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Abstract
The spread of biometric applications in mobile devices handled
by untrained users opened the door to sources of noise in mo-
bile iris recognition such as larger extent of rotation in the cap-
ture and more off-angle imagery not found so extensively in
more constrained acquisition settings. As a result of the limita-
tions of the methods in handling such large degrees of freedom
there is often an increase in segmentation errors. In this work,
a new near-infrared iris dataset captured with a mobile device
is evaluated to analyse, in particular, the rotation observed in
images and its impact on segmentation and biometric recogni-
tion accuracy. For this study a (manually annotated) ground
truth segmentation was used which will be published in tan-
dem with the paper. Similarly to most research challenges in
biometrics and computer vision in general, deep learning tech-
niques are proving to outperform classical methods in segmen-
tation methods. The utilization of parameterized CNN-based
iris segmentations in biometric recognition is a new but promis-
ing field. The results presented show how this CNN-based
approach outperformed the segmentation traditional methods
with respect to overall recognition accuracy for the dataset un-
der investigation.
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1 Introduction
Mobile devices have become ubiquitous and the typical cell
phone is much more than merely a phone, it is frequently used
to checking emails and bank accounts, accessing web services
and enterprise resources and even monitoring home appli-
ances. As a result, vulnerabilities that grant access of devices
to unauthorized users have a huge impact [1]. PIN/Password,
biometrics and unlock patterns are all equally accepted forms
authentication for mobile devices [2]. However, PIN/Password
and unlock patterns are subject to a number of attacks due to
the mobile natures of the device, e.g. ”shoulder surfing” [3],
compared to devices located in a secure environment, e.g. per-
sonal computers. Biometric attacks are more robust to such
attacks since they are harder to clone and offer high security.

Among the possibilities of performing authentication using
biometrics, iris is a strong candidate due to its proven reliabil-
ity among the other traits available [4, 5]. However, the use of
iris recognition on mobile phones poses other challenges when
compared to conventional iris recognition such as restricted
computational power, suited Near Infrared (NIR) illumination
and less constrained thus more difficult acquisition conditions.
Mobile iris recognition systems can be divided into three main
categories namely [6]: Systems using dedicated devices to per-
form iris recognition, systems connecting additional hardware
to the mobile device, and systems attaching NIR cameras with
illuminators.

Despite its promises and the already extensive literature,
performing accurate iris recognition in mobile devices is still
considered a challenge. The first published work on iris recog-
nition on mobile phones was by Cho et al. [7] who proposed
a novel pupil and iris localization technique and implemented
those on low processing power mobile phones. Jeong et al. pro-
posed a method where feature extraction was carried out us-
ing 1-D adaptive Gabor filter (adapted to four different image
acquisition scenarios indoor, no-blur; indoor, blurred images;
outdoor, no-blur images; and outdoor, blurred images)[8]. In
a following work, Park et al. [9] added dual IR illuminators
to Jeong et al.’s modified mobile device introducing an operat-
ing range of 35-40 cm and the capture of dual eye regions. In
2006, a major breakthrough was made by the announcement
of iris OKI scanners using OKI’s original iris recognition al-
gorithm for Symbian and Windows mobile operating systems.
Kurkovsky, Carpenter and McDonald proposed an approach
which required no additional hardware to adapt iris recogni-
tion on resource constrained mobile phones [10]. Kang pro-
posed to use two magnetic rings to hold the lens in mobile
phones instead of using close-up lenses [11]. Lu et al. devel-
oped a smartphone iris recognition system assuming that all
eye images are captured at the same illumination with same
stand-off distance from the camera [12] by providing an ‘eye
cup’ with a luminous diode attached. The common character-
istics of the so-far mentioned techniques are the fact that im-
age acquisition is constrained and there is an irreversible mod-
ification of the smartphone camera for iris recognition. The
path forward for mobile iris recognition was to detach from
hardware adaptations and rely on the imaging power of mo-
bile phones in the visible spectrum. The MICHE-I and II com-

