we aim to not only
design the best subjective protocol for a recognizability task (work
in this paper), but we also plan to compare recognizability to a
regular quality assessment task. Moreover, in future works, we
aim to determine the Objective Quality Metric that will best predict
the recognizability. Thus, in order to reach these goals, we need
to collect a subjective dataset which is focused onto the transition
from unrecognized to recognized content (the slope of the curves
in Fig. 7).
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Figure 2: A sample from the database (Kodak #24): the original image and it’s encrypted variants for one of the encryption methods.

(a) image 3 (b) image 7 (c) Philips PM5544

(d) RE = 0.874 (e) RE = 0.329 (f) RE = 0

Figure 3: Original images (top), along with their encrypted version
(bottom) using the same encryption parameter, recognition errors
(RE) are also given per image.
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Figure 4: Repartition of the mis-detections across the three pre-
tests.

3.2 Evaluation of the Acquisition Environment

The Match2 protocol was chosen based on the results from the pre-
vious section. The setup follows the considerations in section 2.2.
Due to the resolution of the selected images (768×512 pixels), in or-
der to be able to display three images side by side on the screen, a
Wide Quad High Definition (2560 × 1440) monitor was used for
the setups CE and SE. The resolution for UE could not be con-
trolled, but the resolution of the web application was reported, as
explained later.

For this experiment we increased the number of images in the
test set (extended data set) and used two encryption methods (test-
set 1 and testset 2), again with 6 impairment steps for a total of 182
images. Table 1 lists the various settings and constraints of each
experiment. The same number of observers was used on testset 1
and 2 in each environment.

For the CE the following statistcics were additionally gathered:
Except 3 observers who had a 20/25 vision, all other observers had
at least a 20/20 acuity according to the Snellen chart. Only one of
these observers (with a 20/25 acuity) was discarded during the
outliers detection step. Three observers had a red/green color de-
ficiency (none were discarded).

Table 2: Distribution of observer difference and resulting thresh-
old 𝑧𝐷 and outliers for the three acquisition environment experi-
ments per testset.

Setup Testset 𝜇 𝜎 𝑧𝐷

CE 1 4.21 2.00 10.21
CE 2 5.83 2.31 12.74
SE 1 4.21 1.63 9.11
SE 2 5.12 1.85 10.67
UE 1 3.31 1.46 7.69
UE 2 5.66 1.81 11.11
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Figure 5: Dendrograms of the hierarchical clustering, outlier
branches are shown in red. Two testsets were evaluated for each
environment.

3.2.1 Outlying Observers Detection

After running a subjective experiment, during the data analysis
step, we inevitably encounter discrepancies in the data. For a
high number of observers this will statistically even out, but for
a smaller number of observers outliers can significantly skew the
results. Therefore, it is best to remove outliers before drawing
results from the data gathered. We utilize the clustering outlier
detection (dendrograms) as specified in Section 2.3.

Table 2 shows the result of the clustering based outlier detec-
tion for the three setups and Figure 5 illustrates the clustering and
outlier cutoff as dendrograms. Note that the dendrogram for SE is
not shown as there were no outliers for these two experiments.

As can be seen in Figure 5 there is a significant variation in the
number of outlying observers regarding the various setups. This
variation can be explained by the different populations that were
enrolled for the tests. The observers in the SE experiment were
computer scientists , a large part of the observer pool was familiar
with the chosen contents (Kodak database) and quite familiar with
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the distortions as well. The observers enrolled for the CE experi-
ment were all naive observers from biology and medical depart-
ments. For the UE experiment we had returning observers from
the CE and SE experiments but also a large number of new ob-
servers.

A Note on the use of the MSE for outlier detection: A sim-
pler way to find outlying observations would be to just count the
number of missed detections. However, it is important to note that
in the context of outlying observers’ detection, no matter if an ob-
server makes very few mistakes or many, what matters is the con-
sistency. An observer making very few errors (missed detection)
but behaving differently from the panel (i.e. detecting a pair rec-
ognized by no one else, or missing a very obvious match) would
have to be discarded from the analysis.

Figure 6 shows the MSE as a function of the number of errors
made by each observer. For every observer, and for each tested
image, we compute the MSE between the observer’s score and the
average for this image (average across all observers). This gives us
an idea if a given observer overall deviates a lot from the average.
As can be seen on this figure, the two green spots represent two
observers having a similar MSE, which means their behavior is co-
herent, however, one made 90 misdetections, whereas the other
one only made 60 mistakes (unrecognized pairs). An opposite be-
havior is represented by the two red spots. Both observers made
the same amount of missed detections while selecting the pairs
of images (80 errors), but their MSE significantly differs. None of
these 4 observers were detected as outliers by the dendrogram. In
this figure, the gray spots represent the outlying observers.

