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Abstract
Given a common dataset, two methods operating on that
dataset and reported equal-error rate (EER) for each method,
then we can estimate whether the two methods differ signifi-
cantly at the threshold leading to the EER. This enables the cal-
culation of a boundary on the significance for methods where
the significance was not reported in the original paper or to
compare new methods to older ones by evaluating them on
the same dataset.
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1 Introduction
When a field of research is young the improvements are usually
large and it is quite clear when an algorithm is better. As the
field gets more mature improvements are achieved in smaller
and smaller increments and the question of significance in-
variably arises. In recent years reviewers in biometrics based
recognition frequently call for significance tests, and rightfully
so.

Various statistics tests have been used, e.g., t-test in [1] or
the McNemar test [2]. However, these tests require the under-
lying data and methods to be available. For the t-test the algo-
rithm has to be run on a number of partitions of the dataset,
for the McNemar test correctness of individual comparisons
must be known. This presents a difficulty when comparing
with older work, even in the rare cases where an implementa-
tion is available there is still an overhead in evaluation since all
algorithms have to be rerun in oder to calculate a significance
level.

It should be noted that this phenomenon is not one re-
stricted to biometric research. It should also be noted that there
are common pitfalls when using significance tests, especially
the choice of critical values is often too lax. As an example
see [3] where common pitfalls and recommended statistical
methods for data mining are discussed. Especially the tutorial
regarding critical values and the multiplicity effect [3, Sec. 3]
are also applicable to biometric significance testing.

In this paper we will present an estimation of significance
based on EER rates when two methods are evaluated on the
same dataset, i.e., the experimental basis is the same. This not
only allows for comparison with methods for which only the
reported EER are available (but not an implementation of the
algorithm), but also between two already published methods,
given they were evaluated on the same dataset. Note that while
we view the problem from the perspective of biometric recog-
nition the assumptions are not specific to this field.

2 Classification and McNemar
Given a set of data 𝒟 with a dichotomous trait 𝒯. Two classi-
fication methods 𝐴 and 𝐵 also apply a dichotomous trait, 𝑇𝐴
and 𝑇𝐵 respectively, with the aim to approximate 𝒯. Given 𝑇𝐴
and 𝑇𝐵, is the difference between method 𝐴 and method 𝐵 sig-
nificant?

To answer this question the McNemar test [4] can be used.
Given table 1 we split the results into correctly (C) and wrong-

Table 1: The table for the McNemar test to compare correctly
and incorrectly classified values between Methods A and B.

Method A
C W

Method B C 𝑎 𝑏 𝑎 + 𝑏
W 𝑐 𝑑 𝑐 + 𝑑

𝑎 + 𝑐 𝑏 + 𝑑 𝑁

fully (W) classified. This means:

𝑎 =|{𝑥| 𝑥 ∈ 𝒟 ∧ 𝑇𝐴(𝑥) = 𝒯(𝑥) ∧ 𝑇𝐵(𝑥) = 𝒯(𝑥)}|, (1)
𝑏 =|{𝑥| 𝑥 ∈ 𝒟 ∧ 𝑇𝐴(𝑥) ≠ 𝒯(𝑥) ∧ 𝑇𝐵(𝑥) = 𝒯(𝑥)}|, (2)
𝑐 =|{𝑥| 𝑥 ∈ 𝒟 ∧ 𝑇𝐴(𝑥) = 𝒯(𝑥) ∧ 𝑇𝐵(𝑥) ≠ 𝒯(𝑥)}|, (3)
𝑑 =|{𝑥| 𝑥 ∈ 𝒟 ∧ 𝑇𝐴(𝑥) ≠ 𝒯(𝑥) ∧ 𝑇𝐵(𝑥) ≠ 𝒯(𝑥)}|, (4)

and 𝑁 = |𝒟|.
The McNemar test looks at the change between methods 𝐴

and 𝐵, that is entries b and c in the table. If method 𝐴 and 𝐵
are similar then c and b should be distributed based on a coin
flip, i.e. binomial with 𝑝 = 𝑞 = 0.5. Usually the Chi-squared ap-
proximation is used for the McNemar test, although for smaller
𝑏+𝑐 an exact test can also be used. In the following we will use
the 𝜒2 approximation without any continuity correction. The
test statistic is then

