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Abstract

Due to the pervasive access to broad band internet at home and on mobile devices Video-on-
Demand (VoD) and video streaming become more and more popular. Consumers of VoD want
to use such systems without locational restrictions, as is embodied in the idea of “ubiquitous
computing”, and on any device ranging from cell phones via 3G connection to home cinema sys-
tem. This requires that VoD providers store videos in various resolutions and qualities, adapted
to the screen resolution and connection speed of consumer systems. This in turn leads to an in-
crease in storage and consequently an increased cost for providers.

However, there is a solution for this kind of problem, the Universal Multimedia Access (UMA).
UMA means a video is encoded in a way which allows the adaptation to consumer requirements
from a single source video. This leads not only to a reduction in required storage but also allows
to adapt the VoD system to target platforms which were not originally taken into account.

The drawback of such a system is the computational cost required to adapt the video. For-
tunately, this computational cost can be shifted away from the original server since modern
network technologies allow adaptation in the network Just-in-Time (JIT), i.e., at the last possible
moment in the network. This can be done by using multimedia aware network elements (MANE),
and can theoretically reduce the actual transfer rate at the original server by using multicast and
performing the adaptation JIT at the appropriate point in the network.

Wavelet based video codecs are inherently scalable and thus fit this application scenario per-
fectly. Additionally, the performance in terms of quality is the same as for current state of the
art, non wavelet based, video codecs. The Motion Compensated Embedded Zero Bit Codec (MC-
EZBC) is a state of the art wavelet based video codec, and thus meets all the requirements for
its use for UMA.

To use a wavelet based codec for UMA seems deceptively easy. However, the direct applica-
tion is prevented by MANEs, network protocols and standards which are designed in regard
to the current standardised codec, i.e., H.264. Additionally, providers of VoD want a secure
end-to-end communication with their customers to prevent piracy. This is in conflict with the
idea to use JIT scaling in the network since full encryption would also prevent MANEs from
accessing the video for adaptation.

In this cumulative thesis we will thus deal with the following problems: We have to ensure
that MC-EZBC based video codecs can be transported via existing technology; We have to de-
velop encryption methods for secure end-to-end connection which allow JIT adaptation in the
network; and we have to develop methods to ensure and evaluate these encryption methods.
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Abstract (German)

Durch die weite Verbreitung von Breitbandinternet im Heim und Mobilen Bereich werden
Video-on-Demand (VoD) und Streamingsysteme immer beliebter. Konsumenten von VoD wollen
diese Systeme überall nutzen, Stichwort “ubiquitous computing”, von Smartphones mittels 3G
Verbindung bis zu Homecinema Systemen über Breitbandinternet. Dies verlangt von VoD An-
bietern das Videos in diverser Form gespeichert werden, also in verschiedener Auflösung und
Qualität, angepasst an das jeweilige Endgerät und die mögliche Verbindungsgeschwindigkeit.
In weiterer Folge bedeutet das eine gesteigerten Speicherverbrauch und damit höhere Kosten
für Anbieter.

Für dieses Problem gibt es eine Lösung, den Universal Multimedia Access (UMA). Gemeint
ist damit das ein Video auf eine Art gespeichert wird die eine Adaption an die eventuellen An-
forderungen eines Benutzers aus dem gleichen Quellmaterial erlaubt. Damit wird der benötigte
Speicherbedarf gesenkt und die Möglichkeit gewährleistet auf neue Anforderungen einzuge-
hen die im Ursprungssystem nicht vorgesehen waren.

Der Nachteil dieser System ist die benötigte Rechenleistung zur Adaption der Videos. Allerd-
ings führt dies nicht zu einem Flaschenhals beim Anbieter da moderne Netzwerktechnologien
erlauben diese Adaption Just-in-Time (JIT), also erst an der letzt möglichen Stelle im Netzwerk,
zu erledigen. Durch diese multimedia aware network elements (MANE) ist theoretisch sogar eine
Einsparung der Bandbreite beim Anbieter möglich da verschiedene Endnutzer mit einem einzi-
gen Stream seitens des Anbieters bedient werden können indem die Adaption JIT im Netzwerk
ausgeführt wird.

Wavelet basierte Video Codecs sind durch ihre inhärente Skalierbarkeit gut für diese Anwen-
dung geeignet und bieten die gleiche Qualität wie herkömmliche Video Codecs. Der Motion
Compensated Embedded Zero Bit Codec (MC-EZBC) ist ein State of the Art Video Codec der auf
Wavelets basiert und damit den Anforderungen von UMA grundsätzlich genügt.

Die Lösung für das UMA Problem einfach einen Wavelet basierten Codec zu verwenden
klingt offensichtlich wird aber vorerst dadurch verhindert das MANEs und die zugehörigen
Netzwerkprotokolle nur Standardisierte Codecs, nämlich H.264, verstehen. Zusätzlich wollen
Anbieter von VoD Systemen auf eine sichere Art mit ihren Endnutzern kommunizieren um
Piraterie zu vermeiden, was eine JIT Skalierung im Netzwerk ausschließt da die MANEs vollen
Zugriff auf das gestreamte Video zur Adaption benötigen.

In dieser kumulativen Dissertation geht es also darum folgende Probleme zu lösen: Es muss
gewährleistet werden das MC-EZBC Video Ströme über die Existierenden Transporttechnolo-
gien übertragen werden können; Es müssen Methoden zur sicheren End-zu-End Verbindung
entwickelt werden die eine JIT Skalierung erlauben; und es müssen Methoden zur Evaluierung
der Sicherheit des Visuellen Inhalts von Videos entwickelt und evaluiert werden.
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1. Introduction

This cumulative dissertation covers my research with respect to selective encryption and trans-
portation of wavelet based video codecs and image metrics and their use for visual security.
These two topics, while on the surface somewhat different, share a strong connection when it
comes to digital rights management (DRM). Encryption for DRM does not deal with the tra-
ditional notion of cryptographic security as coined by Shannon [47]. In the context of visual
media, images and videos both, it is not necessary to prevent an adversary from gaining any
knowledge about the media but rather to prevent unauthorized consumers from accessing the
high quality content. Image metrics are utilized to estimate quality resulting from encryption
since they, by design, model the human visual system (HVS). The reason to use image metrics
instead of actual human observers, which would be optimal, is that they are very time and cost
efficient.

In the following two sections the reasons, nomenclature and techniques used for video trans-
portation and encryption as well as the visual evaluation with image metrics will be explained
in more detail.

1.1. Selective Encryption and Transport of Videos

Video coding in its usual form targets a certain resolution and output size. Within these param-
eters it exploits redundancies in the visual domain to optimize the output quality versus the bit
rate. When the application target is fixed this approach is well suited, e.g., encoding a video to
be delivered on a blue-ray means the spatial resolution is usually HD1080 and the size of the
output is limited by the amount of data which can be stored on the physical disk. However,
when the target platform is not fixed this approach has some drawbacks. An example of this
would be a streaming service where the recipient platforms can range from cell phones to home
theatre systems. While this affects spatial resolution there is also the bit rate dependency in the
form of network throughput, which again can range from low to high, e.g., wireless connection
or broadband access. In this case the streaming server either has to store a coded video for each
combination of output parameters or do a reencoding on the fly from a higher quality source.
This leads to either an overhead in storage or computational resources.

A possible solution to this is to store a video in such a manner that it can be adapted to current
end user requirements in a timely manner. This notion is called universal multimedia access
(UMA) [55] and the prime enabling technology is the use of scalable video codecs. The state of
the art codec H.264/AVC [24, 27] has a scalable video extension H.264/SVC [28, 46], but there
are some drawbacks to using it. The most important is the fact that it requires scaling targets to
be specified when first encoding the video, i.e., possible application scenarios have to be known
when the video is first created. Wavelet based codecs on the other hand are inherently scalable,
while the options are limited by the decomposition structure of the wavelet all the options are
available all the time. Furthermore, wavelet based codecs are similar in performance to H.264
[35, 14]. For this reason we chose the motion compensated embedded zeroblock coder (MC-
EZBC) [22, 5, 6, 60]. The MC-EZBC uses a T+2D wavelet decomposition, i.e., temporal wavelet
coding (with 5/3 CDF wavelets) is followed by spatial wavelet coding (with 9/3 CDF wavelets).

The reason for using a wavelet based codec is rather straightforward, however it has its
drawbacks. Since H.264 is the current ITU-T standard, a lot of hardware and software de-
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Chapter 1. Introduction

sign is focused on transporting H.264/AVC. Likewise, there exists a lot of work regarding the
transmission [56, 1, 56] and adaptation [53, 30, 31] of H.264/SVC. As such, a major part of this
thesis is dealing with transporting a wavelet based video by utilizing hardware designed for
H.264/SVC, see section 2.1.1.

Closely tied in with transportation is encryption of the video stream. In order to securely
transport a stream from the server to the client encryption has to be used, especially when con-
sidering multicast applications. The easiest option for this scenario is to use transport security
by using a secure streaming protocol like the secure real-time transport protocol (SRTP) as de-
fined in RFC3711 [2].

A drawback of this approach especially in context of UMA is key distribution. If the UMA
principle is used adaptation to each end user requirement is done and the stream is then trans-
ported to the client. This would essentially result in a unilateral connection for each client and
all the computational work, slight as it may be, being done on the server. A better approach
to this scenario is to use multicast and at the last possible point in the network adapt to user
requirements. This can be done by utilizing multimedia aware network elements (MANE) [31].
However, in order to be able to scale on a MANE, the MANE needs to be able to decrypt the
transport stream in order to adapt it, which necessitates a key distribution system between
server, MANEs and clients. This introduces an overhead in workload for the server and net-
work and introduces a number of potential points of attack on the MANEs.

This problem of key distribution and transport encryption can be circumvented by utilizing
encryption on the bitstream. However, in order to be able to perform scaling on MANEs we
need to leave certain information of the bitstream in plain text ,i.e., markers in the bitstream
which facilitate scaling. An extension of this idea to leave codec relevant data in plain text is
the notion of format compliance. In order to be format compliant an encrypted bitstream has be
decodable by a standard conform decoder without a fatal error.

Since we moved away from traditional cryptographic security in the sense of Shannon [47]
it is possible to choose the encryption strength based on the amount of bitstream data which
is encrypted. There are two basic options for this: One, reduction in the encrypted amount to
increase encryption speed; Two, careful choice of the encrypted data in order to facilitate certain
goals.
The first option is rather intuitive and straightforward, in order to reduce encryption time less
data is encrypted. More interesting is the second option were carefully selection of the en-
crypted data can facilitate other goals, especially in the context of digital rights management.

The following possible application scenarios are typical for selective encryption:

Confidentiality Encryption Means MP security (message privacy). The formal notion is that
if a system is MP-secure an attacker cannot efficiently compute any property of the plain
text from the cipher text [3]. This can only be achieved by the conventional encryption
approach.

Content Confidentiality Is a relaxation of confidential encryption. Side channel information
may be reconstructed or left in plaintext, e.g. header information, packet length, but the
actual visual content must be secure in the sense that the image content must not be intel-
ligible / discernible [51].

Sufficient Encryption Means we do not require full security, just enough security to prevent
abuse of the data. The content must not be consumable due to high distortion (e.g. for
DRM systems) by destroying visual quality to a degree which prevents a pleasant viewing
experience or destroys the commercial value. This implicitly refers to message quality se-
curity (MQ), which requires that an adversary cannot reconstruct a higher quality version
of the encrypted material than specified for the application scenario [50].
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1.2. Visual Evaluation of Security with Image Metrics

Perceptual / Transparent Encryption Means we want consumers to be able to view a pre-
view version of the video but in a lower quality while preventing them from seeing a full
version. This for example can be used in a pay per view scheme where a lower quality
preview version is available from the outset to attract the viewers interest, e.g., Li et al.
[33]. The difference between sufficient and transparent is the fact that there is no min-
imum quality requirement for sufficient encryption. Encryption schemes which can do
sufficient encryption cannot necessarily ensure a certain quality and are thus unable to
provide transparent encryption.

Wavelet based codecs in general can deal with sufficient and transparent encryption due to
the structure of the wavelet decomposition. In applications where confidentiality is required it
is often better to utilize transport encryption except where other considerations, e.g., compu-
tational performance or key distribution, favor selective encryption. In section 2.1.2 a selective
encryption method for the MC-EZBC is introduced and a comparison with transport encryp-
tion, in terms of scaling performance on MANEs, is introduced and evaluated.

1.2. Visual Evaluation of Security with Image Metrics

When it comes to image and video coding the desire is usually to either increase quality through
better algorithms or likewise to decrease image/video size without impacting quality. The no-
tion of quality is thus central when dealing with visual media. The problem is that quality
is actually the perceived quality as observed by human subjects, which is not uniform. This
means in order to get a proper quality estimate a number of human observers are required to
reach a significant mean opinion score (MOS). The ITU recommendations for the “Methodology
for the subjective assessment of the quality of television pictures” [26] and “Audiovisual quality
in multimedia services” [29] specify testing methodology and environment as well as that the
number of observers should be at least fifteen. Overall, this leads to a very high cost of quality
assessment due to space and equipment requirements, i.e., laboratory space and viewing de-
vices, as well as human observers. The time requirement is similarly high for even small sized
test sets.

The solution to the high cost comes in the form of objective image metrics. Image metrics
are designed to reflect the human judgement given certain impairments and can thus be used
as a cheap and fast replacement for actual human observers for quality testing. This shifts
the considerable time and cost effort towards the development of image metrics which is a
considerable improvement. However, if each image metric would be judged on a different
test set with different observers the inter metric comparability would suffer. To prevent this,
and to further reduce the cost of engineering novel image metrics, fixed databases are used.
The most prominent image databases are the LIVE Image Quality Assessment Database [49],
Tampere Image Database (TID) [38, 39, 40], MICT Image Quality Evaluation Database [21] and
Subjective quality assessment IRCCyN/IVC database [32].

Based on these databases a large number of image metrics have been published. The main
difference between these metrics is the degree to which they model the human visual system
(HVS). Usually it holds that a better simulation of the HVS increases the correlation with the
MOS at the cost of computational speed. Improvement in this field is thus always possible,
either through improvement of correlation with the MOS or by increasing the speed of compu-
tation. In section 2.2.1 we show how such an improvement can be done by introducing a new
image metric which is effective, i.e., it has a high correlation with MOS, as well as efficient, i.e.,
fast to compute.

When it comes to selective encryption image metrics are also of importance. The target sce-
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Chapter 1. Introduction

narios for sufficient and transparent encryption specifically target certain qualities. In the case
of sufficient encryption we want a video/image to be below a certain quality threshold at all
times. For transparent encryption the resulting quality is required to be in a quality range be-
tween the highest allowed quality and the lowest required quality, i.e., the quality required in
order for the visual media to be usable as a preview. Depending on content and methodology
this has to be evaluated for each type of media which is encrypted, as such a huge workload is
required of the visual quality estimation. While this could be done by humans subjects during
the design phase it is hardly praticial in an actual application. This leaves only image metrics
to fill the role as visual security estimators.

Certain image metrics like the PSNR [34, 10] and SSIM [59, 61] are frequently used for this task
since they are well understood, easy to implement and relatively fast. However, there are other
security metrics specifically designed to fill the role of visual security estimators, e.g., the local
entropy metric [52] and the local feature based visual security metric [54]. Usually the authors
of security metrics claim generality for the introduced metric without evaluation outside the
specific method for which they were designed for. This approach is problematic, since on the
one hand image metrics are used without assessing their applicability to the given scenario.
On the other hand, security metrics are introduced without proper testing, i.e., usually they
are evaluated on less strict terms than regular image metrics, which is especially precarious
given they are used in a security relevant task. However, the major problem when it comes
to the evaluation of security metrics is the lack of clear guidelines or consideration on how to
evaluate security metrics. In section 2.2.2 we evaluated regular image metrics and showed that
they are not fit for the evaluation of low quality images, which is usually the case for sufficient
encryption. We then extended the work to defining a methodology how to evaluate security
metrics and assessed security and image metrics from literature.

The basic task of an image metrics, regardless of their proximity to the HVS, is to assess the
difference between two images. Different image metrics utilize different image features to facil-
itate this comparison. This huge number of potential image feature comparison methods could
potentially be used in other fields of science which require some kind of image comparison.
In an attempt to transfer knowledge from one field to another we attempted to utilize image
metrics as biometric comparators for iris recognition.