petitions [13–15] pushed forward the research on visible wave-
length (VIS) mobile iris detection and recognition. However,
the negative effect of VIS imaging on the recognition capabil-
ity of the iris trait [16, 17] has moved the research in the field
to the NIR imaging context again. This renewed focus on iris
recognition in mobile devices in the near infra red spectrum
was facilitated by the appearance of novel NIR enabled mobile
devices, i.e. Samsung S8/9, S8+/9+ and Note 8/9, Microsoft
Lumia 950 (XL), and local solutions like Fujitsu NX F-04G in
Japan or Iritech and IrisGuard in India. The results observed
in literature confirm early studies which noted that NIR iris
recognition outperforms its visible counterpart [18] and there-
fore, several recent works propose methods for NIR imaging in
the mobile environment [19–22], also supported by the release
of corresponding first public datasets (e.g. CASIA-Iris-M1-S3).

In this work, we tackle the issue of more difficult acquisi-
tion conditions in case of mobile capturing and show results
on a new NIR mobile iris dataset. In particular, with mobile ac-
quisition iris imagery potentially exhibits a larger extent of rota-
tion and off angle shots due to misalignment of facial plane and
sensor plane. Besides requiring more rotation compensation,
the increase in rotation might throw off traditional segmenta-
tion methods, which often rely on the more or less horizon-
tal alignment of eye-lids. Therefore, we propose to use CNN-
based semantic segmentation techniques for more reliable iris
segmentation results on such data.

In Section 2, we describe the applied CNN-based iris seg-
mentation and propose a way to use the resulting binary seg-
mentation masks to generate normalised iris texture (applying
the rubbersheet transform). Section 3 evaluates the proposed
approach with respect to (i) iris segmentation accuracy com-
pared to manual segmentation ground truth and (ii) iris recog-
nition accuracy comparing the approach to traditional, open
source segmentation and recognition techniques (USIT) as well
as to the OSIRIS toolkit. Additionally, we present results with
respect to the required rotation compensation in the matching
process. Section 4 concludes this paper and gives outlook to
future work.

2 CNN-based Iris Segmentation
Application of convolutional neural networks for iris segmen-
tation has recently received some research attention, and a few
CNN-based models were proposed for this task [23]. Histor-
ically, the first approach [24] proposed a CNN classifier com-
posed of three blocks of alternative convolution and pooling
layers, which takes in a local patch around pixels to extract fea-
tures, and labels each pixel separately using a final fully con-
nected layer (FC), however, this model lacks speed and effi-
ciency. The authors proposed another model, which includes
six blocks of interconnected convolution and pooling layers fol-
lowed by a single multiplication and a softmax layer. The some-
what restricted empirical assessment makes the results difficult
to interpret.

A posterior work [23] used deep convolutional encoder-
decoder networks in different variants, i.e. iFCEDN and deriva-
tives, and trained them on manually annotated iris segmenta-
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tion masks. The iFCEDN network comprises an encoder part
and a decoder part and the ‘Basic’ and ‘Bayesian’ networks are
just reduced versions of the same network with ‘Bayesian’ en-
abling the probabilistic pixel-wise segmentation using Monte-
Carlo sampling and drop-out techniques. Segmentation re-
sults turned out to be excellent compared to traditional seg-
mentation and in another work [25], the authors used the same
‘Basic’ network and proposed a domain adaption model for iris
images, eliminating the need for generating manually anno-
tated training masks for each iris dataset / sensor separately.

The method proposed in [26] focuses on the segmentation
of visible light unconstrained (on-the-move) iris recordings.
The CNN used specifically focuses on the segmentation of the
iris and requires a prior ROI detection and then adapted a
pre-trained VGG network as one-class (iris pixel) classifier.

CNN based iris segmentation algorithms generate a bi-
nary mask, separating iris from non-iris pixels. None of the
approaches described did go beyond segmentation and none
proposed any model for using the iris masks in the actual
recognition process. The obtained binary mask is highly accu-
rate on the one hand, but cannot be directly used for extracting
and normalizing the iris texture for further use in a biomet-
ric system on the other hand. For generating the normalised
texture using the rubbersheet transform, a parameterization
of the pupillary and limbic boundary are required. Both the
CNN-based segmentation and parameterization to utilize the
CNN-based mask in a biometric system are described in the
following sections.