𝜒2 = (𝑏 − 𝑐)2

𝑏 + 𝑐 . (5)

Remark 2.1 (On the dataset). The dataset for the test is not com-
prised of the individuals of a database but rather the compar-
isons. The trait 𝒯 is ‘genuine comparison’ and ‘imposter com-
parison’. This requires to know the number of actual compar-
isons done in an experiment rather than the total number of
individuals in the underlying database.

3 Estimating 𝜒2 from the Equal-Error
Rate

Assuming on a dataset 𝒟, for which we know the cardinality
𝑁 = |𝒟|, two methods 𝐴 and 𝐵 report their respective equal-
error rates 𝐸𝐸𝑅𝐴 and 𝐸𝐸𝑅𝐵. In order to find whether or not the
difference between 𝐴 and 𝐵 is significant we have to estimate
Eq. (5).

The EER is the error rate where false non-match rate and
false match rate are equal, that is a total of 𝐸𝐸𝑅×𝑁 elements of
𝒟 are wrongfully classified. In terms of the McNemar-test we
can state

𝑏 + 𝑑 = 𝐸𝐸𝑅𝐴𝑁 and (6)
𝑐 + 𝑑 = 𝐸𝐸𝑅𝐵𝑁. (7)

In order to calculate 𝜒2 we have to calculate 𝑏 − 𝑐 and 𝑏 + 𝑐.
One is easy: 𝑏 − 𝑐 = 𝑏 + 𝑑 − 𝑑 − 𝑐 = (𝑏 + 𝑑) − (𝑐 + 𝑑) = (𝐸𝐸𝑅𝐴 −
𝐸𝐸𝑅𝐵)𝑁. The other we have to estimate since we do not know
the ratios of 𝑏 ∶ 𝑑 and 𝑐 ∶ 𝑑.

Lemma 3.1. For the Chi-squared distribution the p-value of 𝜒2′ is
𝑝′ = 1 − cdf(𝜒2′) and ∀𝜒2 ∶ 𝜒2 ≥ 𝜒2′ ⟹ 𝑝 ≤ 𝑝′ with 𝑝 =
1 − cdf(𝜒2).

Proof. Since the cdf is monotonic increasing and 𝜒2 ≥ 𝜒2′ we
know that cdf(𝜒2) ≥ cdf(𝜒2′). The codomain of the cdf is [0 ∶
1], thus 1 − cdf(𝜒2) ≤ 1 − cdf(𝜒2′).

Consequently, if we minimize our estimation 𝜒2′ then any
realization of 𝑏, 𝑐 and 𝑑 will at least be as significant as the es-
timation. In essence, the p-value calculated based on this esti-
mate is a upper boundary for the real p-value.

To minimize 𝜒2′ we have to maximize 𝑏 + 𝑐. As a simplifi-
cation let us assume that 𝐸𝐸𝑅𝐴 + 𝐸𝐸𝑅𝐵 ≤ 1 which then allows
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to maximize 𝑏 + 𝑐 by assuming no overlap between 𝑐 + 𝑑 and
𝑏 + 𝑑, i.e. 𝑑 = 0 and 𝑏 + 𝑐 = (𝐸𝐸𝑅𝐴 + 𝐸𝐸𝑅𝐵)𝑁, resulting in

𝜒2′ = (𝐸𝐸𝑅𝐴 − 𝐸𝐸𝑅𝐵)2𝑁
𝐸𝐸𝑅𝐴 + 𝐸𝐸𝑅𝐵

. (8)

Remark 3.2. This is the lowest upper bound for 𝑝𝑉 since 𝑑 = 0
is possible (under the assumptions).