Basically, the task of iris recognition in biometrics is to use two images, one from an enroll-
ment step which is linked to an identity, and another which is recorded during the authentica-
tion or identification process. For authentication the user claims an identity and the biometric
feature is used, by comparing it with the stored and known identity, to estimate the veracity
of the claim. For identification the user just presents his biometric feature and the system, by
comparing the given feature with all features stored in the database, has to identify the user. So
at a basic level the task of a biometric system is to identify a user by comparing two recordings
of a biometric feature. This cleanly links the task of image metrics and biometric comparators,
although surrounding parameters are somewhat different. An example of this difference would
be the fact that for image comparison the average luminance of an image has a prominent role,
which is present in almost all image metrics. Biometric systems on the other hand compensate
difference in luminance as a preprocessing step since it is affected by recording conditions, e.g.,
recording of the iris during day or night. In section 2.2.3 we evaluated the use of image metrics,
without compensating for the differences in biometric preprocessing, with high success. This
shows that an exchange of domain knowledge from image metrics to biometric comparators is
possible and should be investigated further.
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2. Contribution

The work published in recent years can be roughly divided into two categories: the use of the
motion compensated embedded zero block coder as a solution for universal multimedia access,
and research in image quality based around, but not limited to, the requirements needed for
selective encryption.

2.1. The Motion Compensated Embedded Zeroblock Coder as Solution to
Universal Multimedia Access

2.1.1. In Network Adaptation

In-network adaptation is important since it reduces the load on the server. Specifically, there
is the option of using multicast on the server even though clients receive different version of a
video stream. This is done by utilizing in network adaptation, i.e. a full video is streamed from
the server and adapted in the network when necessary. This has a number of restrictions. First,
the video stream has to be capable of scaling without reencoding, since the network elements
do not have the capacity to do reencoding. Secondly, the network elements need to know how
to perform the scaling on the bitstream. And thirdly, network elements need access to the
bitstream, i.e. they need the key for traditional encryption scenarios and thus create a potential
point of attack.

Regarding scaling capability, both H.264/SVC and the MC-EZBC (or any other wavelet based
codec) are capable of scaling. Both H.264/SVC and the MC-EZBC are about equal in quality,
with the H.264/SVC being slightly higher quality for fewer scaling points and the MC-EZBC
being slightly higher quality for a high number of scaling options [35, 14]. However, the main
difference is that for the H.264/SVC the scaling options need to be specified during encoding
while the MC-EZBC codec, through the wavelet structure, has natural scaling options. Thus,
both codecs can be used for in network adaptation.

Regarding the signaling of bitstream layout to in network elements for scaling there are a
number of options.

One is to use a codec agnostic description, the generic Bitstream Syntax Description (gBSD)
[37] based on MPEG-21 Part 7 ”Digital Item Adaptation” (DIA) [25]. The description framework
we developed for the MC-EZBC is given in [15] along with an evaluation of overhead. The
problem with this approach is the fact that we have to remodel the scalability options of the
wavelet based bitstream in the gBSD data. This in turn leads to a rather large overhead since
the gBSD data has to be transported alongside the original bitstream.

The other option is to use a standardized way for transporting multimedia data, the Real-
time Transport Protocol (RTP) [44] and the Real Time Streaming Protocol (RTSP) [45] which
in turn utilizes RTP. The interesting part is that the existing technology can already deal with
H.264/SVC, e.g., [58] describes the H.264/AVC payload for RTP and multimedia aware net-
work elements (MANE) and [31] extends this to H.264/SVC. The H.264/SVC is segmented into
network abstraction layer units (NALUs) and scaling on MANEs is performed on a NALU ba-
sis. Thus if a mapping can be found from the MC-EZBC bitstream structure to the H.264/SVC
NALU structure the existing hardware and software can be utilized to transport MC-EZBC
bitstreams. We introduced such a mapping in [11], which also contains a comparison to the
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Chapter 2. Contribution

adaptation method utilizing gBSD data. Overall we have shown that the utilization of MC-
EZBC into NALU embedding generates less overhead on the network and on the MANEs and
is preferable.

In [11] we also did a evaluation of encryption options. The options are to encrypt the bit-
stream, either prior to or after embedding into a NALU stream, or to use transport encryption,
the Secure Real-time Transport Protocol (SRTP), defined in RFC-3711 [2], which is a profile of
the RTP. It was found that bitstream encryption outperforms transport encryption from a com-
putational standpoint. Furthermore, when utilizing bitstream encryption the MANEs do not
need to know the key which reduces the number of potential attack points in the system. No
difference was found when it comes to applying bitstream encryption prior to or after NALU
embedding.

Publications (sorted chronologically)

[15] HOFBAUER, H., AND UHL, A. The cost of in-network adaption of the MC-EZBC for uni-
versal multimedia access. In Proceedings of the 6th International Symposium on Image and
Signal Processing and Analysis (ISPA ’09) (Salzburg, Austria, Sept. 2009)

[14] HOFBAUER, H., STÜTZ, T., AND UHL, A. Secure Scalable Video Compression for GVid. In
Proceedings of the 3rd Austrian Grid Symposium (Linz, Austria, 2009), J. Volkert, T. Fahringer,
D. Kranzlmüller, R. Kobler, and W. Schreiner, Eds., vol. 269 of books@ocg.at, Austrian Com-
puter Society, pp. 88–102

[11] HELLWAGNER, H., HOFBAUER, H., KUSCHNIG, R., STÜTZ, T., AND UHL, A. Secure trans-
port and adaptation of MC-EZBC video utilizing H.264-based transport protocols. Elsevier
Journal on Signal Processing: Image Communication 27, 2 (2011), 192–207

2.1.2. Selective Encryption Schemes for Wavelet-based Codecs

Selective encryption in our case refers to two different selection methods. One is selective en-
cryption in the sense that format compliance has to be achieved, i.e. the encrypted bitstream
has to be a valid MC-EZBC bitstream and a decoder should be able to handle it. The other sense
of selective encryption will be referred to as partial encryption here and in our publications to
better distinguish between these two types. Partial encryption refers to the selection of data to
actually encrypt from the subset which can be encrypted while still maintaining format com-
pliance. This is done in order to target specific application scenarios. An example would be
transparent encryption, where a certain quality should be maintained, which would lead to the
selection of high frequency data for partial encryption.

We published our encryption method for the MC-EZBC in [16], which was the first encryption
method for the MC-EZBC to appear in literature.

Regarding security Lookabaugh et al. [36] showed that selective encryption is sound and
demonstrated its relation to Shannon’s work, [47]. However, Said [43] showed that side infor-
mation can compromise security. In [16] attacks on the encrypted visual data were investigated.
In [17] we further investigated the security of the original approach and showed that confiden-
tial encryption is not possible while maintaining format compliance. Furthermore, we showed
that motion vector information can also be used to compromise security. Consequently we also
extended our encryption approach to encompass motion vector fields.

When it comes to selective encryption another stated benefit is reduction in computational
cost and thus increased encryption speed and performance. This performance gain is often
limited since parsing the bitstream can take up the same or more time than simply encrypting
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it. In [11] we showed that in our application case, i.e. secure transportation of a video, the
performance of selective encryption is measurably higher than transport encryption. Further-
more, through the use of format compliant end to end encryption the necessity for a secure key
distribution system to MANEs in the network is removed.

Publications (sorted chronologically)

[16] HOFBAUER, H., AND UHL, A. Selective encryption of the MC EZBC bitstream for DRM
scenarios. In Proceedings of the 11th ACM Workshop on Multimedia and Security (Princeton,
New Jersey, USA, Sept. 2009), ACM, pp. 161–170

[17] HOFBAUER, H., AND UHL, A. Selective encryption of the MC-EZBC bitstream and resid-
ual information. In 18th European Signal Processing Conference, 2010 (EUSIPCO-2010) (Aal-
borg, Denmark, Aug. 2010), pp. 2101–2105

[11] HELLWAGNER, H., HOFBAUER, H., KUSCHNIG, R., STÜTZ, T., AND UHL, A. Secure trans-
port and adaptation of MC-EZBC video utilizing H.264-based transport protocols. Elsevier
Journal on Signal Processing: Image Communication 27, 2 (2011), 192–207

2.2. Visual Security and Image Metrics

2.2.1. An Effective and Efficient Image Metric

During image and video encoding and manipulation the task is usually to achieve a high quality
in respect to a human observer. Optimally, human observers would be used, but setting up
a testing lab, introducing human observers to the task and performing the tests is both time
consuming and expensive. Thus, image metrics are used instead of human observers in many
tasks. Image metrics range from simple and technical distortion measures, such as MSE or
PSNR to highly sophisticated image metrics, e.g., VIF [48] or CPA1 [4], which take into account
the HVS to a great extent and closely simulate results as obtained from human observers.

The problem in practice is that simple image metrics like the PSNR are easy to understand
and implement and fast, however the correlation to human judgement is lacking [23, 18]. Im-
age metrics which model the human visual system (HVS) on the other hand generally produce
good results but are difficult to understand and implement and oftentimes excruciatingly slow.
There are metrics in between these two extremes, e.g., SSIM [57], NICE [7] or LFBVS [54], how-
ever they are significantly slower and more complicated to implement than the PSNR while not
providing the high precision quality estimations like the VIF or CPA1. As such in practice infe-
rior quality estimation is accepted when speed of calculation is a requirement, mostly in image
and video coding tasks, while offline experimentations use higher precision image metrics.

Consequently, there is room for improvement by speeding up image metrics without sacrific-
ing correlation with human observers. The SSIM is one of better examples of this, it is relatively
fast and provides a good estimation of human judgement. In [19] we developed an image met-
ric which is fast and shows a high correlation to human judgement, on average it outperforms
even the CPA1.

Publications (sorted chronologically)

[19] HOFBAUER, H., AND UHL, A. An effective and efficient visual quality index based on
local edge gradients. In IEEE 3rd European Workshop on Visual Information Processing (Paris,
France, July 2011), p. 6pp
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2.2.2. Applicability of Visual Security Metrics for Selective Encryption

When using selective encryption a part of the plain text remains by definition. When the selec-
tive encryption output is also format compliant, which is often the case since format compliance
is one of the main reasons to use selective encryption, the cipher text can be decoded just like a
normal video or image. The resulting quality of this decoding is usually poor since the cipher
text introduces distortions. This leads to the relative obvious concept of visual security, i.e. the
security of the scheme is based on the reconstruction of the video through an attack and regular
decoding. However, since we by design retain some information in the visual domain the pos-
sible application scenarios can also be extended. Usual goals are sufficient encryption, where
the output should be of very low quality in order to prevent unauthorized users from access-
ing the media, or transparent encryption, where a low quality version of the output should be
guaranteed as a preview version.

Image metrics are routinely tested on databases [49, 21, 32, 40] which contain a fair number of
image impairments as well as mean observer scores by a number of human observers. This is
the ground truth with which image metrics are evaluated. The problem with these evaluation is
that a given metric is usually tested over the whole range of image impairments ranging from
high to low quality. And while most metrics perform admirably well for low impairments,
i.e., high quality, and over the whole quality range, image metrics correlation to human ob-
server scores frequently fall off for high impairments, i.e., low quality. In [18] we showed this
behaviour for a large number of image metrics on widely used databases and suggest that this
has to taken into account when selecting a image metric for a low quality application. Addition-
ally, we showed that there is a lack of image metrics which perform as well on the low quality
range as they do on the high quality range.

This poor metric behavior especially impacts the use of image metrics as security metrics.
Sufficient encryption for example is a prime candidate for a low quality evaluation task. And
this is specifically the case for which most image metrics fail. This is a twofold problem, on the
one hand the desirable properties for security metrics have never been formalized and on the
other hand image metrics are only evaluated on the whole quality range which, as shown in
[18], misrepresents the low quality case. In [20] we attempt to alleviate this problem by speci-
fying properties of image metrics which are required for a security analysis task. Furthermore,
we evaluated a number image metrics which are frequently used in literature or which claim to
be security metrics based on these properties. The unfortunate conclusion of the work is that
none of the currently proposed security metrics are fit for the task.

Publications (sorted chronologically)

[18] HOFBAUER, H., AND UHL, A. Visual quality indices and low quality images. In IEEE 2nd
European Workshop on Visual Information Processing (Paris, France, July 2010), pp. 171–176

[20] HOFBAUER, H., AND UHL, A. An evaluation of visual security metrics. IEEE Transactions
on Multimedia (2013), 15 pages. submitted

2.2.3. Image Metrics as Comparators for Iris Recognition

The International Organization for Standardization (ISO) specifies iris biometric data to be
recorded and stored in (raw) image form (ISO/IEC FDIS 19794-6), rather than in extracted tem-
plates (e.g. iris-codes) achieving more interoperability as well as vendor neutrality [9]. The
storage of the raw iris image instead of iris templates allows for a more sophisticated approach
during template matching. This triggered the idea of utilizing image metrics in the matching
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process to assess whether a technology transfer from the field of image metrics to the field of
biometric recognition would be possible. The processing chain of traditional iris recognition
(and other biometric) systems has been left almost unchanged, following Daugman’s approach
[8] consisting of (1) segmentation and preprocessing normalizing the iris texture by unrolling into
doubly-dimensionless coordinates, (2) feature extraction computing a binary representation of
discriminative patterns of the rectified iris texture, and (3) biometric comparison in feature space
involving the fractional HD as dissimilarity measure [41].

In [13] we applied image quality metrics to iris textures as well as iris templates. While image
metrics do not outperform traditional feature vector-based techniques, results were better than
expected when normalized input was used. This shows that a knowledge transfer is possible
between image quality metrics and biometric comparators.

Given the promising results of [13] we extended the research to include fusion with other
image metrics as well as biometric comparators in [12]. The results gained from this experi-
ment shows an improvement of the total accuracy and justify the applicability of this approach.
However, experiments also highlight that not every combination of comparators improve recog-
nition, which was claimed by several authors [42]. Rather, the results suggest that the fusion of
comparators utilizing complementary information is necessary to benefit from biometric fusion
and increase recognition accuracy.

[13] HOFBAUER, H., RATHGEB, C., UHL, A., AND WILD, P. Iris recognition in image domain:
Quality-metric based comparators. In Proceedings of the 8th International Symposium on
Visual Computing (ISVC’12) (Crete, Greece, July 2012), pp. 1 – 10

[12] HOFBAUER, H., RATHGEB, C., UHL, A., AND WILD, P. Image metric-based biometric
comparators: A supplement to feature vector-based hamming distance? In Proceedings of
the International Conference of the Biometrics Special Interest Group (BIOSIG’12) (Darmstadt,
Germany, Sept. 2012), pp. 1 – 5
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ABSTRACT

Universal Multimedia Access (UMA) calls for solutions where
content is created once and subsequently adapted to given
requirements. With regard to UMA and scalability, which is
required often due to a wide variety of end clients, the best
suited codecs are wavelet based (like the MC-EZBC) due to
their inherent high number of scaling options. However, we
do not only want to adapt the content to given requirements
but we want to do so in a secure way. Through DRM we can
ensure that the actual content is safe and copyright is ob-
served. However, traditional encryption removes the option
of scalability in the encrypted domain which is opposed to
what we want to achieve for UMA. The solution is selective
encryption where only a part of the content is encrypted,
enough to ensure safety but at the same time little enough
to keep scalability intact. Towards this goal we discuss var-
ious methods of applying encryption to the bitstream pro-
duced by the MC-EZBC in order to keep scalability intact
in the encrypted domain while also keeping security intact
with regard to various DRM scenarios.

Categories and Subject Descriptors

K.4.4 [Computer and Society]: Electronic Commerce—
Security ; I.4.9 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Applications

General Terms

Security

Keywords

Security, in-network adaption, wavelet, selective encryption,
scalability,DRM

1. INTRODUCTION
The use of digital video in todays world is ubiquitous.

Videos are viewed on a wide range of clients, ranging from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM&Sec’09, September 7–8, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-492-8/09/09 ...$10.00.

hand held devices with QVGA resolution (320x240) over
PAL (768x576) or NTSC (720x480) to HD 1080p (1920x1080)
or higher. Furthermore, streaming servers should be able to
broadcast over the internet with regard to a wide range of
bandwidths, from fixed high bandwidth lines like ADSL2
to changing low bandwidths for mobile wireless devices. In
such an environment it is simply not possible to encode a
video for every application scenario. So content providers ei-
ther have only a fixed number of options available or they use
scaling video technology to adapt the video for bandwidth
and resolution requirements of the client. The concept of
creating the content once and adapting it to the current re-
quirements is preferable and is better known as Universal
Multimedia Access (UMA) [25].

One of the enabling technologies of UMA is the use of
scalable video coding. This averts the need for transcod-
ing on the server side and enables the server to scale the
video. However, even scaling takes up computation time
and reduces the number of connections the server can accept.
Furthermore, variable bandwidth conditions, which happen
frequently on mobile devices, further taxes the server with
the need to adapt the video stream. The solution to this is
usually in-network adaption, shifting the need to scale to the
node in the network where a change in bandwidth is occur-
ring. The core adaption with these restrictions takes place
on the server and adaption due to actual channel capability
is done in-network. For design options and comparisons of
in network adaption of the H.264/SVC codec see Kuschnig
et al. [10]. Wu et al. [26] give an overview of other as-
pects of streaming video ranging from server requirements
to protocols, to QoS etc.