2.1 CNN-based Mask Generation
Besides using iFCEDN as proposed in [23, 25], we use a more
recent semantic segmentation CNN called “RefineNet” [27].
It is a multi-path refinement network, which employs a 4-
cascaded architecture with 4 RefineNet units, each of which
directly connects to the output of one Residual net [28] block,
as well as to the preceding RefineNet block in the cascade.
Each RefineNet unit consists of two residual convolution units
(RCU), whose outputs are fused into a high-resolution feature
map, and then fed into a chained residual pooling block. The
final part of each RefineNet block is another residual convolu-
tion unit.

The RefineNet architecture was chosen in addition to the
improved FCEDN [23] (iFCEDN) for its higher segmentation
performance on common public iris datasets, i.e., higher F-
measure of generated masks compared to a mask produced
by human annotation (ground truth), as shown in Table 3. For
information about the ground truth and data sets refer to Sec-
tion 3.

The binary iris segmentation masks are created by CNNs
trained with the manually annotated ground truth mask. There
is no overlapping of training and testing sets since a five-fold
cross-validation method was used. To do so, initially each
database was partitioned into five equally sized subsets. Of
the five subsets, a single subset was retained as the testing data,
and the remaining four subsets were used as training data. The
cross-validation process was then repeated five times, with
each of the five subsets used exactly once as the testing data.

Table 1: The training parameters for the network.

Parameter Batch- Epoch Momentum Learning
size rate

Values 8 1000 0.1 0.9

Further relevant parameters for training the RefineNet network
are listed in Table 1 while for iFCEDN, identical parameters as
in [23] are used.

2.2 Parameterizing the Masks for Normaliza-
tion

Given binary segmentation masks as produced by CNN se-
mantic segmentation, the outline of the parameterization pro-
cess for the limbic and pupillary boundaries is as follows: (1)
preprocessing by median blur to smooth out the edges, (2)
generation of candidate segmentations using a circular Hough
transform [29], and (3) selecting the best candidate as a final
parameterization. An example for the pupillary parameteriza-
tion is given in Figure 1, the annuli (see below) belonging to
the chosen pupillary parameterization are also shown.

If the core parameters for the Hough transformation are set
sanely, i.e. pupillary radius no larger than 1/4th of the small-
est image dimension and iris radius greater than pupillary ra-
dius, then the resulting circles almost certainly contain the cor-
rect parameterization. The selection process then is the key for
finding well fitting and stable parameterizations.

Given that the pupillary boundary is more complete than
the iris boundary, because it is less obfuscated by eyelids and
eyelashes, we start with that. The goal is to find the best param-
eterizations for which the parameterized circle fulfills the fol-
lowing properties: (a) surrounded by iris pixels on the outside,
and (b) containing no iris pixels inside. We can use annuli adja-
cent to the circle candidate 𝑐, with center at 𝑐𝑥, 𝑐𝑦 and radius 𝑐𝑟,
and measure the number of iris pixels contained therein. Let
the inner annulus be 𝐴𝑖(𝑐) with radii 𝑐𝑟 and 0.5×𝑐𝑟, and likewise
the outer annulus 𝐴𝑜(𝑐) with radii (1.5 × 𝑐𝑟, 𝑐𝑟). Let 𝑁(𝑎) count
the number of iris pixels in area 𝑎 and 𝑁(𝑎) be maximum possi-
ble number of iris pixels in area 𝑎. We can then use this, pupil-
lary, value functions as a, normalized in [0, 1], quality measure
for each circle:

𝑉𝑝(𝑐) = 𝑁(𝐴𝑜(𝑐)) − 𝑁(𝐴𝑖(𝑐))
̂𝑁(𝐴𝑜(𝑐))

. (1)

The circle candidate with the highest value will be the circle we
choose as parameterization for the pupil 𝑐𝑝. If two candidates
have the same value the one with the smaller radius shall be
chosen, in order to maximize the available iris texture.