To recap, a similar number of errors does not mean agreement
and a dissimilar number of errors does not mean disagreement.
That is, the number of errors, and also derived statistics like MSE,
is a poor way of finding outliers.
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Figure 6: MSE as a function of the number of missed detection
(recognition errors).

3.2.2 Analysis of Acquisition Environment

There are two ways to look at the data.
We can look at the linear correlation between the data found,

basically if the same image has the same number of errors, which
is a representation of the recognizability.

Alternatively, we can look at the data from a perspective of
ordering the data from the least to most recognizable image by
using the errors. Then we look at the difference in ordering by
using a rank order correlation.

The results for both calculations are given in Table 3. Both
methods agree on the outcome: the three environments are strongly

Table 3: Agreement matrix between the acquisition environments
based on linear and Spearman rank order correlation.

CE SE UE
CE 1.000 0.984 0.978
SE 0.984 1.000 0.978
UE 0.978 0.978 1.000

(a) linear correlation

CE SE UE
CE 1.000 0.862 0.884
SE 0.862 1.000 0.888
UE 0.884 0.888 1.000

(b) rank order correlation
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Figure 7: Plot of individual scores, per environment, compared to
the overall ordering based on an aggregate over all environments.

related but there are differences. The correlations, linear as well
as rank order, are comparable.

So overall all environments exhibit the same trend. This sug-
gests that the differences are caused by A) miss-clicks, and B) the
innate randomness in the recognizability study.

Another way to show the similarity of the results is to plot
them. For this we took an aggregate, minus outliers, of all scores
and ordered the images from most to least recognizable. Then we
plotted the scores from the different environments over this do-
main. The result can be seen in Figure 7, the plot was smoothed
with a window size 5 average function to suppress an extremely
jagged appearance due to miss clicks by observers. The recogni-
tion rate (RR) is the relative error over all observers per image, an
error is coded as 1 so a RR of 0 means all observers recognized the
image.

All experimental setups show a very similar curve and the
choice of environment does not seem to influence the results. All
versions show a gradient from recognizable to unrecognizable and
are trending towards the probability of random choice (𝑝𝑟).

Scaling and the Uncontrolled Environment: The web appli-
cation (UE) reported back the actual space used for the browser
window which was used to display the images. Only one observer
used a resolution of 1440p which meant an un-scaled version of the
images, the rest (40) used displays of various (smaller) sizes.

From the reported resolutions we reconstruct the following
display sizes which were used (count in parenthesis): 2560x1440p
(1), 1920x1200 (8), 1920x1080 (15), 1680x1050 (1), 1600x900 (3),
1400x900 (1), 1366x900 (6), 1280x1024 (1), 1280x768 (3), unknown
(2). The unknown resolution were probably from non-maximized
browser windows so the actual resolution could not be deter-
mined, however the resolution is too small to display the 3×2
array of images without scaling.

4 Conclusion
The following recommendations and remarks can be made for the
acquisition of the recognition threshold from observers.

6



The Match2 protocol is recommended since it gives a higher er-
ror rate, allowing for a better differentiation between image recog-
nition than the other proposed protocols. As a side note: a higher
number of displayed images, i.e., more than the 6 recommended
in Match2, might generate an even better result in terms of error
rate but would require the images to be smaller (less detail visible)
and increase viewing time to properly assess the images (allowing
for fewer images per session).

For the setup we found relatively little difference between the
tested environments. The UE setup in theory is fine, but unlimited
viewing time potentially leads to viewer fatigue after fewer images,
as the time per images can be longer. It should be noted that the
viewing time did not have an impact on the results. A shorter view-
ing time allows for a larger number of comparisons before viewer
fatigue sets in, which would suggest a semi-controlled environ-
ment, however the uncontrolled environment allows for parallel
acquisition and allows to reach a wider number of observers. The
controlled environment did not generate any real benefits and is
therefore not suggested.

During our tests a short pre-test was run to show the partici-
pants the range of image quality to expect and to familiarize them
to the use of the interface. It is suggested to extend this test period
to familiarize the observers with the distortion types. A familiar-
ity with the distortion types generates a more consistent behaviour
and less outliers as can be seen from the SE vs. CE outlier numbers
from bodies consisting almost entirely of computer scientists and
medical doctors respectively.

For outlier detection hierarchical clustering methods are rec-
ommended as proposed in opposition to direct error measures
(MSE).
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