For video streaming in the UMA environment, i.e. a
high number of possible bandwidths and target resolutions,
wavelet based codecs should be considered. Wavelet based
codes are naturally highly scalable and rate adaption as well
as spatial and temporal scaling is easily achieved. Further-
more, wavelet based codecs achieve a coding performance
similar to H.264/SVC, c.f. Lima et al. [13]. For an overview
about wavelet based video codecs and a performance analy-
sis as well as techniques used in those codecs see the overview
paper by Adami et al. [1]. Under similar considerations
Eeckhaut et al. [5] developed a complete server to client
video delivery chain for scalable wavelet-based video. The
main concern of research regarding UMA is usually per-
formance with respect to scaling and in-network adaption.
However, digital rights management and security is also a
prime concern.

Shannon [22] in his work on security and communication
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made it clear that the highest security is reached through
a secure cipher operating on a redundancy free plain text.
Current video codecs exploit redundancy for compression
and we can consider the bitstream to be a redundancy free
plain text in the sense of Shannon. Thus for maximum se-
curity we just need to encrypt the whole bitstream with an
state of the art cipher, i.e. AES. But we also loose the flexi-
bility of the scalable bitstream. If we want to continue scal-
ing in the network we have to provide the key to every node
in the network where we want to perform scaling. However,
the required key management is another likely security risk
since it generates more attack points, i.e. key transmission
and the receiving network node could be targeted to gain
access to the key. However, if we relax our security stan-
dard, i.e. we do not want perfect security, then it is possible
to combine security and scalability. This is exactly what we
will assess in this paper.

Selective encryption is the encryption of only a part of the
bitstream we wish to protect, usually with the goal of keep-
ing some information contained in the file accessible. While
this lowers the security of the encrypted bitstream it also
yields benefits. The first thing we should realize is that of-
ten we do not need full security, take television broadcasting
for example. It is not necessary to prevent people from rec-
ognizing what movie is airing on an encrypted channel, we
just want to reduce the viewing experience without the cor-
responding key. This is also a good example why we want to
keep information intact: we do not want the receiver think-
ing it receives noise (and properly encrypted signals should
look like a random signal) but we want it to recognize a valid
signal, e.g. a video stream, we just do not want the receiver
to be able to reconstruct the contents. Other goals could be
to retain scalability, to generate preview versions from an
encryption stream and so on.

Regarding security Lookabaugh et al. [14] showed that
selective encryption is sound and demonstrated its relation
to Shannon’s work. However, in practice a bitstream is not
always redundancy free, as required by Shannon. For exam-
ple, Said [21] showed that side information can compromise
security. And of course even the best video codec does not
exploit all redundancies in the bitstream. As such, it is ex-
pedient to include an attack in the examination of a selective
encryption scheme to be able to gauge the actual security.
For an overview about prior selective encryption methods
see the papers by Massoudi et al. [19] and Liu et al. [16].

So as stated our main goal is to keep scalability intact
while providing security to some extent. The possible se-
curity goals we want to achieve with selective encryption in
different DRM scenarios are as follows:

Confidentiality Encryption means complete security, ex-
cept for the information we want to give away. This is
not easily achieved, since headers and other informa-
tion which are necessary to recognize a bitstream can
contain information which can lead to an identification
of the content, see [6] for an example of such an attack.

Sufficient Encryption means we do not require full secu-
rity, just enough security to prevent abuse of the data.
This is of course heavily dependent on what we want
to achieve. In this case we want to prevent people
without a key to be able to view the video sequence.
This does not mean that we do not want them to rec-
ognize what is in the video sequence, we just want to

reduce the visual quality to a level which is regarded
as unviewable by the general public. Another goal of
sufficient encryption is the reduction of computational
complexity, e.g. less time or memory required as com-
pared to traditional encryption.

Transparent Encryption means we want people to see
a preview version of the video but in a lower quality
while prevent them from seeing a full version. This is
basically a pay per view scheme where a lower quality
preview version is available from the outset to attract
the viewers interest. The distinction is that for suf-
ficient encryption we do not have a minimum quality
requirement, and often encryption schemes which can
do sufficient encryption cannot ensure a certain qual-
ity and are thus unable to provide transparent encryp-
tion. Also, computational complexity for transparent
encryption is secondary, the main goal is to provide a
preview version.

Regarding the standard H.264/AVC/SVC there has also
been done research regarding selective encryption. For both
AVC and SVC Magli et al. [17, 18] created a transpar-
ent encryption scheme. All the other works presented are
regarding sufficient encryption of AVC only. The only bit-
stream oriented encryption schemes, i.e. encryption after
compression, are done by Shi et al. [23] and Iqbal et al. [9]
and are not format compliant, i.e. a standard coder would
not be able to decode the encrypted bitstream. The meth-
ods proposed by Li et al. [12], Bergeron et al. [2] and Lee
and Nam [11] are to our knowledge format compliant but
also compression integrated. Especially the compression in-
tegrated algorithms are troublesome to use since a change
of keys would require a new encoding of the bitstream.

We want to apply selective encryption to the bitstream
produced by the MC-EZBC [8, 3, 4, ?] which is a t+2D
scalable video codec. This choice was made mainly because
the source code is available1, which enables our experiments.
Scalability in a video codec means that after one encoding
step we get a bitstream which can be scaled to different bit
rates, spatial and temporal (i.e. frame rate) resolutions,
without reencoding the video sequence. The MC-EZBC
uses motion compensated temporal filtering, with 5/3 CDF
wavelets, followed by regular spatial filtering, with 9/7 CDF
filtering, see fig. 3 for a GOP size of 8. This method, tem-
poral first and spatial later, is referred to as t+2D coding
scheme. For temporal filtering a full decomposition is used
and thus the GOP size is discernible by the number of tem-
poral decomposition levels t, i.e. GOP size = 2t. Both
temporal and spatial filtering are done in a regular pyrami-
dal fashion. Statistical dependencies are exploited by using
a bit plane encoder, the name giving embedded zero bit
coder (EZBC), and motion vectors are encoded with dif-
ferential pulse code modulation followed by an arithmetic
coding scheme. Also note that I frames lead each GOP and
furthermore can appear later in a GOP in case of a scene
change (the dashed outline in fig. 3, lower part, shows pos-
sible occurrences of further I frames).

The outline of the paper is as follows. Section 2 gives
an overview of the goals we want to achieve with the se-
lective encryption, the method we use and a performance

1The source code for the ENH-MC-EZBC is available
from http://www.cipr.rpi.edu/research/mcezbc/.
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analysis. Experimental results for sufficient and transparent
encryption are given in section 3. A summary, conclusion
and outlook to future work is given in section 4.

2. SELECTIVE ENCRYPTION
Our goal with selective encryption is to achieve sufficient

and transparent encryption while conserving the scalability
in the encrypted domain. If we were to use regular encryp-
tion we would have to decrypt the bitstream prior to scaling
and reencrypt it afterwards, which of course also requires
that we have the key at the node which does the scaling.
With our proposed method we can directly perform scal-
ing on the encrypted bitstream, which not only saves time
(since we can skip the de- and encryption steps), but also
simplifies key management since we now only need the key at
the endpoints of the channel. However, assuming that the
unencrypted bitstream is our plaintext and the selectively
encrypted bitstream is the ciphertext, then some portions
of the ciphertext are copies of the plaintext. This means
that perfect security, as specified by Shannon, can not be
achieved, as this would require a full traditional encryption
with a state of the art cipher.

A preview is naturally a lower quality version of the orig-
inal sequence, but so is a downscaled version for a device
which has a limited resolution. For example, the preview
sequence of a HD video might be even better than the nor-
mal quality of the sequence if it is viewed on a mobile phone.
This dichotomy cannot be readily resolved since really low
level end devices border the region to sufficient encryption,
e.g. a preview for a video sequence on a cell phone may not
be viewable at all. And versions which could be considered
preview sequences on a hand held device might be regarded
as unviewable when watched on HD ready devices, e.g. when
upscaling a sqCIF version of the sequence to a HD resolution
the occurring pixelation will effectively degrade quality.

2.1 Bitstream
A schematic overview of the MC-EZBC bitstream is given

in fig. 1 and an illustration of the decomposition of a GOP is
given in fig. 3. The main layout is a header followed by GOP
sizes (this is the size of the image data in a GOP) followed
by a sequential ordering of GOPs. Each GOP is lead by a
header, giving scene change information, i.e. which frames
are I frames, followed by the motion field and image data.
For both motion field and image data the frames are kept
separate, i.e. no interleaving of frames, and frames are or-
dered lowest to highest temporal resolution (which is equal
to lowest to highest temporal frequency bands). Likewise
for each frame the image data is stored from lowest to high-
est resolution (which is equal to lowest to highest spatial
frequency bands). Each base layer and each enhancement
layer is stored as chunk of data (not shown in the figure),
meaning a leading header giving the length of the data block
followed by the data block itself.

For a parsing of the bitstream the layout into chunks is
beneficial since we do not have to search for marker se-
quences but can directly skip large parts of the file. Also
when headers, including chunk headers, and GOP size infor-
mation is kept intact the whole bitstream can subsequently
be parsed correctly, which is important to be able to scale
after the encryption. In our context the encryption of image
data is called selective encryption, i.e. we do not encrypt
headers, motion fields or chunk size. From the remaining

Header Payload

Size GOP n GOP 1 GOP nSize GOP 1

GOP Header Motion Field Image Data

MV Base L. MV Enhancement L. LLLL HLLLH LLH

Base L. Enhancement L.

Figure 1: The layout of the MC-EZBC bitstream
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Figure 2: Workflow of the encoding, scaling, decod-
ing process with encryption

data, which constitutes about 99% of the bitstream we can
choose what to actually encrypt. If we choose to encrypt all
we will denote that full selective encryption, if we choose to
encrypt a subset we denote that as partial selective encryp-

tion. The size of the data in chunks is not aligned in any
way and scaling happens in the image data chunks. As such
we need an encryption scheme which can encrypt arbitrary
block length and which does not reorder bytes, e.g. no ci-
phertext stealing. Given this information the choice of AES
in OFB mode seems reasonable, since OFB mode has the
desired properties of keeping the bitstream in order while
AES is a well known state of the art cipher. Note that ev-
ery cipher which does not rearrange bytes and can be cut
of is useable here, e.g. basically every stream cipher. Since
the visual data is easily accessible in the bitstream it seems
to be a good choice to separate encryption and encoding,
resulting in the work flow shown in fig. 2. The program
pull was provided with the MC-EZBC source and does bit-
stream adaption, inspect is our tool to view the layout of
the bitstream, encrypt and attack it.

2.2 Scaling Performance Analysis
The computational performance of selective encryption vs.

traditional encryption is discussed controversially in litera-
ture. Basically, parsing and locating of what to encrypt
generates an overhead and often a full traditional encryp-
tion is faster, especially with fast ciphers like AES. One can
of course claim that the added advantage of keeping the abil-
ity to scale in the encrypted domain is worth the tradeoff of
’slow’ encryption but it is still interesting to see how well we
do.

2.2.1 Runtime Overview

Table 1 shows an overview of a full run through the work
flow outlined above, and shown in fig. 2. The sequence en-
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Table 1: Performance of the various steps in the
work flow for the Flower sequence with a total of
128 frames and GOP size 128.

encoding 15m 47s 33ms 97.67%
encryption 148ms 0.02%
scaling 96ms 0.01%
decryption 50ms 0.01%
decoding 22s 344ms 2.30%

total 16m 9s 671ms 100.00%

coded was the well known flower sequence with a total of 128
frames and a temporal resolution of 7, resulting in a GOP
size of 128. The highest quality version of the sequence is
encrypted (all image data but no headers or motion vec-
tors), then the sequence is downscaled to 128kbps (in the
encrypted domain) and subsequently decrypted. What we
see is that compared to encoding, and even decoding, the en-
cryption and decryption process is extremely fast, and scal-
ing is likewise. However, in terms of performance we should
rather look at the absolute values, since if a bitstream is
given (e.g. in retrieval scenarios like video on demand) en-
coding is not considered. For the highest quality version of
the sequence we can encrypt, or decrypt, with a speed of
roughly 1.15ms/frame and for the 128kbps version we have
about 0.4ms/frame for full selective encryption. This trans-
lates to a throughput of about 870 frames per second for
the full quality stream and 2500 frames per second for the
downscaled version.

2.2.2 Traditional vs. Full Selective Encryption

While overall the performance is quite good the question
remains how the full selective encryption process compares
to full traditional encryption when scaling is applied. Tak-
ing the same high quality flower bitstream as above we per-
form full traditional encryption and full selective encryption,
where the latter amounts to 99.41% of this bitstream. The
encrypted bitstream is then downscaled. For traditional en-
cryption we need to decrypt the bitstream prior to scaling
and reencrypt it after scaling was performed. For full se-
lective encryption we can directly scale the encrypted bit-
stream.

Full traditional encryption takes 114ms and full selective
encryption takes 148ms, resulting in a speedup of 0.77. So
if we do not scale the full traditional encryption is faster.
Full selective encryption encrypts nearly the same amount
of data as traditional encryption and also has a parsing over-
head.

When we perform scaling however full selective encryption
is faster since we can skip the decryption and encryption
steps before and after scaling. Scaling takes 96ms for both
encryption methods. With traditional encryption we have
to decrypt before (114ms) and encrypt after (39ms) scaling.
Thus, we get a total of 249ms for traditional encryption and
96ms for full selective encryption resulting in a speedup of
2.59.

The performance of partial selective encryption will be
discussed in section 3.3.
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Figure 3: Overview of the decomposition of a GOP
with GOP size 8 with marked high temporal layer
(lower part), high spatial layer (upper part) and pos-
sible I frames as dashed outline on the lower part.

3. EXPERIMENTAL RESULTS
Since the various parts of the bitstream are basically wavelet

decomposed signals we have a clear idea what to encrypt us-
ing partial selective encryption. For sufficient encryption we
will target the low frequency bands, both temporally and
spatially, as well as I frames. For transparent encryption
we will encrypt the high bands, reducing the detail level of
the sequence. To illustrate this, fig. 3 shows an overview
of the decompositions, the marked frames in the lower part
show the highest temporal band versus the highest spatial
band in the upper part. The lower part of the figure also
depicts possible I frames after the first frame in the GOP. Of
course feeding a random signal into the arithmetic decoder
will produce visual garbage in any case so it is expedient to
consider an attack on the encrypted video sequence. This
provides us not only with more insight into how well the suf-
ficient encryption does but also gives us a method to remove
the encrypted part of the sequence for the generation of the
preview video for transparent encryption.

There are a number of possible attacks in literature. For
an overview of selective encryption and attacks see Engel
et al. [7] for JPEG2000, and Lookabaugh et al. [15] for
MPEG-2. Specifically there are attacks which copy struc-
turally similar symbols from one part of the bitstream to an-
other or inject a forged version into the bitstream. This aims
at removing the distortion introduced by decoding the en-
crypted bitstream or making decoding possible at all. These
attacks also try to improve the resulting quality of the at-
tack by forging the injected part of the bitstream in a way
to minimize the decoding error. In literature such an at-
tack is known as error concealment attack or replacement

attack, a detailed description of such an attack can be found
in Podesser et al. [20].

We will consider the error concealment attack of nulling
out the encrypted part of the sequence. This basically ex-
ploits the fact that the arithmetic coder then maps the at-
tacked part of the sequence to the most common output.
While this also messes up the length of the bitstream seg-
ment with regard to the decoder we can still use it since
the length is explicitly given. This allows the decoder to
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properly reset after the attacked part of the sequence and
continue the proper decoding. Also note that although in
the still images presented here structural information may
not, or only hardly be visible, the structure can often be seen
better when the actual video sequence is seen in motion. So
even if the attacked images sometimes give the impression
that we have achieved confidential security, this is not the
case. Also note that we will use the encryption only on se-
lected parts of the image like the low temporal bands to get
a better idea how this influences the video sequence, while in
an actual application scenario one would probably mix these
encryption schemes, e.g. encrypt low temporal and spatial
bands at the same time.

The sequences used in this section will be Container and
Waterfall, both with a length of 256 frames and a GOP size
of 256 (leading to 8 temporal levels) with CIF resolution.
No scaling was performed and a full quality sequence was
used as base for the experiments.