The selection of the limbic circle is done in an analogous
fashion, but changing the role of outer and inner annulus, since
the limbic boundary should contain all the iris pixels. The
largest radius candidate should be used in case of multiple
candidates having the same value. There is an additional con-
straint which can be added to the selector function. The limbic
and pupillary parameterizations should be roughly concentric.
This leads to the limbic value function

𝑉𝑙(𝑐, 𝑐𝑝) = max( 0, 𝑁(𝐴𝑖(𝑐)) − 𝑁(𝐴𝑜(𝑐))
̂𝑁(𝐴𝑖(𝑐))

−
√(𝑐𝑥 − 𝑐𝑝

𝑥)2 + (𝑐𝑦 − 𝑐𝑝
𝑦)2

𝑐𝑟
) . (2)
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(a) Iris image (b) Mask image (c) 𝑐𝑝 Candidates (d) 𝑐𝑝, 𝐴𝑖(𝑐𝑝) and 𝐴𝑜(𝑐𝑝) (e) Final parameterization
Figure 1: Outline of the parameterization process.

The lower cap of zero needs to be in place to keep it normalized
in a [0, 1] range, since of course ̂𝑁(𝐴𝑜) > 𝑁(𝐴𝑖), and we further
reduce the score by the relative radial offset. The cases where
𝑉𝑖 would be less than zero are clearly not good parameteriza-
tion candidates and as such the loss in differentiation does not
impact the result. Like above, we choose the highest value cir-
cle 𝑐𝑙 as the selected parameterization of the limbic boundary,
and normalization is then done by transformation to Faberge
coordinates in the regular fashion with 𝑃 ∶= 𝑐𝑝, 𝐿 ∶= 𝑐𝑙 (i.e. the
rubbersheet transform).

3 Experiments

3.1 Tools and Datasets
For comparison with tools from literature we utilize the USIT
toolkit, described in [30, 31]. Specifically, USIT contains the
CAHT [32] and WAHET [33] segmentation tools, the lg and
qsw feature extraction tools, and hd and gen_stats_np.py for
biometric comparison and the evaluation of the results. Fur-
ther, it contains the manuseg tool which can utilize parame-
terised pupillary and limbic boundaries, as generated by the
algorithm described in Section 2.2 or provided by the various
ground truth segmentations.

The databases used for comparison are the well known IIT
Delhi Iris Database version 1.01 (iitd), and the interval subset
of the CASIA Iris Image Database version 4.02 (casia4i). In ad-
dition we used a subset of CASIA Iris Subject Ageing Version
1.0 Database (casiaA)3. The ground truth for the segmentation
is available for all used databases: For iitd and casia4i refer to
[34]4; and for casiaA refer to [35]5.

The central experimental dataset used in this work is the
iris subset of the second part of the PROTECT Multimodal DB
6 [36], which has been acquired in a context focused on border
control.

While iitd, casia4i and casiaA are well known databases the
PROTECT Multimodal DB is relatively new and so we will
briefly describe it here.

The PROTECT Multimodal DB aims at being representa-
tive of the universe of travelers that cross the borders thus
including a wide range of variety in age, gender, ethnicity and

1http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_
Iris.htm

2http://biometrics.idealtest.org/dbDetailForUser.do?id=4
3http://biometrics.idealtest.org/dbDetailForUser.do?id=14
4http://www.wavelab.at/sources/Hofbauer14b
5http://www.wavelab.at/sources/Hofbauer16d
6http://www.projectprotect.eu/dataset/