Now we come to the question which minimum EER differ-
ence is necessary, such that the difference between method 𝐴
and 𝐵 is significant with at least a p-value of 𝑝𝑉 for all realiza-
tions. We are interested in Δ𝐸𝐸𝑅 = |𝐸𝐸𝑅𝐴 − 𝐸𝐸𝑅𝐵|, and for a
given 𝑝𝑉 the critical 𝜒2∗

𝑉 = ppf(1 − 𝑝𝑉) can be calculated by
using the percent point function, i.e. the inverse cdf.

From

𝜒2∗
𝑉 = 𝑁 Δ𝐸𝐸𝑅2

2𝐸𝐸𝑅𝑀
< 𝑁 Δ𝐸𝐸𝑅2

𝐸𝐸𝑅𝐴 + 𝐸𝐸𝑅𝐵
, (9)

with 𝐸𝐸𝑅𝑀 = max(𝐸𝐸𝑅𝐴, 𝐸𝐸𝑅𝐵), we can calculate

Δ𝐸𝐸𝑅 = +√2𝜒2∗
𝑉

𝑁 𝐸𝐸𝑅𝑀. (10)

Remark 3.3. If Δ𝐸𝐸𝑅′ ≥ Δ𝐸𝐸𝑅 then 𝜒2∗′
𝑉 ≥ 𝜒2∗

𝑉 and conse-
quently 𝑝′

𝑉 = 1 − cdf(𝜒2∗′
) ≤ 𝑝𝑉 .

Remark 3.4. If 𝐸𝐸𝑅′
𝑀 ≤ 𝐸𝐸𝑅𝑀 then 𝜒2∗′

𝑉 ≥ 𝜒2∗
𝑉 and conse-

quently 𝑝′
𝑉 = 1 − cdf(𝜒2∗′

) ≤ 𝑝𝑉 .

4 Some Practical Examples
In the following we provide examples to foster a better under-
standing of the bound.

The first is an example of a minimum Δ𝐸𝐸𝑅 required for
significance which lets us quickly screen a large number of
tested algorithms for improvement. This example highlights
that the required difference in EER can become quite small if
the used dataset is big enough.

The second example examines the coarseness of this upper
bound. From this example it will become clear that the esti-
mation is rather coarse. This means that a proper significance
analysis is always preferable, and the estimation should only
be used when this is not possible, e.g., due to implementations
not being available.

The following examples are based on the authors work with
iris biometry, the methods described so far are however not
limited to iris biometry.

4.1 Minimum Equal-Error Rate Difference for
Significance

Within our assumptions, if we set 𝐸𝐸𝑅𝑀 = 0.5, which should
really cover all reasonable cases, and given well known biomet-
ric databases, Casia v4–Interval [5] with 𝑁𝐶4 = 3480841 and
IIT Delhi [6] with 𝑁𝐼 = 2507680, the EER differences in Table 2
would be significant with at least the given p-value.

One should note that this is a worst case scenario, and a
smaller 𝐸𝐸𝑅𝑀 would lead to a smaller Δ𝐸𝐸𝑅 as shown in Fig-
ure 1.

Table 2: Minimum difference in EER for the given significance
levels on the given databases.

𝑝𝑉 = 0.05 𝑝𝑉 = 0.01
𝜒2∗

0.05 = 3.84 𝜒2∗
0.01 = 6.64

Δ𝐸𝐸𝑅 Casia v4I ≈ 0.106% ≈ 0.139%
IIT Delhi ≈ 0.124% ≈ 0.163%

Reasonable methods for iris biometry are below the 𝐸𝐸𝑅𝑀 =
4% level. So a Δ𝐸𝐸𝑅𝐶4 ≈ 0.04% reported on the Casia V4–
Interval database would result in a 99% significance level.
Likewise would a Δ𝐸𝐸𝑅𝐼 ≈ 0.05%, for IIT Delhi, result in a
99% significance level.