3.1 Sufficient Encryption
For sufficient encryption we to target the parts of the bit-

stream which codes the visually most significant data. The
codec exploits redundancy and inter frame dependencies and
concentrates the high information content of the video in the
lower frequency bands, both temporal and spatial. The low
frequency frames effect all frames in their GOP through the
wavelet synthesis and are thus prime targets for sufficient en-
cryption. Likewise, the I-frame introduce information into
the current GOP and effect frames in a pyramidal fashion
(stemming from temporal decomposition). This makes I
frames also good candidates for sufficient encryption. In
the following we will look at the influence of I frames and
low frequency frames for sufficient encryption. Each possi-
bility will be evaluated on its own to better gauge the effect
it has on the resulting video quality.

3.1.1 I Frame Encryption

To encrypt I frames is a good way to conceal a high
amount of visual information. Figure 4 shows the PSNR
per frame plot for the Container and Waterfall sequences for
the baseline, encrypted and attacked version of the stream.
Here the encrypted version is a decoding of the stream with-
out prior attack or decryption, the attacked version has the
encrypted parts of the bitstream nulled prior to decoding
it. Depending on the sequence the attack can only obtain
a limited amount of information: for Container which is a
slow pan most information is stored into the motion field so
naturally the refinement information has less energy. The
Waterfall sequence on the other hand is a zoom which can-
not be compensated as well by the motion estimation and
this is clearly visible in the attacked version where we basi-
cally have a comparison of the refinement information with
the original sequence. For a comparison of image quality
between Container and Waterfall see fig. 5. In any case as
can be seen from the PSNR plot the visual quality can be
considered to be sufficiently degraded for our purpose, and
even our attack hardly improves the visual quality.

3.1.2 Low Frequency Band Encryption

The next part of the bitstream which contains a high
amount of information are the low frequency bands, tem-
poral as well as spatial. Both are good candidates for en-
cryption.
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Figure 4: PSNR per frame plot for the Container
and Waterfall sequences for encrypted and attacked
I frames.

Container

Waterfall

Figure 5: Frame 128 of the Container and Waterfall
sequence with encrypted and attacked I frames.
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Figure 6: PSNR per frame plot for the Container
and Waterfall sequence for encrypted and attacked
low spatial frequencies.

The PSNR over frame plots for the encryption of low fre-
quency spatial bands for both sequences, again original, at-
tacked and encrypted versions, are given in fig. 6. The PSNR
plot looks quite similar to the I frame case, as we actually
did encrypt parts of the I frames as well. The advantage of
encrypting the low frequency bands is of course that we also
encrypt large parts of the temporal refinement information.
To get a rough idea of how much information is left, fig. 7
shows frame 128 for the Container sequence in encrypted,
decoded and attacked version. The encrypted version is a
garbled output which stems from the fact that we actually
input a random signal into the arithmetic decoder. The
attacked image in this case looks rather inconspicuous but
still gives of quite a bit of information when it is viewed as
a motion sequence. This is also the main distinction be-
tween encrypted I frames and encrypted low spatial frames.
The I frame version shows a much clearer attacked image
where edges can be directly identified while the low spatial
frequency version really needs motion to properly recognize
structure. This can be easily seen when comparing the at-
tacked Container sequence in fig. 7 (low spatial bands) and
fig. 5 (I frames).

Encrypting the low temporal frequencies we expect some-
thing similar to the I frame version since GOPs in the MC-
EZBC bitstream start with I frames, this coincides with the
lowest temporal frequency. The PSNR plot for Container
and Waterfall can be seen in fig. 9 and frame 128 of the
decoded, attacked and encrypted version of the Waterfall
sequence can be seen in fig. 8(a). What we can clearly see,
and which was to be expected, is that for the Waterfall se-
quence, which contains a scene change, the PSNR rises after

decoded encrypted attacked

Figure 7: Comparison of encrypted, decrypted and
attacked image to the original of frame 128 from the
Container sequence (low spatial frequencies).

decoded encrypted attacked
(a) Waterfall frame 128

decoded encrypted attacked
(b) Waterfall frame 175

Figure 8: Comparison of encrypted, decrypted and
attacked image to the original of frame 128 and 175
from the Waterfall sequence (low temporal frequen-
cies).
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Figure 9: PSNR per frame plot for the Container
and Waterfall sequence for encrypted and attacked
low temporal frequencies.

the I frame in the later part of the sequence. Figure 8(b)
shows frame 175 of the above versions for the Waterfall se-
quence, the influence of the I frame is clearly visible. The
difference to the encrypted low spatial frequencies is rather
obvious. Low temporal frequencies are full leading frames of
the GOP, while low spatial frequencies are the low frequency
information of all frames. Thus, low spatial frames include
all I frames while low temporal frequencies only include lead-
ing I frames. Apart from the fact that we cannot ignore I
frames when encrypting low temporal frames we can clearly
see that encrypting low temporal frames also sufficiently de-
stroys the visual quality. However, since we have to encrypt
all I frames in addition to the low temporal frequencies it
is usually sufficient to either encrypt I frames or low spa-
tial frequencies (with or without full I frame encryption).
Encryption of low spatial bands give a substantial gain vs.
encryption of I frames only because they further destroy the
visual quality of the difference frames. All versions however
are sufficient to destroy the visual quality, while none gives
confidential encryption.

3.2 Transparent Encryption
For transparent encryption the refinement information,

residing in high frequency temporal and spatial bands, can
be encrypted. The optimal solution would be to be able to
completely choose a target PSNR for the preview image, this
is not possible however since we only have a limited amount
of steps, i.e. the decomposition depth of the sequence. How-
ever, adaption in this rough scale is possible and should be
done.
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Figure 10: PSNR per frame plot for the Container
and Waterfall sequence for encrypted and attacked
high spatial frequencies.

3.2.1 High Spatial Frequency Bands

Figure 10 gives the PSNR plot for both Container and
Waterfall sequences, with attacked highest spatial frequency
band. The drop in PSNR is clearly visible, the impact on
the visual quality is not quite as obvious however, as illus-
trated in fig. 11(a), for the Container sequence. What we
can see is that our attack (in this case rather preview im-
age generation) is working well. However, the reduction in
visual quality is not really as high as expected. To remedy
this we will have to encrypt an additional layer of the de-
composition. Figure 12 gives an overview what changes in
this case for the Waterfall sequence. Now the degradation
in visual quality is clearly visible, even though the PSNR
dropped only an additional 5 dB. This also gives an impres-
sion of the scale on which we can adjust the visual quality
with this method.

3.2.2 High Temporal Frequency Bands

For high temporal bands the matter is a bit different.
While spatial bands directly affect image quality, temporal
bands do so to a lesser degree. They influence visual quality
of course through blurring effects stemming from tempo-
ral filtering, but the main effect is a reduction in temporal
resolution, i.e. frames per second. This can only partially
be shown in a PSNR plot and still images, but nonetheless
fig. 13 shows the PSNR plots for Container and Waterfall
where the highest two (of eight total) temporal bands are
encrypted. The visual impact can be seen in fig. 11(b), for
the Waterfall sequence, the main effect being blurring which
can be best seen at the waterfall itself. To show a stronger
version of the blurring effect we also did a version where the
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(a) Container Preview

(b) Waterfall Preview

Figure 11: Preview image of the Container, high
spatial frequencies, and Waterfall sequence, high
temporal frequencies, frame 128.
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Figure 12: PSNR per frame plot for the Waterfall
sequence and frame 128 of the preview (two highest
spatial frequency bands encrypted) sequence.
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Figure 13: PSNR per frame plot for the Container
and Waterfall sequence for encrypted and attacked
high temporal frequencies.

highest four (half total) temporal frames are encrypted, seen
in fig. 14 (both PSNR and visuals). When looking at the
PSNR plots we can see some spikes in the preview image.
These are the images in the temporal sequence which best
fit the original sequence, the degradation following these
frames stems from the fact that the still frames are simply
not changed but the original sequence continues and moves
away from the good fitting frame. Overall the visual view-
ing quality is heavily impaired since a bucking effect with
blurring is introduced when a sufficient number of temporal
frames are encrypted. However, when only the highest tem-
poral layer is encrypted the skipping of every second frame
is actually nearly not noticeable since the merging of tem-
porally adjacent frames partly conceals the missing frame.
It should also be noted that the highest temporal band is
actually a full half of all frames, leading to a high amount
of data to be encrypted when comparing this to the spatial
case.

3.3 Partial Selective Encryption Performance
Instead of giving the information about encryption time

and amount individually in each section, we have collected
the information for all tests in table 2 for easier comparison.
The sequence used was waterfall with 256 frames and GOP
size 256 as well. The information given is for encryption
only, scaling is not taken into account here since it was al-
ready discussed in section 2.2. The interesting thing to note
here is that as soon as we take a step away from full selec-
tive encryption we are actually faster than full traditional
encryption. While this was not our main concern it was a
definite side target of sufficient encryption. Transparent en-
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Figure 14: PSNR per frame plot for the Waterfall
sequence and frame 128 of the preview (four highest
spatial frequency bands encrypted) sequence.

Table 2: Performance comparison of the various se-
lective encryption methods and full traditional en-
cryption.

What was encrypted time % of Bitstream

Sufficient Encryption
I-frames only 28ms 5.52%

lowest spatial band 99ms 34.79%
lowest temporal band 21ms 5.47%

Transparent Encryption
highest spatial band 181ms 91.58%
two highest temporal bands 148ms 72.53%
four highest temporal bands 181ms 89.97%

Full Encryption
full selective encryption 217ms 99.76%
full traditional encryption 201ms 100%

cryption, while faster than full selective or even traditional
encryption, is slower than sufficient encryption. This is not
surprising since the refinement layers, i.e. higher temporal
bands, are significantly larger than the lower frames. Since
transparent encryption has to target those high bands the
amount of data to be encrypted is increased.

For sufficient encryption we have seen that the encryption
of the lowest spatial bands performs best in terms of destroy-
ing visual quality followed closely by I-frames only. In terms
of speedup we have about 2 for lowest spatial bands and
more than 7 for I-frames when compared to full traditional
encryption. When considering that even the sequence with
encrypted I-frames is practically unusable, the choice is ob-
viously the I-frame version since it gives the higher speedup.

For transparent encryption the speedup for spatial and
temporal bands is about the same when we want to achieve
a similar quality. Given that encryption speed is not even an
objective for transparent encryption we can easily state that
both versions are quite applicable. The real choice which to
use thus is not performance but rather target quality.

4. CONCLUSION
We have introduced different ways to selectively encrypt

the MC-EZBC bitstream with regard to transparent as well
as sufficient encryption while being able to scale the bit-
stream in the encrypted domain. The proposed encryption
schemes are fast and computationally cheap. Furthermore,
the proposed encryption schemes meet all requirements of
UMA while keeping security intact.

Concerning sufficient encryption we have shown that the
destruction of the visual quality can easily and efficiently be
achieved, but one has to be aware that encrypting low tem-
poral bands is not enough, i.e. I frames have to be included.
Overall the best practice is to either use I frames, low spatial
bands or both combined, since I frames contain all the base
layer information and low spatial frames contain the highest
amount of energy from base and enhancement layers. For
sufficient encryption we also achieved a gain in computa-
tional performance, e.g. when using only low spatial bands
we require less than half the time of full traditional encryp-
tion.

Concerning transparent encryption we have shown that
it is possible to achieve a reduction in quality by encrypt-
ing high spatial and frequency bands. While both methods
are rather limited when it comes to possible output quali-
ties, when combining both we have a sufficient number of
possible quality steps. Assuming three spatial and eight
temporal bands we would have a total of 24 possible output
qualities. One should note however that, while reduction
of visual quality through spatial encryption can easily be
quantified this is not so simple for temporal bands, mainly
because we are lacking a proper metric to measure bucking
and lagging behavior in video sequences, except from the
blurring which can be clearly seen in the PSNR plots. Con-
cerning computational performance we can only register a
slight improvement over full traditional encryption.

In future work we will look at the encryption of the mo-
tion fields, and closer investigate if it is possible to achieve
full security, i.e. confidentiality, by encrypting motion fields
as well as visual data. Furthermore, the use of a technique
similar to the sliding window approach Stütz et al. intro-
duced for JPEG2000 [24] would be beneficial to reduce the
computational performance of transparent encryption.
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Abstract

A core concept of universal multimedia access is the use

of scalable content. The scalable content should be as flex-

ible as possible to achieve the credo of creating the con-

tent once and adapting it to fulfill given requirements. As

far as flexibility goes wavelet based codecs are superior. A

problem which arises is that the adaptation does not nec-

essarily happen on a device which is aware of the codec

which was used in content creation. To rectify this non-

awareness, MPEG-21 introduced digital item adaptation in

part 7 to abstract the bitstream of a given video. This al-

lows in-network adaptation on nodes which are DIA aware

to adapt any video stream as long as a DIA description is

given. The drawback is that the DIA description must be

sent parallel to the original video sequence. In this paper

we will look at how a DIA description for a t+2D scalable

wavelet codec looks like. We will evaluate the possibilities

we have with various description options and we will also

look at the overhead generated by the DIA description.

1 Introduction

The use of digital video in todays world is ubiquitous.

Videos are viewed on a wide range of clients, ranging

from hand held devices with QVGA resolution (320x240)

over PAL (768x576) or NTSC (720x480) to HD 1080p

(1920x1080) or higher. Furthermore, streaming servers

should be able to broadcast over the internet with regard

to a wide range of bandwidths, from fixed high bandwidth

lines like ADSL2 to changing low bandwidths for mobile

wireless devices. In such an environment it is simply not

possible to encode a video for every application scenario.

So content providers either have only a fixed number of op-

tions available or they use scaling video technology to adapt

the video for bandwidth and resolution requirements of the

client. The concept of creating the content once and adapt-

ing it to the current requirements is preferable and is better

known as Universal Multimedia Access (UMA) [10].

One of the enabling technologies of UMA is the use of

scalable video coding. This averts the need for transcoding

on the server side and enables the server to scale the video.

However, even scaling takes up computation time and re-

duces the number of connections the server can accept. Fur-

Streaming Server Access Point Mobile Device

Fixed Bandwidth
variable bandwidth

Request QVGA video with maximum bandwith 128kbps

Send QVGA, 128kpbs

Video Send QVGA Video

with adapted bandwith

Figure 1. Example of video adaptation for a
mobile device on the server and in the net­

work.

thermore, variable bandwidth conditions, which happen fre-

quently on mobile devices, further taxes the server with the

need to adapt the video stream. The solution to this is usu-

ally in-network adaptation, shifting the need to scale to the

node in the network where a change in bandwidth is occur-

ring. Figure 1 shows an example of this scenario, where

a mobile device requests a video stream from the server

which fits its capabilities. The core adaptation with these

restrictions takes place on the server and on the fly adap-

tation due to actual channel capability is done in-network.

Wu et al. [11] give an overview of other aspects of stream-

ing video ranging from server requirements to protocols, to

QoS etc.

For video streaming in this environment, i.e. a high num-

ber of possible bandwidths and target resolutions, wavelet

based codecs can be considered. Wavelet based codes are

naturally highly scalable and rate adaptation as well as res-

olution or temporal scaling is easily achieved. Furthermore,

wavelet based codecs achieve a coding performance similar

to H.264/SVC, c.f. Lima et al. [7].

For this reason we will consider the ENH-MC-EZBC

wavelet based video codec for in-network adaptation. This

choice was made mainly because the source code is avail-

able 1, which enables our experiments. The MC-EZBC

codec [4, 12] is a scalable t-2D video codec which uses

motion compensated temporal filtering, with 5/3 CDF

wavelets, followed by regular spatial filtering, with 9/7 CDF

filtering, see fig. 2 for a GOP size of 8. This method, tem-

poral first and spatial later, is referred to as t+2D coding

scheme. For temporal filtering a full decomposition is used

and thus the GOP size is discernible by the number of tem-

1The source for the ENH-MC-EZBC is available from

http://www.cipr.rpi.edu/research/mcezbc/.
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Figure 2. Overview of the decomposition of a

GOPwith GOP size 8 withmarked (gray parts)
high temporal layer (bottom), high spatial

layer (top) and possible I­frames as dashed

outline on the lower half.

poral decomposition levels. Both temporal and spatial fil-

tering is done in a regular pyramidal fashion. Statistical

dependencies are exploited by using a bit plane encoder,

the name giving embedded zero bit coder. Motion vectors

are encoded with DPCM followed by an arithmetic coding

scheme.

For an overview about wavelet based video codecs and

a performance analysis as well as techniques used in those

codecs see the overview paper by Adami et al. [1].

The scalability of the video codec is important for UMA

which means it is also necessary for servers and network

nodes to be able to perform scaling. This can either be

achieved by making them aware of the video codec, which

would make upgrading to a different codec later quite trou-

blesome, or by abstracting the actual bitstream. MPEG-21

gives a specification how such an abstraction has to look

like. Part 7 of MPEG-21 [5] deals with Digital Item Adap-

tion (DIA), more precisely it specifies a Bitstream Syntax

Description Language (BSDL) which is based on the XML

schema as specified by the W3C. The idea behind DIA with

BSDL is that a syntax description of the bitstream is avail-

able and can be used to extract a XML description of the

bitstream. On this abstraction of the bitstream the scaling

is performed and mapped back to the original bitstream via

the BSDL, see fig. 3 for an illustration of the process. As

a result each node in the network only needs to be capable

of understanding and handling DIA as per MPEG-21 part 7.