skin/eye colour types. The data was collected during a sin-
gle week in two different environments at the same location.
These different environments were created to simulate the Air
and Sea Border (ASB) and the Land Border (LB) use cases. In
an indoors location, a “biometric corridor” acquisition was
created to collect 2D face and periocular, 3D face and anthro-
pometrics. In an outdoors location, a “vehicle collection” envi-
ronment was created to simulate the situation when a vehicle
approaches the land border and the passengers need to have
the biometric data captured whilst inside the car. The samples
collected in the vehicle setup were iris, 2D face, 3D face, ther-
mal face, and finger & hand veins. The iris subset (protMI)
contains data of the two eye patterns from 28 subjects (56 dif-
ferent irises) and was acquired inside a vehicle using a mobile
device by the passenger. Each volunteer provided 4 samples
in the enrolment session and a variable number of samples in
one or two additional collections. Therefore, the number of
samples per subject is variable starting at a minimum of 10
samples (4 samples in the enrolment plus 6 samples in the first
session). In the end a total of 1008 images from 56 iris were
recorded, the number of images per eye finally used are given
in Table 2 (few images are discarded in experimentation, see
below).

The device used for the acquisition of iris samples was the
MK212OU from the IriShield™series by IriTech which includes
ultra-compact, auto-capture iris scanners, complete with on-
board iris recognition and a PKI-based security infrastructure
that ensures end-to-end data security. This sensor features iris
image quality assessment algorithms to provide good quality
images. The IriShield MK212OU device works at an optimal
distance of 5 cm (2 inches) from a single eye and has a focal
depth of 6 mm (0.2 inch). The image format is compliant to the
ISO Standard 19794-6 (2005 & 2011) with 640 x 480 pixels and
8-bit grayscale. Furthermore, it offers a NIR LED illumination
and it can be used outdoors or indoors. The device is depicted
in Figure 2.

Despite the good quality of the iris images in principle, the
images reflect some of the limitations observed when a self ac-
quisition is performed using a handheld device plus the fact
that this was done inside a vehicle in an outdoors setup. Some
samples are depicted in Figure 3.

The environmental conditions, the mobile capturing device
and the fact that acquisition simulated untrained users (non-
habituated acquisition) lead to an increase in rotation in the
data. This fact is at the core of our evaluations, and the other
databases used in experimentation represent a less rotated
base for comparison. The ground truth iris segmentations for
protMI, based on one operator with ellipse+polynomial con-
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Figure 2: The Irishield device connected to a mobile phone
(Samsung S8).

tours like in [34], will be published jointly with this paper and
will be made available at the Wavelab homepage7.

It should be noted that we excluded 21 images from the
protMI ground truth database, and consequently from our ex-
periments. The reason is the usage of the parameterization
types of the manuseg tool, which uses polynomials to delimit
upper and lower eyelid. In case an image is rotated so far that
the upper or lower eyelid can no longer be described by this
function it has to be skipped. An example of an image removed
from the database is given in Figure 4. The number of (remain-
ing) images per eye is given in Table 2.

3.2 Experimental Results

3.2.1 CNN-based Segmentation

The results provided by the proposed segmentation method
are depicted in Table 3 based on type 1 (E1) and type 2 (E2)
errors (as used in the noisy iris challenge evaluation NICE - I
[37], for which lower is better) and the F1-measure (for which
higher is better). The binary segmentation masks as generated
by the CNN semantic segmentation techniques are compared
to the manually annotated ground truth.

Results reveal an interesting tendency. While the RefineNet
architecture is able to outperform the already excellent iFCEDN
results [23] for all datasets acquired in non-mobile acquisition,
the protMI data obviously can be segmented better using the
iFCEDN architecture. These results underpin the importance
of carefully selecting the employed CNN architecture for a spe-
cific iris target dataset. The existence of an optimal architecture
independent of iris dataset properties seems to be highly ques-
tionable.

7http://www.wavelab.at/sources/Hofbauer18b

Table 2: The makeup of the protMI database which contains
a total of 1008 images from 28 users. The user ID, number of
images from the left and right eye are given.

UID left right UID left right

01 11 12 18 25 24
02 23 18 20 16 16
03 23 22 21 16 16
05 23 20 23 23 23
06 25 24 24 16 16
07 23 25 25 16 16
09 16 16 27 16 16
10 16 16 28 16 16
11 24 24 29 33 29
12 24 25 30 7 8
13 24 24 31 10 11
15 16 16 37 10 14
16 8 8 38 13 13
17 16 16 39 16 19

Table 3: Average segmentation scores per dataset.