4.2 Regarding the Coarseness Of the Bound

The estimation of the 𝜒2′ was done as an upper bound, this
means in practice that the estimation is coarse and can falsely
reject a significant difference. From a paper about iris segmen-
tation fusion [2] for which we also have the underlying algo-
rithms and data, allowing us to calculate the real 𝜒2, we take
the following example.

Example 4.1. The evaluation is based on the Casia v4–Interval
database with reported error rates for the algorithms OSIRIS
(1.042698%), CAHT (1.224288%) and the fusion (1.031708%).

From the graph with 𝐸𝐸𝑅𝑀 = 1.3% we would get Δ𝐸𝐸𝑅𝑝𝑉=0.05 ≈
0.02%. Clearly the fusion is better than CAHT, however with
this coarse boundary the difference to OSIRIS is not significant.

When we use the better evaluation (8) we get:

𝜒2′ = (0.010426 − 0.010317)23480841
0.010427 + 0.010317 = 2.02668,

𝑝′
𝑉 = 1 − cdf(2.02668) = 0.1546 ≈ 15.5%,

which would suggest that differences are by chance and thus
not significant.

However, running the actual McNemar test on the data
gives the following result: 𝑏 = 26055, 𝑐 = 26707 (and 𝑑 =
10198) resulting in 𝜒2 = 8.032 and 𝑝𝑉 = 0.00459 ≈ 0.46%. With
this we see that the difference is actually significant and the
fusion is a real improvement over both OSIRIS and CAHT.

4.3 On the Usage of Direct and Maximum
Comparisons

Frequently authors give a list of results to compare to, as an
example take Bastys et al. [7].

Example 4.2 (Single Comparison). Bastys et al. lists EERs
for their method (0.13%) and another method from literature
(EER=0.58%) on the Casia V2.0 (device 1) database, but do not
give a significance analysis.

In this case, where only two methods are compared we
can directly use Eq. (8) for the best result. With 𝑁 = 719400,
𝐸𝐸𝑅𝐴 = 0.0013 and 𝐸𝐸𝑅𝐵 = 0.0058 this gives us 𝜒2 = 2051 and
𝑝𝑣 < 10−6. A significant difference.

Subsequently we give another example from the same pa-
per to highlight the use of 𝐸𝐸𝑅𝑀 to simplify multiple compar-
isons.
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(a) Casia v4–Interval 𝑁𝐶4 = 3480841
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(b) IIT Delhi 𝑁𝐼 = 2507680

Figure 1: Required difference in EER, from a maximum EER, too achieve significance to the given level.

Example 4.3 (Multiple Comparison). Bastys et al. report the
following EERs on the CASIA v1.0 database: TAN (0.57%),
DAUGMAN (0.08%), MA (0.07%) and YAO (0.28%) and their
own (0.00%). In this case the Δ𝐸𝐸𝑅 from Eq. (10) is more useful
(one calculation, multiple comparisons):
Setting 𝑝𝑣 = 1% and 𝐸𝐸𝑅𝑀 = 0.0058 (we don’t know the exact
number for TAN). For Casia v1.0, 𝑁 = 285390, we can calcu-
late Δ𝐸𝐸𝑅 = 0.052%. From this bound all differences, except
between MA and DAUGMAN are significant to the given 𝑝𝑣.

5 Conclusion
We have shown how to calculate a boundary on the signifi-
cance for a method based on reported EER rates acquired over
the same dataset. While the estimation is coarse, and proper
significance analysis is always preferable, this methods gives
us a tool for comparing two, or more, methods when an actual
significance analysis is not possible.

The most important application is that Eq. (8) and Eq. (10)
allow us to compare a new method with a method from liter-
ature for which we do not have an implementation. Using the
bounds presented in this paper we ‘only’ need to repeat the
same experiment on the same dataset with the new method
and based on the EERs can calculate a bound on the signifi-
cance.
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