For bitstreams which do not follow a marker based syntax,

specifically if parsing the bitstream would be required to

generate a description, the approach using BSDL does not

work. For this cases a generic bitstream syntax description

(gBSD) is available in MPEG-21 part 7 (see Panis et al. [8])

which can be used to directly describe the bitstream.

Usually when research is done on in-network adaptation

the focus is on client and server layout as well as compu-

tational demand on the network node which performs scal-

BitstreamBS Scheme Adaption Scheme

BintoBSD

BS Description

BSD Transformation

Adapted BSD

BSDtoBin

Adapted Bitstream

Resource

End User

Adaption Engine

Figure 3. Overview of the adaptation process
using the bitstream syntax description lan­

guage.

ing. That is, memory consumption on the network node and

the scaling options as well as resulting video quality un-

der those scaling options are evaluated, e.g. Eeckhaut et al.

[3]. What is missing, especially when considering gBSD

rather than BSDL, is that the transfer of the bitstream de-

scription also takes up bandwidth. Essentially for a fixed

bandwidth the use of a bitstream description reduces the

available bandwidth for the actual bitstream which in turn

results in a reduction of video quality. For similar research

regarding h.264/SVC see Kuschnig et. al. [6].

In section 2 we will describe the MC-EZBC bitstream in

such detail as is necessary to map it to gBSD and provide

possible gBSD descriptions of the bitstream. Section 3 will

look at the overhead generated by gBSD and section 4 will

give a conclusion and outlook.

2 Mapping anMC-EZBC Bitstream to gBSD

In the following the bitstream of the MC-EZBC will be

described with regard to the gBSD mapping. Then we will

give a brief description of the gBSD elements we use to map

the bitstream to gBSD and give two possible mappings. The

scaling option we want to maintain for in-network adapta-

tion reflects which information we will need in the gBSD.

We will focus on the two reasonable end points of the spec-

trum, i.e. full scalability in order to retain the advantage the

wavelet based codec has vs. regular rate-distortion scaling

with a limited number of scaling points reflecting the appli-

cation scenario given in fig. 1.

2.1 MC­EZBC Bitstream

The basic layout of the MC-EZBC bitstream is depicted

in the upper part of fig. 4 and a more detailed overview

of the ’image data’ required for fine grain scalability is

given in lower part.The bitstream is lead by a general header

giving resolution, frame rate, prediction options etc., most

of which stay the same during scaling. The header how-

ever has three fields we need to adjust when scaling is per-

formed: a bitrate field giving the bit rate to which the

bitstream is scaled, t_level giving the number of tem-

poral layers dropped and s_level giving the number of
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GOP Header Motion Field Image Data

MV Base L. MV Enhancement L.

Image Data
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S-0 S-1 S-2 S-n

MSB Bp LSB Bp

Figure 4. Layout of the MC­EZBC bitstream.

spatial layers dropped. The header is followed by a GOP

size list giving the size of a GOP without GOP header size

and motion field, i.e. only image data size. For any scaling

done the GOP size list has to be adjusted to reflect the new

size of image data.

Following this general information are the motion and

image data ordered by GOPs in increasing order. Each GOP

contains a GOP header, basically giving scene change infor-

mation, i.e. which frames are encoded as I frames. Follow-

ing the GOP header is the motion field for the current GOP.

The GOP header and motion field are never changed during

scaling, i.e. motion vectors are never scaled with the image

data. Following the motion field is the image data in frame

order of temporal decomposition, c.f. fig. 2 and fig. 4 lower

part.

The layout of the image data consists of a number of

data chunks consisting of size information and data. For

each frame every spatial decomposition level is given as one

chunk where color information and direction of decomposi-

tion are grouped together, fig. 5 illustrates this. The order of

this chunks in the bitstream is from lowest subband to high-

est subband. For scaling, the size information of the chunks

needs to be reset to the reduced data in the chunk, thus a

description of the bitstream has to be at least down to the

level of chunks. For a limited number of scaling options this

would be enough since the chunk data can be subdivided

into blocks which we can remove. However, if we want to

retain the full scalability capability of the wavelet bitstream

we have to go into more detail. In each chunk there is a three

byte header which may never be removed for regular scal-

ing, however when the whole resolution is dropped these

three bytes can be dropped too. Then the data is ordered in

terms of bitplanes, most significant to least significant. The

reason we need the bitplane information is that the scaling

algorithm performs quantization at a bitplane level, so for

an implementation of the scaling algorithm the size infor-

mation of the bitplanes is paramount.

2.2 gBSD Mapping

We use the gBSD fromMPEG-21 DIA for describing the

bitstream. While the gBSD allows more structural informa-

s2

s1s0

s1 s1

s2 s2

Figure 5. Grouping of decompositions for a

frame with two spatial decomposition levels.

tion to go into the description we will keep the bitstream

description simple so as not to generate too much overhead.

The gBSD is prefaced with a dia:DIA root tag spec-

ifying namespaces followed by a dia:Description

tag specifying the description type (gBSDType) followed

by address information. Since the MC-EZBC bitstream

is byte based we set it to addressUnit="byte" and

addressMode="Absolute". The address mode gives

the method of accessing parts of the bitstream, this is re-

flected by the use of start and length attributes in subse-

quent tags. For the bitstream description we need two dif-

ferent types of tags. First we need a copy and paste de-

scriptor stating that a part of the original bitstream should

be carried over to the scaled version. The gBSDUnit tag

is used for this purpose, we give start and length informa-

tion to mark a part of the bitstream to be kept. Additionally

we need access to the size information, in a scaling case

this is not simply a copy from the original bitstream but

needs to be adapted. The Parameter tag is used for this,

which gives the length of the data block to insert into the

bitstream. The actual information contained in the param-

eter is given by the required child Value. The attribute

xsi:type gives the type of data and the content of the tag

gives the actual value. By using parameter and value we

can access the actual value and change it according to the

adaptation, while the gBSDUnit tags let us copy parts of the

actual bitstream. Both parameter and gBSDUnit also have

an attribute marker which allows to give a handle to the

tag to access it directly. For more information on the tags

and attributes used see MPEG-21 part 7 [5].

First we will look at the description of the bitstream for

a two case scenario to get lower bound for the limited case

scenario. The temporal and spatial resolutions stay fixed

and we give the option of scaling to 1024kbps and 512kbps.

We only need to describe the bitstream down to the level of

chunks of image data. Also, since we do not want resolution

dropping the header description is simplified since only the

bitrate field need to be changed. The GOP size list needs

to be described by the parameter tag as it will change when

scaling is done. Motion vectors and GOP headers however

can be put together as one gBSDUnit since they are consec-

utive and will remain unchanged. Following the GOP head-

ers are the chunks of image data, the header is described by

a parameter tag and the data is described by using two gB-

SDUnits reflecting the two scaling options we want. One
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...

<dia:Description xsi:type="gBSDType"

addressUnit="byte" addressMode="Absolute">

<gBSDUnit start="0" length="14" marker="hdr1"/>

<Parameter length="2" marker="bitrate Q0">

<Value xsi:type="xsd:unsignedShort">1024</Value>

</Parameter>

<gBSDUnit start="16" length="80" marker="hdr2"/>

...

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">118</Value>

</Parameter>

<gBSDUnit start="545775" length="18" marker="data"/>

<gBSDUnit start="545793" length="100" marker="data Q0"/>

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">185</Value>

</Parameter>

<gBSDUnit start="545895" length="21" marker="data"/>

<gBSDUnit start="545916" length="164" marker="data Q0"/>

</dia:Description>

</dia:DIA>

Figure 6. gBSD representation of the flower
sequences scaled to 1024 kbps with marker

for 512kbps.

...

<dia:Description xsi:type="gBSDType"

addressUnit="byte" addressMode="Absolute">

<gBSDUnit start="0" length="14" marker="hdr1"/>

<Parameter length="2" marker="bitrate Q1">

<Value xsi:type="xsd:unsignedShort">512</Value>

</Parameter>

<gBSDUnit start="16" length="80" marker="hdr2"/>

...

<Parameter length="2" marker="hdr Q1">

<Value xsi:type="xsd:unsignedShort">18</Value>

</Parameter>

<gBSDUnit start="545775" length="18" marker="data"/>

<Parameter length="2" marker="hdr Q1">

<Value xsi:type="xsd:unsignedShort">21</Value>

</Parameter>

<gBSDUnit start="545895" length="21" marker="data"/>

</dia:Description>

</dia:DIA>

Figure 7. gBSD representation of the flower
sequence, downscaled to 512kbps.

gBSDUnit locates the data we need for the 512kbps version

of the bitstream, the next describes the additional data for

the 1024kbps case. The rest of the data, in case we start

with a bitstream with bitrate greater than 1024kbps, does

not need to be described since it will be cut out in case of

scaling anyway. Figure 6 gives a part of the description of

the bitstreamwhich can be used to scale to 1024kbps. It also

shows the description of the header where it can be seen that

only the bitrate has to be described as parameter and that it

needs to be set to 1024 to properly reflect the bitrate of the

stream. The resulting description of the stream still con-

sists of two gBSDUnit descriptions discerning between 512

and 1024 kbps. Compare this to fig. 7 which describes the

bitstream for the 512kbps scaling case. The shown part of

the description refers to the same section of the bitstream

as the 1024kbps case. It is clear that the scaling of the bit-

stream also entails a scaling of the gBSD description. But, it

also is clear that adding another scaling option for this fixed

case requires the insertion of another gBSDUnit partition

for each chunk.

The second scenario we want to look at is full grained

scalability. For this case we have to render a finer descrip-

tion of the bitstream down to bitplane level. The overhead

in the header is rather small, we just need to add the resolu-

tion drop fields as parameters. For the GOP size list, GOP

headers and motion vectors nothing changes compared to

the two case scenario. For the description of the image

data chunks however we need a lot more detail and con-

...

<gBSDUnit start="272992" length="1" marker="data sp 59"/>

<gBSDUnit start="272993" length="2" marker="data sp 58"/>

<gBSDUnit start="272995" length="1" marker="data sp 57"/>

<Parameter length="2" marker="hdr">

<Value xsi:type="xsd:unsignedShort">19</Value>

</Parameter>

<gBSDUnit start="272998" length="6" marker="data sp 79"/>

<gBSDUnit start="273004" length="3" marker="data sp 71"/>

<gBSDUnit start="273007" length="1" marker="data sp 67"/>

<gBSDUnit start="273008" length="3" marker="data sp 63"/>

<gBSDUnit start="273011" length="5" marker="data sp 62"/>

<gBSDUnit start="273016" length="1" marker="data sp 59"/>

...

Figure 8. Detailed gBSD representation of the

flower sequence, downscaled to 512kbps.

sequently a lot more gBSDUnit tags. First we need the sub-

band header, which will not be changed in any case. This

can either be described as an extra tag or can be contained in

the first bitplane following the size information. We choose

the latter version since the scaling algorithm must be aware

of the header anyway when calculating the overhead. For

the rest of the image data we have to model each bitplane

as a separate gBSDUnit since the size of the bitplanes is re-

quired by the scaling algorithm. Despite the possibility that

a bitplane is reduced in size we still can describe them with

a gBSDUnit because the actual content does not change and

a reduction in size can be achieved by resetting the length

attribute. Figure 8 shows a part of the gBSD description for

a downscaled version to 512kbps, the bitplane quantization

can be clearly seen, i.e. the lowest bitplane in the figure is

the 57th.

In our examples the description is kept as simple as pos-

sible so as not to use up too much bandwidth. However, for

an actual application it would be beneficial to retain some

structure by nesting gBSDUnits. While this increases the

size of the gBSD description it makes XSLT writing much

easier and helps to avoid errors.

3 Evaluation of gBSD Overhead

In the two case scenario we can give a good approxi-

mation of the overhead. The framerate f in the video se-

quence and the encoded sequence stay the same but the

number of GOPs is dependant on the temporal decompo-

sitions t. The number of spatial decompositions s depends

on the resolution of the original and can change from se-

quence to sequence. We also have an approximate number

of bytes each descriptive element of the gBSD requires. The

number of bytes a Parameter p and gBSDUnit g require are

105 and 55 bytes respectively. This numbers are calculated

with average variable length information (i.e. length value,

start value), additionally we have a overhead for the DIA

declaration which is 393 bytes. This means that the start

and length fields as well as well as the value of parameters

are only estimated since this information can vary widely.

However, the use of a typical marker element is included

since the marker will be a near constant in length. We can

now calculate an approximate size of the gBSD. The main

header consists of one changeable field with size p and two

gBSDUnits of size g which stay constant. With a temporal

resolution of t we have a GOP size of 2t and the number of
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Scenario kbps size compressed

Bitstream full 5.5M

Bitstream 1024 540k

Bitstream 512 272k

Detailed gBSD full 1.2M 112k

Detailed gBSD 1024 400k 32k

Detailed gBSD 512 268k 20k

Two case gBSD full 84k 8k

Two case gBSD 1024 84k 8k

Two case gBSD 512 64k 4k

Table 1. Comparison of bitstream and gBSD
file sizes for the flower sequence with 128

frames, GOP size of 128 and two spatial de­

compositions.

GOPs is G = f/2t, for each GOP the header is followed

by a GOP size entry as a parameter p. For each GOP we

have a single gBSDUnit for the GOP header and motion

vectors. Then for each frame we have a single chunk for

each spatial decomposition level (s+ 1)g, i.e. if we do two
spatial decompositions we have three subbands, see fig. 5.

The chunks here have to be separated into the number of

cases C we want to deal with. The resulting approximation

in byte is thus size S:

S = 393+p+ 2g
︸ ︷︷ ︸

header

+ G ∗ p
︸ ︷︷ ︸

GOP size list

+G (g + 2t(s+ 1)(p+ Cg))
︸ ︷︷ ︸

single GOP

For a sequence with 128 frames, t = 7 and s = 2 this

would estimate a gBSD file size of 81kb for the two case

gBSD and 60kb for the downscaled version. This is com-

pared experimentally to the actual file sizes of the flower

sequence in table 1. The table gives the file size of the bit-

stream under the bitstream ’scenario’, it also gives the two

case gBSD file sizes scaled and unscaled. Note that the de-

scription for full is simply the complete gBSD containing

both scenarios. When scaling to 1024kbps we still use the

full description and for 512kbps the gBSD is reduced by

the gBSDUnit sizes describing the 1024kbps parts of the

bitstream. As can be seen the approximation given reflects

the actual gBSD size quite accurately. Note that other se-

quences have a similar size for the limited case scenario,

differing by less than 2%.

The transmission of the gBSD description will usually

not be in plain text. XML which is the basis of gBSD can

be compressed quite well, see Augeri et al. [2]. We used

bzip2 to generate the compressed file sizes as given in ta-

ble 1. While this may not be the best way to compress the

data with regard to network nodes, where a XML aware

compression scheme would be beneficial to save memory

and time (see Timmerer et al. [9]), we will still use it as a

baseline as it offers better compression.

For the detailed description case it is not possible to give

a formula since the description, especially when scaling is

performed, is heavily dependant on the layout of the bit-
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Figure 10. Ratio of compressed gBSD de­

scriptions to bitstream size plotted over kbps
for various sequences.

planes. The number and size of the bitplanes however vary

widely depending on the content of the sequence. During

scaling it is possible that a number of bitplanes with a low

amount of data are removed which reduces the gBSD file

size drastically. For a different sequence the same scaling

operation could only reduce the number of bytes in the af-

fected bitplanes which would leave the gBSD size nearly

unchanged. Figure 9 gives a plot of gBSD file size over

kbps for a number of sequences. What is interesting here is

that the gBSD file size is higher for low motion videos like

Akiyo. This is due to the fact that sequences like Akiyo can

be predicted very well which results in a low file size. Con-

sequently, when scaling to a certain bitrate is performed,

fewer bitplanes have to be dropped and likewise fewer bit-

plane descriptions are deleted. This results in a larger gBSD

file when compared to high motion sequences.