CNN Database E1 E2 F1

RefineNet

casia4i 0.009 0.011 0.984
casiaA 0.005 0.012 0.972
iitd 0.015 0.018 0.974
protMI 0.044 0.151 0.746

iFCEDN [23]

casia4i 0.021 0.028 0.962
casiaA 0.007 0.020 0.966
iitd 0.018 0.022 0.970
protMI 0.008 0.024 0.952

3.2.2 Rotation Compensation

The eye can rotate in the eyesocket, torsional movement is in-
duced by sup/inf rectus and sup/inf olique muscles. This tor-
sional movement is generally limited to ranges of ±10∘, Sparks
[38] and Young and Sheena [39].

The USIT toolkit can deal with rotation, and the usual set-
ting is ±16bits. USIT uses textures of width, that is transformed
circumference of the iris, of 512 bits, leading to a single bit
roughly equaling 0.7∘ of rotation. This compensation of rota-
tion is costly in terms of biometric recognition accuracy as it
searches for better matches of imposter scores, narrowing the
gap between genuine and imposter distributions. Furthermore,
it is time consuming, a multiplication of a single match by the
number of rotations. Both of these disadvantages of classical
rotation compensation are known and there are works in lit-
erature which aim at reducing the impact of rotation on the
recognition, e.g. [40, 41].

The following utilizes the rotation compensation of the
USIT in its baseline configuration, because the goal is to look
at the capabilities of the segmentation tools to perform their
task on rotation-prone / off-angle images.

The first step we conduct is to ascertain the degree of rota-
tion that is actually present in the protMI database, to this end
we utilize the segmentation ground truth with manuseg and lg
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Figure 3: Iris samples from the PROTECT Multimodal DB database.

Figure 4: An example of a removed image since the polyno-
mials used for eyelid delimitation can not deal with the strong
rotation.

Table 4: Experiment to find the rotation in the protMI Database,
based on ground truth, manuseg and lg.

rotation [±bit] EER [%] OP0.01[%]

16 8.74 50.48
24 6.49 49.56
32 5.12 49.07
40 4.53 48.74
48 4.10 48.43
56 3.96 48.26
64 3.96 48.26
72 3.96 48.26

as feature. The biometric recognition rate (as obtained when
comparing all samples excluding symmetric comparisons), or
rather the equal error rate (EER) and the operating point of
FNMR@𝐹𝑀𝑅=0.01%(as OP0.01in the table), will serve as the er-
ror function which is to be minimized. An exact pinpointing
of the rotation is not necessary since in a practical application
rotation will differ from this set. Consequently, we will start
at the suggested minimum ±16bit, and increase the rotation in
roughly 5∘ steps, or ±8bit, until EER and OP0.01are minimized.

The results of this experiment are given in Table 4. The er-
ror is minimized somewhere between ±48 and ±56 bits, so we
will stick with ±56 bit for further experiments. The equivalent
of ±56bit are ±39.375∘.

Since the experiment was performed with the ground truth,
the EER and OP0.01 also serve as a baseline for the further au-
tomated / algorithmic segmentations.

To get a better view of the actual rotations used during ro-
tation compensation we used the ability of the hd comparison
tool of the USIT to log the exact bitshift used for the final match.
We only used genuine comparisons since imposter to genuine
comparisons would result in a random shift. To see the differ-
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Figure 5: Frequency of rotation on the protMI and casia4i
databases.

ence to a traditional system, that is using stationary acquisition,
we plot the frequency for the casia4i database as well. Figure 5
gives the result, the y-axis contains the frequency, that is the
percentage of all rotations, per bit shift. The total overlap be-
tween the frequencies is 73.6%, or put differently, 26.4% of all
comparisons are shifted from the center to the extremes. Mean-
ing roughly a quarter of the genuine comparisons would result
in a worse comparison score, and likely false rejection, when
using traditional rotation compensation as suggested by USIT
default settings.