Figure 10 shows an overview over the ratio of com-

pressed gBSD descriptions to bitstream size. What can be

seen is that the ratio gets worse as the bitstream size is re-

duced. While the description of the bitplanes scales along

with the bitstream there is also a fixed amount of data con-

sisting of DIA overhead and bitstream headers. The effect

of low reduction in bitplane description and fixed overhead

is especially detrimental. This effect is especially observed

for low motion sequences like Akiyo where the compressed

gBSD size can reach up to 25% of the bitstream size.
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4 Conclusion

We have seen that the overhead of the gBSD descrip-

tion can be quite high depending on the actual bitrate of

the video stream. This is true for both a limited case sce-

nario as well as for a detailed description. The difference is

that for a limited case scenario we can precalculate the esti-

mated size of the description and it is the same whether we

use two cases for a 2048kbps or a 128kbps bitstream. For

the detailed description we retain the full flexibility of the

wavelet codec even for in-network adaptation. At the same

time however the description can become quite large, this

is especially true for video sequences which attain a high

compression ratio with the codec. Thus the use of either

limited cases or detailed description depends on the appli-

cation scenario. The main problem with the detailed de-

scription is that the network node can not judge how much

of the gBSD will remain after scaling. As such, it is hard to

allocate an overhead bandwidth to calculate the target rate

to which to scale the video sequence. It would be possible to

do a number of iterations but doing so would result in delay

and higher computational load on the node. As such, the de-

tailed description is somewhat problematic to use when the

gBSD actually has to be transfered over the network link.

However, there are scenarios when this is not necessary, e.g.

the example in fig 1. Here we have a high bandwidth link to

the access point where we can transfer the video sequence

without problem. The ability to do a fine grained scaling

is beneficial here since we can optimally use the available

bandwidth to the client. Furthermore, the end client does

not need the gBSD anymore so the possible overhead is of

no concern here. The limited case scenario is for applica-

tions where the gBSD needs to be sent too. Since we can

approximate how much overhead the description will take

the bitstream can be scaled with that in mind. This pre-

vents bandwidth problems and still enables us to do scaling,

the only drawback is that we loose the full flexibility of the

wavelet codec once the gBSD is generated. However, for

generation of the gBSD we still enjoy that same flexibility.

Since the bitstream does not need to be altered we can tailor

the gBSD specifically to any application scenario given.

Overall we have seen that there is a cost involved in using

gBSD to enable in-network adaptation. On the other hand

we can bring the flexibility of wavelet based codecs to the

network. This brings us closer to the UMA idea of serving

every possible end device in a flexible way without having

to re-encode the video sequence when new application sce-

narios arise.
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Secure Scalable Video Compression for GVid

Heinz Hofbauer and Thomas Stütz and Andreas Uhl ∗

Abstract. GVid is a Grid service that enables the secure and transparent integration and develop-
ment of graphical user interface applications in the Grid. It separates the potentially computation-
ally complex task of data creation and visualization, e.g., scientific simulations, from the comparably
computationally inexpensive task of transmission and display of the visual data. A Grid application
produces visual data and GVid takes care of the encoding, the secure and efficient transmission and
the display of the visual data. As the transmission parameters and grid node properties are highly
variable, special compression schemes have to be chosen to cope with these requirements. Benefi-
cial for such requirements is the application of scalable compression formats, such as H.264/SVC
(Scalable Video Coding) and MC-EZBC (Motion-Compensated Embedded Zerotree Block Coding).
As simulation data may be sensitive, e.g., in the case of medical simulations, the secure transmis-
sion and storage of the visual data has to be guaranteed. Format-specific encryption schemes offer
improved functionality due to the preservation of scalability in the encrypted domain. In this work
the compression performance of state-of-the-art scalable video compression systems is evaluated and
format-specific encryption schemes are proposed and discussed.

1. Introduction

The GVid framework and implementation has been introduced and discussed in previous work [6,10].
The GVid framework separates the task of data generation and visualization from the comparably
computationally inexpensive task of transmission and display of the visual data. This separation is es-
pecially reasonable if the visual data is displayed on a computationally weak device. Mobile devices
have become the most frequent computing platform for a majority of users, even if many of them are
not even aware that there mobile device is essentially a general purpose computer with an extended
set of hardware. Thus Andrew S. Tanenbaum’s ironic statement “Computers are different from tele-
phones. Computers do not ring.” [12] has lost its context. A major difference between telephones
and computers remain the different computational capabilities and further constraints of telephones,
which are nowadays almost exclusively mobile devices. Mobile devices suffer from slower CPUs,
less memory, lower resolution displays, and network connections with lower bandwidth, but with
a higher probability of connection loss. Especially the restricted computational capabilities are a
convincing argument for the separation of data generation and visualization from the comparably
computationally inexpensive task of transmission and display. This topic is currently in the focus of
research, e.g., Advanced Micro Devices (AMD) is currently working on a supercomputer for graphic
rendering to enable 3D game playing for cellphones [9]; an approach rather similar to GVid. Addi-
tionally the varying network parameters paired with a higher probability of connection loss for mobile
devices pushes the development of another line of research, namely scalable and error resilient for-
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mats and transmission systems for visual data. Scalable visual data formats enable simple and fast
rate adaptation. In previous work the scalable still image standard JPEG2000 has been employed
for intra-frame compression. At present the scalable extension of the video coding standard H.264
(SVC) has been finalized and thus an applicable scalable video compression system is now avail-
able. A different approach to implement a scalable video format compared to the traditional layered
design of H.264/SVC is followed by the wavelet-based MC-EZBC codec. Both schemes offer state-
of-the-art scalable video compression and are therefore evaluated for the suitability as compression
codecs within the GVid framework (see section 2. for details on the GVid structure and section 3.
for details on the codecs). Their compression performance is evaluated in section 3.3. In section 4.
format-specific encryption approaches are discussed for the two schemes together with a motivation
and introduction to format-specific encryption. A format-specific encryption scheme for MC-EZBC is
proposed in this work. The major advantages of format-specific encryption schemes are the preserva-
tion of scalability in the encrypted domain, i.e. rate adaptation can still be conducted, and a potentially
improved error robustness and resilience. A concluding comparison of the two compression systems
and their corresponding format specific encryption schemes is given in section 5. Additionally an
outline of future work is presented, discussing the potentials to improve the runtime performance of
scalable compression systems via parallel and distributed compression within the Grid.

2. GVid: Secure Interactive Video Transmission

The GVid software is a result of a joint project of the Institute of Graphics and Parallel Processing
(GUP) at the Joh. Kepler University Linz and the Department of Computer Sciences at the Univer-
sity of Salzburg, which included Thomas Köckerbauer, Dieter Kranzlmüller, Martin Polak, Herbert
Rosmanith, Thomas Stütz and Andreas Uhl.

Figure 1. GVid Component Overview

2.1. The Structure of GVid

The aim of GVid software design was to support as many applications as easily as possible. There-
fore, several input adapters exist that are responsible for acquiring the visual data of the application.
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Currently a freeGLUT [1], a vtk [2] and a X11 based input adapter are implemented. The X11 input
adapter enables every X11 application to be transmitted over the Grid.

Figure 1 illustrates an overview of the GVid design. An application provides the visual data through
one of the several input adapters and GVid takes care of the encoding, the secure and efficient trans-
mission and the display of the visual data. New compression and security schemes can be easily
integrated. Currently a compression plug-in for MPEG-4 (Xvid) and JPEG2000 are integrated. Xvid
does not provide a scalable format stream and JPEG2000 does not exploit inter frame redundancy.
Thus for Xvid rate adaptation or delivery of streams at different rates can not be done efficiently and
for JPEG2000 bandwidth could be saved by exploiting inter frame redundancy and yielding more
efficient compression. A scalable video compression system would perfectly meet the requirements
of efficient compression and scalability of the video format stream.

2.2. Confidentiality and Scalability in the GVid Framework

Scalability enables efficient rate adaptation, an important feature in an environment characterized by
highly frequent network bandwidth changes. A scalable (video) format is the fundamental basis for
efficient rate adaptation and enables advanced streaming and multicast scenarios, such as receiver
driven layered multicast (RLM) [8]. RLM solves the adaptation to changing network conditions by
receiver actions, i.e. join and leave of IP multicast groups, (receiver driven). However, IP multicast is
not widely deployed and other implementations have to be considered for rate-adaptive streaming.

The idea of the application of scalable format streams for network adaptation has been extended to
in-network adaptation systems, in which adaptation is dynamically performed in the network by a
MANE (media aware network element). The basic setup is illustrated in figure 2. These in-network
adaptation systems are assumed to offer rapid adaptation to changing network conditions as the delay
for the propagation of changed network parameters is minimized. However, implementing such in-
network systems within the scope of already existing and well-established transmission protocols,
such as RTP, has been proved to contain certain pitfalls [7, 17]. Nonetheless, the idea of in-network
adaptation can be considered sensible and as a potential candidate for the integration in the GVid
framework. Integrating security services, i.e. confidentiality in in-network adaptation systems, is not
straight-forward. The application of well-established security tools, e.g., SRTP, SSL or IPSEC, is not
possible as the necessary information to perform rate-adaptation within the network is concealed and
thus not available at the MANE. Thus if confidentiality and in-network adaptation are to be combined,
format-specific encryption schemes, that preserve the information necessary for rate adaptation, are
needed.

In multiple client scenarios (see figure 2) the application of scalable compression systems offers sub-
stantial advantages. In these scenarios the visual output of a Grid application is transmitted to multiple
clients, each with its own preferences and parameters for the visual content ant its transmission (e.g.,
rate and resolution). If conventional compression systems (i.e., systems not delivering scalable for-
mat streams) are employed, a separate compression task for each client has to be performed. These
separate compression tasks are, considering the computational complexity of state-of-the-art video
compression, an enormous burden. The solution of separate compression tasks does not scale well
with the number of clients, i.e., each new client with distinct preferences adds another separate com-
pression task. Scalable compression systems can solve this issue, as only one single compression
task generates a scalable format stream, that can efficiently be adapted to each client’s preferences.
This paradigm of a single encoding step with subsequent computationally efficient adaption steps is
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limited screen size

low bandwith

Server MANE

Figure 2. Example of a single video sequence from the server which is adapted to the given capabilities of two end
devices.

referred to as Universal Multimedia Access (UMA) [14]. In case that confidential transmission has to
be guaranteed, well-established security tools could be applied, but again these solutions do not scale
well with the number of clients. In fact a separate encryption task has to be performed for each client
(even if the clients share the same preferences). Format-specific encryption schemes offer a well-
scaling solution. These schemes encrypt a scalable format stream in a specific scalability-preserving
fashion. The still scalable but secured format stream can efficiently be adapted to the clients prefer-
ences and confidentially transmitted.

In conclusion we can state that the application of scalable compression systems and format specific
encryption within GVid offers ample benefits and should thus be seriously considered.

Only recently SVC, the scalable extension of H.264, has been standardized [5] and therefore it is
worth evaluating the suitability of this new compression system for the application within GVid.
Additionally the wavelet-based scalable video codec MC-EZBC is evaluated.

3. State-of-the-Art Scalable Video Compression

In the following two scalable video compression systems are presented, which also represent two
different approaches to implement scalable video coding.

SVC follows the traditional design of layered video coding [5], while MC-EZBC is a t+2D wavelet-
based video codec with motion-compensated temporal filtering.

3.1. H.264/SVC

A major design requirement for SVC has been the backwards compatibility to the existing H.264/AVC.
Thus SVC format streams are valid H.264/AVC format streams (format-compliant with respect to the
non-scalable H.264/AVC format) and thus decodeable by H.264/AVC compliant decoders. Major
parts of the H.264 AVC video coding system have been adopted, including most of the H.264 AVC
syntax and semantics. An SVC format stream contains a base layer and one or more enhancement
layers each may augment the user experience in one of three dimensions (temporal/spatial/quality).
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3.1.1. Temporal Scalability

A format stream is temporally scalable if it contains sub streams with lower frame rates. Due
to the flexible inter prediction in H.264/AVC, the implementation of temporal scalability within
H.264/AVC/SVC has been straightforward by employing special prediction structures, e.g., dyadic
temporal enhancement layers with hierarchical B-pictures. In figure 3 the dyadic hierarchical B-
picture prediction structure is illustrated, but temporal scalability in H.264/AVC/SVC is not limited
to dyadic prediction structures; SVC offers the syntax to easily extract a sub stream with a reduced
frame rate by simply dropping parts of the format stream.

  

Figure 3. Prediction hierarchy of B-pictures in SVC

3.1.2. Spatial Scalability

A format stream is spatially scalable if it contains sub streams with different resolutions. SVC im-
plements spatial scalability with a conventional multilayer approach. A base layer (lower resolution)
is encoded in H.264/AVC compliant fashion, while the enhancement layers (containing higher reso-
lutions) may apply inter layer prediction in order to exploit redundancies between the layers. Spatial
scalability with arbitrary resolutions is supported.

3.1.3. Quality Scalability

A format stream is quality scalable if it contains substreams with different qualities, in a signal to
noise ratio (SNR) sense, but same resolution. In SVC the so called key-picture concept, also known
as medium grain scalability (MGS), is employed to enable quality scalability.

3.1.4. SVC NAL units

A network abstraction layer (NAL) unit in H.264 is preceded by an 1-byte NAL unit header, con-
taining most importantly the NAL unit type. On the basis of the NAL unit type the NAL unit data
is processed. For SVC the NAL header is extended, a three byte extension is added. This extension
contains a dependency id, which identifies the spatial layer to which the NAL unit data contributes, a
temporal id, which specifies the temporal layer of the NAL unit, and a quality id, which specifies to
which quality layer the NAL unit contributes.

3.2. MC-EZBC

The MC-EZBC [4,19] coder is a t+2D wavelet coder, i.e., a wavelet transform is applied for temporal
decomposition as well as for spatial decomposition. The abbreviation t+2D implies that the temporal
decomposition combined with motion estimation is applied before the spatial decomposition (both
apply pyramidal decomposition structures). The 9/7 CDF (Cohen-Daubechies-Feauveau) wavelet
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filters are applied for spatial decomposition, while temporal decomposition is conducted with the
CDF 5/3 wavelet filters. Furthermore adaptive prediction techniques are employed. The layout of the
MC-EZBC coder is shown in figure 4(a)

Figure 4(b) illustrates the encoding process for a group of pictures (GOP). The frames of a raw video
sequence are split into GOPs, which are independently coded. In a GOP frames are decomposed
temporally and then spatially. Note that the ordering of the coded frames follows the temporal de-
composition level, i.e., the deepest temporal low-pass frames are the first contributions in the final
stream of a GOP.

(a) Layout of the MC-EZBC coder (b) Encoding of a GOP showing spatial and temporal
decomposition

Figure 4. MC-EZBC

3.2.1. Temporal Scalability

The MC-EZBC format stream automatically supports temporal scalability; this property is due to the
temporal wavelet decomposition. If the GOP size is 2t , then the number of temporal resolutions, i.e.,
different frame rates is t. Temporal scaling is done by dropping levels from the temporal decompo-
sition, i.e., one step of temporal scaling reduces the frame rate by half. For example a GOP with
16 = 24 frames could be reduced to 8,4 or 2 frames. Only dyadic temporal prediction structures are
permitted.

3.2.2. Spatial Scalability

Spatial scalability is also automatically supported and like temporal scalability is done by dropping
high frequency wavelet bands. Again scaling operations are discrete with steps of half the resolution
of the previous step, e.g. a CIF (352× 288) video could be scaled to qCIF (176× 128) or sqCIF
(88×64). Only dyadic spatial resolution changes are permitted.

3.2.3. Quality Scalability

Quality scalability unlike spatial or temporal scalability is more flexible. SNR scalability of the MC-
EZBC achieves multiple bitrates within a single format stream. The coded wavelet coefficient data is
arranged in an embedded bitstream, i.e., a truncated segment of the coded data is still decodeable and
results in a quantized representation of the wavelet coefficient data.
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3.3. Performance Evaluation

The following performance evaluation is intended to give an overview of the capabilities of the two
scalable compression formats, SVC and MC-EZBC, and their suitability for the application within
the GVid framework. For more extensive and exhaustive treatments on the compression performance
of these codecs the reader is referred to [18]

In the assessment of the compression performance of scalable compression systems subtle pitfalls are
hidden. The two scalable compression systems may contain substreams with different resolutions.
However, the lower resolution versions of the original content contained in the format streams of SVC
and MC-EZBC are different. In SVC the subsampling method at the encoder-side is not specified in
the standard, however, the upsampling method is specified and it is therefore sensible to employ
the corresponding subsampling method. In the MC-EZBC the subsampling method is defined by
the low-pass filter of the spatial wavelet decompostion (9/7 CDF). Thus taking a common reference
for quality assessment, peak signal to noise ratio (PSNR) calculation, for both schemes always and
systematically favours one of the compression systems. Therefore the compression performance for
lower resolution substreams is assessed for each compression system individually with the correct
reference, i.e., the lower resolution reference sequences for the MC-EZBC are generated with the
low-pass filters of the 9/7 CDF and the lower resolution reference sequences for SVC are generated
with the subsampling filters fitting to the normative upsampling filters.