3.3 Recognition Performance Evaluation
Many of the traditional segmentation methods, e.g. CAHT, as-
sume a cooperative user, a high quality stationary recording
device and consequently a high quality frontal image with rel-
atively little obfuscation, i.e. a wide open eye. In actual practice
this might not be the case and traditional methods often have
problems when it comes to less constraint iris databases, e.g.
iris acquisition on the move or using mobile sensors. The uti-
lization of CNNs in the biometric toolchain could solve these
problems. Note that this can only compensate segmentation
issues not issues arising from the non-linear transformation of
the iris texture, see Karakaya [42].

To evaluate the performance of CNNs, and their use in the
biometric system (after generating normalised texture as dis-
cussed), we will utilize and compare to different segmentation
techniques, i.e. CAHT, WAHET and the manual ground truth,
as well as features extraction methods, i.e. lg and qsw. The
rotation compensation will be set to ±56bit as per prior find-
ings. As a representative for CNNs we use the iFCEDN [23]
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Table 5: Comparison of different feature extraction and seg-
mentation methods under a rotation of ±56bit. The baseline
resulting from ground truth segmentation is also given as
Groundtruth.

feat. seg. EER [%] OP0.01[%] ME

lg Groundtruth 3.96 48.26 2015
lg CNNHT 7.41 50.02 0
lg WAHET 11.33 62.08 0
lg CAHT 22.64 63.44 441500

qsw Groundtruth 3.87 49.60 2015
qsw CNNHT 7.36 52.03 0
qsw WAHET 11.39 58.84 0
qsw CAHT 23.15 49.43 441500

—– OSIRIS —– 15.05 99.74 0

(CNNHT), due to it’s performance on the protMI database as
per the findings in Section 3.2.1.

Further, to compare with a well known method from litera-
ture we included the OSIRIS [43] biometric toolchain. OSIRIS
has a relatively good performance but can not be set to a higher
rotation compensation.

The results achieved on the protMI dataset are given in Ta-
ble 5. In addition to the EER and OP0.01, we also give the num-
ber of masking errors (ME). Masking errors happen when the
comparison of two iris textures have no unmasked information
in common. This happens when masked out bits, eyelids, hair
or other obfuscations, take up the majority of the image. In this
case no comparison score can be calculated.

What can be seen is that traditional segmentation methods
like CAHT, which usually outperforms WAHET on data ac-
quired in constraint conditions, has obviously problems with
rotation. This leads to a high number of masking errors as well
as a high EER and OP0.01. Segmentation methods which are
build to handle more complicated matters are likely to perform
better. This is reflected by our choice of WAHET, which uses
elliptical boundaries to handle off-angle recordings better. A
stark decrease in masking errors when compared to CAHT is
seen and likewise the EER is decreased. The CNN (CNNHT)
is even more adaptable than WAHET and, even though the pa-
rameterization also only uses circular boundary fittings, out-
performs WAHET by quite a margin.

The same basic behaviour can be seen if the qsw is used in-
stead of the lg feature extraction method, hinting that this per-
formance is actually hinged on the segmentation and not on
the choice of feature extraction.

It should also be noted that even the CNNHT nearly dou-
bles the EER reached by the ground truth, so while the CNNHT
clearly outperforms both CAHT and WAHET, there is ample
room for future improvement.

OSIRIS recognition results turn out not to be competitive,
but surprisingly still better (at least in terms of EER) as the
CAHT based results with the extended rotation compensation.

4 Conclusion
Iris data captured by mobile sensors reflect the effect of a more
unconstrained acquisition by non-habituated users. Factors
such as the higher degree of rotation and off-angle imagery
pose problems to classical (segmentation) algorithms used in
the iris recognition toolchain. This work has shown that CNN-
based semantic segmentation together with a higher degree of
explicit rotation compensation during matching significantly
improves iris recognition performance for such datasets.

Future work will address the high cost of explicit rota-
tion compensation (by applying e.g. [40, 41] to such data)
and we will seek to improve the CNN-based segmentation re-
sults by applying elliptical curve models in the iris boundary
parametrisation process applied to the binary segmentation
masks.
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