The quality for lower frame rate substreams is assessed with reference to the original sequence where
frames have been dropped, i.e., every second frame is dropped if the frame rate is halved.

In this evaluation the well-known foreman sequence in the CIF format (352x288) with 96 frames at a
frame rate of 30 fps is employed.

3.3.1. Performance of the MC-EZBC

The compression performance of the MC-EZBC is summarized in figure 5. Most notably are the
multiple bitrates contained within the single scalable MC-EZBC stream, illustrated by dots in the
figure. It is also noteworthy that for a regular CIF version with full framerate the MC-EZBC performs
better than the widely used XVID codec, fig. 5(a) and 5(b).

3.3.2. Performance of the H.264/SVC

The main issue for the performance evaluation is the definition of suitable encoder configurations. The
encoder configuration is decisive for the compression performance and it also defines extraction points
(i.e., bitrates at which reconstruction is possible). In general, it can be summarized that temporal
scalability comes for free and even improves the compression performance, while the other types
of scalability decrease the compression performance, but increase the number of extraction points.
H.264/SVC is a layered video codec allowing only a discrete number of extraction points. This is a
major difference to the MC-EZBC codec, which allows the extraction of arbitrary bitrates from the
stream.

The following figures illustrate the extraction points and their respective PSNR for different encoder
configurations. A point in the figure represents an extraction point.
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Figure 5. Rate-distortion plots for the foreman sequence and different resolutions (CIF, qCIF and sqCIF) as well
as a zoomed version for the low bitrates of the CIF plot.

First we discuss two configurations that implement temporal and quality scalability. These configura-
tions are suitable for computationally strong devices such as home PCs, therefore smaller resolutions
and a simple base layer (e.g., suitable for mobile devices) are omitted.

Figure 6(a) shows a simple configuration with only one spatial resolution and one MGS enhancement
layer.

Figure 6(b) shows a simple configuration with only one spatial resolution and 8 MGS enhancement
layers. MGS is a mode very similar to progressive JPEG, namely the spectral selection mode of
operation. In this configuration the 16 transform coefficients of the 4x4 transform are grouped into 8
partitions each containing exactly two transform coefficients.

Additionally lower resolution substreams can be defined. For the fine configuration a QCIF resolution
is contained in the substream. This substream is encoded within the limits and constraints of the
H.264/AVC baseline profile (CAVLC). The bitstream may be used to serve both a computationally
weak device such as a mobile phone and a PC. The number of reference frames is set to 1. In figure
6(c) the extraction points for this configuration are illustrated.
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Figure 6. The foreman sequence with 30 fps under different coder configurations.
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3.3.3. Comparison between H.264/SVC and MC-EZBC

MC-EZBC’s compression performance (at least of the encoder configurations we have tested) is at
least equal to H.264/SVC (see figure 7). It has to be noted, that the results for H.264/SVC have
been obtained with the reference software JSVM and that other implementations of the H.264/SVC
standard may offer better compression performance. If both codecs are compared to state-of-the-art
MPEG-4 / H.263 encoders (Xvid), the clear resume is that both perform significantly better for a
broad range of bitrates (see figure 8).

The advantage of the MC-EZBC is its higher flexibility in terms of possible extraction points; bene-
ficial if fine grained rate adaptation is to be performed.

There are several arguments for H.264/SVC: It is backwards-compatible to H.264, which allows the
base layer to be decoded with a compliant H.264 decoder, e.g., special hardware chips. It is scalable
in terms of computational complexity. The base layer can be encoded such that decoding has a very
low computational complexity, e.g., arithmetic coding can be omitted.

Another advantage of H.264/SVC is related to the interactive usage possible in the GVid framework. It
allows zero structural delay, i.e., the inter-prediction process can be configured to allow only forward
prediction. Thus every frame can immediately be coded and transmitted. In case of MC-EZBC this is
not possible as frames have to be processed on a GOP-basis, i.e., a number of frames (the GOP size)
have to be buffered and delayed until the coding and transmission can be conducted. The introduced
delay is adverse to interactive usage, where low delay is preferred.

In conclusion, MC-EZBC offers better rate adaptation, but H.264/SVC provides other important fea-
tures MC-EZBC lacks.
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Figure 7. MC-EZBC compared to H.264/SVC

4. Format-Specific Encryption Schemes

Format-specific scalability-preserving encryption schemes are necessary in order to combine efficient
transmission and confidentiality.In the following format-specific encryption schemes are discussed
for H.264/SVC and MC-EZBC.
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Figure 8. Comparison of Xvid, MC-EZBC and H.264/SVC

4.1. H.264/SVC-Specific Encryption

In order to preserve the scalability of the H.264/SVC stream the information to which dependency
layer, temporal layer and quality layer a NAL unit contributes, which is part of the SVC extended
NAL unit header, has to be preserved. Thus only encrypting the NAL unit body preserves scalability.
However, straight-forward conventional encryption of the NAL unit body is problematic, as NAL unit
bodies obey certain syntax rules. Namely marker sequences, that e.g., signal the beginning and the
end of a NAL unit, are forbidden. Thus conventional encryption of NAL unit bodies is likely to break
the system at some point, e.g., if the H.264/SVC byte-stream format is used and a marker sequence is
accidentally generated in a NAL unit body, the entire synchronization is lost.

A way to prevent such behaviour is to ensure that format-specific encryption produces a format-
compliant encrypted stream (format-compliant encryption). As a result it can be guaranteed that a
decoder does not crash decoding such a stream.

In [11], the H.264/SVC header is preserved and unspecified NAL unit types are employed to signal
encrypted data. For the most frequent NAL unit types (NUTs 1, 5, 14, 20) a direct mapping to
unspecified NAL unit type values is defined. For all other NAL unit types, the original NAL unit
header is preserved as the first payload byte and a certain unspecified NAL unit type is used to signal
these encrypted NAL units. However, if packaging is applied as specified in the RFC 3984 [15]
and the draft RFC defining the RTP payload for H.264/SVC video [16], all but one (NUT 0) of
the unspecified NUT values are already assigned a specific meaning. Hence, the only possibility to
employ unspecified NAL unit types to signal encrypted data is NUT 0 [3]. A NAL unit selected for
encryption is prefixed by a NAL unit header with NUT 0, and the original NAL unit header and the
H.264/SVC header are the first bytes of the encrypted NAL unit payload, and the remaining NAL unit
payload is encrypted. However, special care must be taken to avoid marker sequences (H.264 marker
sequences are prefixed by at least two zero bytes). This is a problem if encryption is applied more
than once, i.e., encrypted NAL units are encrypted. A straight-forward solution is to set the NRI field
in the NAL unit header to a value not equal to 0.
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4.1.1. Format Compliance and Encryption

Although the encrypted NAL unit has to be ignored by a compliant decoder, certain syntax require-
ments have to be met by the encrypted NAL unit. These requirements are given in [5]; namely that
within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
0x000000, 0x000001, 0x000002, and 0x000003.

Additionally, within the NAL unit, any four byte sequence that starts with 0x000003 other than
the following sequences shall not occur at any byte-aligned position: 0x00000300, 0x00000301,
0x00000302, and 0x00000303. Additionally, the last byte of a NAL unit shall not be 0x00.

The encryption scheme has to ensure that these requirements are met. Therefore, after encryption the
procedure for the encapsulation of an SODB (string of data bits) within an RBSP (raw byte sequence
payload) [5] has to be applied. For the case of two consecutive 0x00 bytes, this procedure ensures
that the NAL unit does not end with a 0x00 byte. If a NAL unit ends with a 0x00 byte, it has to end
with two consecutive 0x00 bytes for all currently specified RBSP types.

Encrypted NAL unit payloads may not have this property and thus special care has to be taken for the
encryption of the last byte of a NAL unit. In our approach we use AES in Counter Mode and treat the
last byte with special care.

Every cipher byte, except the last one, is the plaintext byte XORed with a keystream byte. The last
cipher byte c is derived from the plaintext byte p and a keystream byte k (optimally in the range
[0x00,0xfe], which can be ensured by ignoring 0xff bytes from the keystream) in the following way:

c = (p−1+ k)mod 0xfe+1

For decryption the following procedure is applied:

p = (c−1− k)mod 0xfe+1

In order to ensure format compliance and decodability by any conformant decoder, an appropriate set
of NAL units has to be selected for encryption.

4.2. MC-EZBC-Specific Encryption

As format-specific encryption for MC-EZBC heavily relies on its bitstream format, we start the with a
thorough discussion of the MC-EZBC format. A schematic overview of the MC-EZBC format stream
is given in figure 9, the organization of GOP data is outlined in figure 4(b). The main header followed
by GOP sizes (this is the size of the image data in a GOP) followed by coded data of sequential GOPs.
In the following the coded data of a GOP is referred to as GOP as well. Each GOP is lead by a header,
giving scene change information, i.e. which frames are I frames, followed by the motion field and
coded image data. Both motion field and image data are ordered by frame; frames are ordered lowest
to highest temporal resolution. The image data of a frame is also arranged from lowest to highest
resolution and a spatial decomposition of a frame is grouped together as a basic image data unit (we
will call them chunks from now on). Each chunk is preceded by a leading header defining the length
of the chunk and groups all chroma information of a given decomposition level. The image data in a
chunk is ordered by importance regarding SNR scalability and is the result of a bitplane coder. This
enables SNR scaling through truncation of image data (and adjustments of GOP size information and
chunk length).
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Figure 9. The layout of the MC-EZBC bitstream

Only when all headers, including chunk headers, and GOP size information are kept intact the whole
bitstream can subsequently be parsed correctly, which is of ultimate importance for the preservation of
scalability in the encrypted domain. Additionally the motion vector data is coded differently from the
image data; the length of the motion vector data is not explicitly signalled, but it has to be determined
by arithmetic decoding (until a termination marker is encountered). Thus headers and motion vector
data will not be encrypted in our encryption scheme, but solely the coded image data. Since the coded
image data is byte aligned we need an encryption scheme which can encrypt blocks of arbitrary length,
e.g., AES in OFB mode.

Our MC-EZBC-specific encryption scheme is format-compliant in the sense that the decoder can
decode the encrypted format streams (and does neither crash nor complain). This is because the
arithmetic decoder has to deal with SNR scalability and thus utilizes the chunk length information to
prevent misalignment. We exploit this decoder property with our encryption. In case the arithmetic
decoder tries to decode to much, as would be the case when regular scaling is done, the chunk length
prevents the decoder from reading data of the next chunk. Additionally, when the decoder finishes
early the rest of the chunk is skipped and the decoder is properly realigned for the next chunk. This
is part of the error correction of the decoder which prevents misalignment when bit flips occur in the
image data during transmission.

To increase the speed of the encryption and decryption processes it is possible to encrypt only a frac-
tion of the image data. In order to minimize the amount of data to be encrypted, while maximizing its
impact on the degradation of image quality we need to encrypt the parts of the bitstream which carries
the most important visual information, e.g., I-frames of low frequency bands of the wavelet decom-
position. Figure 10 illustrates this by comparing frame 128 of the Container sequence to the decoding
of the encrypted sequence. In this figure only the low spatial frequencies have been encrypted.

4.3. Comparison of the Format-Specific Encryption Schemes

Both format-specific encryption schemes offer efficient encryption of the coded video data, while pre-
serving the scalability. Both schemes preserve format-compliance (i.e., the decoder does not crash).
Thus both schemes are well-suited for the integration in the GVid framework.

13
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(a) decoded (b) encrypted

Figure 10. Comparison of encrypted image to the original of frame 128 from the Container sequence (low spatial
frequencies)

5. Conclusion and Future Work

We have evaluated two state-of-the-art scalable video compression systems, namely H.264/SVC and
MC-EZBC, for their suitability as compression codecs in the GVid framework. Their compression
performance is competitive to conventional video compression systems, such as the MPEG-4 imple-
mentation Xvid. Their scalable format streams offer improved performance for multiple application
scenarios. As the application of conventional security tools for confidentiality circumvent the ad-
vantages of scalable compression systems, format-specific encryption tools are necessary. For both
H.264/SVC and MC-EZBC format-specific and even format-compliant encryption schemes have been
proposed and discussed. Both encryption schemes meet the requirements well and can be recom-
mended for integration in the GVid framework.

Future work will focus on the parallelization and optimization of the scalable video compression
systems, as the current implementations are still not capable of real-time compression.
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ABSTRACT

Visual quality indices are frequently used instead of human

evaluation for the quality assessment of impaired images (or

videomaterial). These visual quality indices are in turn evalu-

ated on databases containing impaired images in conjunction

with a score given by evaluation with human observers. The

fitness of these indices are judged on the entire quality scale

of the respective database. However, this leads to the incor-

rect assumption that these quality indices perform well over

the whole range possible qualities. This is unfortunately not

true, especially towards the low quality range of images these

quality indices often show little actual correlation to human

judgement. In this paper a number of visual quality indices

will be evaluated with regard to the lower quality spectrum

of impairments and it will be shown that the overall fitness

of a quality index is not generally related to its performance

regarding high impairment.

Index Terms— Image analysis, Quality control

1. INTRODUCTION

The assessment of image and video quality is important

whenever image and videos are transmitted (gauging of

transmission errors), encoded (compression vs. quality)

etc. Optimally a jury of humans would judge the impact

of the impairment, however the high time and cost required

to do this are prohibitive. Thus, visual quality indices(VQI)

are used to simulate the assessment that should be made by

humans. In order to judge the correlation of VQI to the av-

erage human judgement a number of databases have been

created containing distorted images along with a mean opin-

ion score (MOS) of human observers, for example LIVE [1]

or TID [2]. These databases typically contain different test-

sets which correspond to typical application scenarios, e.g.

JPEG or JPEG2000 compression, distortion scenarios, e.g.

transmission errors or denoising, and operations on images,

e.g. gaussian blur or masking.

The evaluation of a VQI is usually done over the whole

range of impairments in a given database. This is reasonable

to estimate the overall fitness of VQIs but there are certain

shortcomings in this approach. For example in high compres-

sion scenarios a VQI which does well overall is less useful

than one which performs best for the given low quality scale

(and the same is essentially true for a high quality range). The

underlying problem is that VQIs overall performance does not

correlate to performance for low quality scenarios or even,

though less frequently, for high quality scenarios. Typical low

quality scenarios are low bitrate videos [3, 4], video streaming

[5, 6], assessment of transmission errors [7] or quality control

for transparent encryption [8].

While there is some previous work regarding low qual-

ity video sequences [9], there is, to the extent of the authors

knowledge, no information available regarding low quality

image assessment over the range of recent VQIs. To rectify

this shortcoming, state of the art VQIs will be evaluated on

known databases where the focus is on low and high quality

subsets rather than the whole database. This will also show

that the databases which are already in existence are suffi-

cient to properly evaluate the performance of VQIs and point

out that it would be good practice to evaluating performance

in a more discerning way.

In order to facilitate the reproducibility of the research we

restricted ourself to publicly available data and implementa-

tions.

In section 2 a brief overview of the evaluated VQIs will

be given, in section 3 the evaluation based on the LIVE and

selected subsets of the TID database will be given.

2. OVERVIEW OF VISUAL QUALITY INDICES

Modern VQIs often use a sophisticated approach on quality

which heavily relies on knowledge about the human visual

system (HVS). In the following we will give a short review of

the VQIs which will be evaluated.

The most widely used VQI today is the peak signal-to-

noise ratio (PSNR) since it is easy to implement and fast to

compute. It is also well known that the PSNR does not re-

flect human judgement very well. In [10] Huynh-Thu and

Ghanbari showed that as long as the content is unchanged the

PSNR reasonably well reflects the human observer.

The luminance and edge similarity score (LSS and ESS)

was introduced by Mao and Wu [11]. They used the informa-
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tion on the HVS to find criteria how observers judge images.

The edge information reflects the assessment of humans re-

garding the shape or contour of objects and the luminance

score reflects changes in the color space. Both algorithm use

8 × 8 windows to assess the edge direction and mean lumi-

nance of a region in the image.

The visual signal-to-noise ratio (VSNR) [12] uses a two

stage method of quality assessment. In the first stage contrast

detection thresholds are calculated by using wavelet (DWT)

based models of visual masking and summation to assess if

the errors are perceivable by the HVS. If the errors are judged

to be below the detection threshold the image is considered

pristine. When the errors are above the threshold of detection

a score is calculated by using the ratio of the RMS contrast

to the weighted values of the perceived contrast and global

precedence.

The structural similarity index measure SSIM [13] ex-

tracts three separate scores from the image and combines

them into the final score. First the visual influence is calcu-

lated locally then luminance, contrast and structural scores

are calculated globally. These separate scores are then com-

bined with equal weight to form the SSIM score.

The multi-scale structural similarity index measure MS-

SSIM [14] is an extension of the SSIM to take into account

that the perceivability of image impairments is different de-

pending on the sampling density of the image signal, e.g.

as influenced by viewing distance. To take this into account

the similarity scores are calculated at different spatial scales.

The core operation is similar to SSIM, contrast and structural

scores are calculated at each scale and the luminance score is

calculated at the lowest scale. The factors for combining these

scores where found by experiments with human observers.

Criterion v4.0 C4 [15] uses a detailed model of the HVS,

and information regarding the score is extracted from a trans-

formation of the image in the perceptual space. The trans-

formation include compensation for display device gamma,

perceptual colorspace, luminance normalization, contrast sen-

sitivity functions, subband decomposition and modelling of

masking effects. From this perceptual model the contrast ori-

entation, length and width as well as the subband amplitude

and average luminance, red-green chroma and yellow-blue

chroma channels are extracted from characteristic points in

the model. The local scores are generated as averaging of the

extracted features and the overall score is generated by aver-

aging the local scores.

For the visual information fidelity criterion VIF [16] a

more refined model is used which starts with the modeling

of the reference image using natural scene statistics (NSS).

Furthermore, the possible distortion is modeled as signal gain

and additive noise in the wavelet domain and parts of the HVS

which have not been covered by the NSS are modeled, i.e. in-

ternal neural noise is modeled by using a additive white Gaus-

sian noise model. Using this model the VIF score reflects the

fraction of the reference image information which can be ex-

tracted from the impaired image.

The Weighted Signal to Noise Ration (WSNR) [17] is de-

fined as the ratio of the average weighted signal power to the

average weighted noise power. The weight function used is a

contrast sensitivity function (CSF) which is gained by using

the frequency response of HVS. A measure of the non-linear

HVS response to a single frequency, the contrast threshold

function (CTF), is used which is measured over the visible

radial spatial frequencies. The CTF is the minimum ampli-

tude necessary to detect a sine wave of a given angular spatial

frequency. The CSF is the frequency response obtained by

inverting the CTF.

With respect to implementations we used our own code1

for PSNR, SSIM, LSS, ESS. For C4 the implementation from

Carnec et al. was used and for all other VQIs the “MeTriX

MuX Visual Quality Assessment Package2 was used in ver-

sion 1.1. Also note that UQI, IFC and NQM from Metrix

Mux were not included in the evaluation since they are prede-

cessors of other VQIs which were evaluated.

3. EVALUATION OF VISUAL QUALITY INDICES

In the following evaluations the Spearman rank order corre-

lation (SROC) is used to compensate for non linearity. The

VQIs were evaluated on two different databases for two rea-

sons. First, we want to show that the shortcomings of the

VQIs are not based on the distortion and image types of a

single database. Secondly, we want to show that the prob-

lems of VQI with lower quality images are not a result of the

evaluation method employed in the database assembly. The

DMOS value of these two databases was derived differently,

the LIVE database uses a linear scale of perceived impair-

ment where observers judge each image individually while

the TID database uses a direct comparison of two impaired

images where the observer selects the higher quality image

and thus creates a ranking in order of perceived impairment.

3.1. Evaluation on the LIVE Database

The first comparison will be on base of the LIVE database3.

The comparison is between the full range of the database as

would be used for regular VQI evaluation, table 1, the low

quality part of the database with a DMOS of greater than 80

(70 for gblur in order to keep the number of distortions high

enough), table 3, and the high quality range with a DMOS

lower than 40, table 2. In these tables value with SROC lower

than 0.5 are underlined to show low correlation and the best

score per testset is printed in a bold font.

To get a better overview fig. 1 illustrates the relation of

the SROC from tables 1 through 6. Figure 2 shows the same

1http://www.wavelab.at
2http://foulard.ece.cornell.edu/gaubatz/metrix mux/
3http://live.ece.utexas.edu/research/quality/
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Spearman rank order correlation
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Fig. 1. For each entry the SROC for the full range of qualities is indicated by the line separating the light and dark background

ranging from SROC = 0.0 at the bottom to SROC = 1.0 at the top. Superimposed are two bar charts showing the SROC for

the high quality range on the left side and the low quality range on the right side.

Table 1. LIVE Image Quality Assessment Database

fastfading gblur jp2k jpeg wn

ESS 0.956 0.939 0.944 0.945 0.958

LSS 0.898 0.941 0.928 0.939 0.967

SSIM 0.957 0.935 0.940 0.940 0.968

PSNR 0.927 0.865 0.923 0.913 0.982

VIF 0.965 0.972 0.968 0.984 0.985

WSNR 0.873 0.909 0.920 0.958 0.973

VSNR 0.903 0.941 0.955 0.966 0.978

MS-SSIM 0.932 0.958 0.965 0.979 0.973

C4 0.919 0.956 0.959 0.975 0.970

information for the Kendall τb rank order correlation, for rea-

sons of brevity we did not give tables of τb values since overall

the behavior is the same as for SROC which is nicely illus-

trated by the figures given.

It can be directly read from the comparison of low and

Table 2. LIVE Image Quality Assessment Database, high

quality (DMOS ≤ 40)

fastfading gblur jp2k jpeg wn

ESS 0.799 0.848 0.790 0.775 0.854

LSS 0.738 0.853 0.688 0.720 0.779

SSIM 0.821 0.879 0.789 0.780 0.868

PSNR 0.809 0.838 0.780 0.764 0.865

VIF 0.722 0.853 0.880 0.942 0.889

WSNR 0.444 0.707 0.732 0.881 0.810

VSNR 0.553 0.861 0.856 0.887 0.908

MS-SSIM 0.529 0.839 0.841 0.918 0.894

C4 0.473 0.826 0.818 0.883 0.753

high quality ranges that the VQIs, with a few exceptions,

perform worse for the lower quality range than the higher

quality range. Furthermore, the reduced performance for the

lower quality range can not be reduced to a lower number of
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Kendall τb rank order correlation
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Fig. 2. For each entry the τb for the full range of qualities is indicated by the line separating the light and dark background

ranging from τb = 0.0 at the bottom to τb = 1.0 at the top. Superimposed are two bar charts showing the τb for the high quality

range on the left side and the low quality range on the right side.

Table 3. LIVE Image Quality Assessment Database, low

quality (DMOS > 80, *70)

fastfading gblur* jp2k jpeg wn

ESS 0.686 0.74 0.291 0.583 0.062

LSS 0.738 0.828 0.573 0.268 0.210

SSIM 0.179 0.365 0.027 0.095 0.348

PSNR 0.398 0.451 0.227 0.243 0.549

VIF 0.767 0.919 0.191 0.703 0.692

WSNR 0.514 0.76 0.100 0.209 0.414

VSNR 0.492 0.547 0.491 0.257 0.303

MS-SSIM 0.665 0.819 0.409 0.607 0.741

C4 0.741 0.882 0.436 0.666 0.342

comparison images since the higher quality range used is the

same distance from the mean of the DMOS values and thus,

roughly, the same number of comparison images are used. A

notable VQI is the VIF which displays good performance for

all cases except high compression rates for JPEG2000 com-

pression where it is among the worst. All VQIs however

show certain deficiencies regarding low quality images, even

though the actual deficiency is dependant on the distortion in-

troduced. Furthermore, even if the distortion is known before-

hand, the evaluation over the full database can be misleading.

As an example the best VQI to evaluate highly compressed

JPEG2000 images would be the LSS, but the overall perfor-

mance of LSS regarding JPEG2000 compression is among the

worst.

Furthermore, while the reduction in performance is usu-

ally in the lower end of the quality spectrum this is not always

so. Compare for example the performance of C4 and WSNR

for the high and low quality range of the fastfading and gblur

testsets. For both VQIs and both testsets the performance on

highly impaired images is better than for high quality version.
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Table 4. TID2008 Tampere Image Database 2008 (v1.0)

denoising jpeg tr. er. j2k tr. er. cor. noise

ESS 0.922 0.827 0.789 0.777

LSS 0.912 0.460 0.850 0.917

SSIM 0.930 0.818 0.840 0.833

PSNR 0.942 0.752 0.831 0.916

VIF 0.919 0.858 0.851 0.870

WSNR 0.934 0.738 0.834 0.848

VSNR 0.929 0.806 0.791 0.766

MS-SSIM 0.957 0.874 0.853 0.819

C4 0.918 0.901 0.808 0.777

Table 5. TID2008 Tampere Image Database 2008 (v1.0),

high quality (DMOS > 3.5)

denoising jpeg tr. er. j2k tr. er. cor. noise

ESS 0.815 0.596 0.676 0.613

LSS 0.798 0.179 0.744 0.819

SSIM 0.834 0.582 0.615 0.738

PSNR 0.856 0.577 0.578 0.805

VIF 0.801 0.623 0.634 0.781

WSNR 0.846 0.438 0.720 0.677

VSNR 0.823 0.575 0.715 0.619

MS-SSIM 0.868 0.680 0.739 0.703

C4 0.774 0.745 0.640 0.655

3.2. Evaluation on the TID Database

The second comparison will be based on the TID Tampere

Image Database 20084. Due to reasons of space we only

present a subset of the 17 testsets contained in the database,

these are ”Image denoising”, ”JPEG transmission errors”,

”JPEG2000 transmission errors” and ”Spatially correlated

noise” abbreviated as ”denoising”, ”jpeg tr. er.”, ”j2k tr. er.”

and ”cor. noise” respectively in the tables. The comparison is

again between the full quality range, Table 4, the low quality

part DMOS of lower than 3.5, table 6, and the high quality

range greater than 3.5, table 5. Again, in these tables val-

ues with SROC lower than 0.5 are underlined to show low

correlation and the best score per testset is printed in a bold

font.

Overall the comparison again shows that the VQIs per-

formworse for a low quality subset than a high quality subset,

even if the performance over the full range is high. However,

there are some VQIs which perform better for lower quali-

ties. The LSS for example performs better on the low quality

version of the JPEG transmission error testset than on the full

quality range.

Furthermore, like with the LIVE database, a high perfor-

mance of an VQI over the whole quality range can not be

taken as indicator that the VQI will perform optimally in ei-

ther a low or high quality range.

4http://www.ponomarenko.info/tid2008.htm

Table 6. TID2008 Tampere Image Database 2008 (v1.0), low

quality (DMOS < 3.5)

denoising jpeg tr. er. j2k tr. er. cor. noise

ESS 0.634 0.248 0.335 0.109

LSS 0.628 0.471 0.649 0.685

SSIM 0.650 0.393 0.507 0.224

PSNR 0.773 0.600 0.513 0.584

VIF 0.690 0.562 0.691 0.357

WSNR 0.682 0.411 0.686 0.590

VSNR 0.652 0.425 0.480 0.269

MS-SSIM 0.868 0.497 0.451 0.180

C4 0.743 0.567 0.415 0.247
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Fig. 3. Scatter plot of VIF over DMOS for the JPEG 2000

transmission errors testset from the TID 2008 database for

low quality images (DMOS < 3.5)

To examine in more detail which effects lead to this prob-

lem fig. 3 gives a scatter plot of VIF ratings over DMOS for

the low quality range of the J2K transmission errors testset,

containing 44 of the 100 image in the testset. It can clearly be

seen that the overall tendency of higher VIF for higher DMOS

ratings holds. It is also clear that locally a high variance in

VIF ratings can be observed leading to large mismatches. To

illustrate the problem observe that the lowest quality accord-

ing to VIF would be at about DMOS 2.5, resulting in 8 images

being rated higher quality than the corresponding observers

would, this is more than 18% of the image in the low quality

testset. The same holds regarding the highest quality image

according to the VIF.

4. CONCLUSION

It was shown that even seemingly well performingVQIs actu-

ally have flaws which can be seen under close scrutiny. When

performance is measured only using the full quality range
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provided by image evaluation databases these flaws tend to be

concealed since the overall correlation between DMOS and

VQI overrides the large variance when taking into account

a subset of qualities. Two statements can be made regard-

ing the availability of VQIs and the corresponding testing of

VQIs. One, there is a lack of VQIs which target the low qual-

ity images and performs well over a wide range of distortion

types. There are VQIs which are well suited for evaluation

of such images when the distortion type is known in advance

and a proper VQI can be chosen, however, this becomes less

clear when a mix of two or more distortion types can be ex-

pected. Second, the evaluation process of VQIs should be

done in a more elaborate way, specifically it should differenti-

ate between overall fitness and fitness on low and high quality

ranges to better identify shortcomings of certain VQIs. While

at least a split into low and high qualities should be done,

it might be expedient to differentiate between low, medium

and high quality ranges where the database allows, i.e. when

enough levels of distortion in the database exist to keep the

significance high.
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ABSTRACT

When selective encryption is used for security in DRM
schemes some information of the original bitstream is inten-
tionally left in plain text. This can have various reasons, e.g.
generating preview versions for try and buy scenarios. In the
case of the MC-EZBC there is also the goal of retaining the
scaling capability in the encrypted domain. However, since
parts of the bitstream remain in plaintext this information is
available to a potential attacker at all times. In this paper
we will assess which attacks can be done with this residual
information. Consequently we will extend a prior version
of selective encryption for the MC-EZBC to include motion
vectors.

1. INTRODUCTION

The use of digital video in todays world is ubiquitous. Videos
are viewed on a wide range of clients, ranging from hand
held devices with QVGA resolution (320x240) over PAL
(768x576) or NTSC (720x480) to HD 1080p (1920x1080)
or higher. Furthermore, streaming servers should be able to
broadcast over the internet with regard to a wide range of
bandwidths, from fixed high bandwidth lines like ADSL2 to
various low bandwidths for mobile wireless devices. In such
an environment it is simply not possible to encode a video for
each application scenario. So content providers either have
only a fixed number of options available or they use scaling
video technology to adapt the video for bandwidth and res-
olution requirements of the client. The concept of creating
the content once and adapting it to the current requirements
is preferable and is better known as Universal Multimedia
Access (UMA) [10].

One of the enabling technologies of UMA is the use of
scalable video coding. This averts the need for transcoding
on the server side and enables the server to scale the video.
However, even scaling takes up computation time and re-
duces the number of connections the server can accept. Fur-
thermore, variable bandwidth conditions, which happen fre-
quently on mobile devices, further taxes the server with the
need to adapt the video stream. The solution to this is usually
in-network adaption, shifting the need to scale to a node in
the network where a change in bandwidth is occurring. The
core adaption with these restrictions takes place on the server
and adaption due to varying channel capability is done in-
network. For design options and comparisons of in network
adaption of the H.264/SVC codec see Kuschnig et al. [8].
Wu et al. [11] give an overview of other aspects of streaming
video ranging from server requirements to protocols, to QoS
etc.

For video streaming in the UMA environment, i.e. a
high number of possible bandwidths and target resolutions,

wavelet based codecs should be considered. Wavelet based
codes are intrinsically highly scalable and rate adaption as
well as spatial and temporal scaling can easily be done. Fur-
thermore, wavelet based codecs achieve a coding perfor-
mance similar to H.264/SVC, c.f. Lima et al. [9]. For an
overview about wavelet based video codecs and a perfor-
mance analysis as well as techniques used in those codecs see
the overview paper by Adami et al. [1]. Under similar con-
siderations Eeckhaut et al. [4] developed a complete server to
client video delivery chain for scalable wavelet-based video.
The main concern of research regarding UMA is usually per-
formance with respect to scaling and in-network adaption.
However, digital rights management and security is also a
prime concern.

These considerations on network streaming and the in-
herent scaling capability of wavelet based codecs lead to
the development of a selective encryption approach [6] for
the MC-EZBC(motion compensated embedded zeroblock
coder) [7, 3] video codec. In this approach information was
left in plain text in order to be format compliant, meaning
that even the encrypted bitstream is decodeable by a stan-
dard decoder. Additionally, this approach allows scalability
in the encrypted domain.

In section 1.1 an overview will be given about security,
selective encryption and objectives of an attack. In order to
facilitate the understanding of the encryption method and at-
tacks a short overview of the MC-EZBC bitstream will be
given in section 1.2.

In section 2 we will investigate the information which
was intentionally left in plain text, namely motion fields and
header information in order to mount attacks on the video
sequence. While we will specifically look at the MC-EZBC
video codec similar attacks are possible on other video and
image codecs, e.g. [5] for a header information attack on
JPEG2000.

In section 3 the selective encryption method will be ex-
tended to include motion vectors and section 4 will give a
summary over the attacks and the extended encryption ap-
proach.

1.1 Overview Over Selective Encryption

Selective encryption refers to encrypting, carefully selected,
parts of a plaintext. Two common reasons for this approach
are reduction in resources, usually time saved when only a
part of a plaintext is encrypted, and maintaining properties of
the plaintext in the encrypted domain. The discussed selec-
tive encryption approach for the MC-EZBC is of the second
kind where the objective is to retain the ability to scale the
encrypted bitstream.

Furthermore selective encryption can be utilized to pro-
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tect only parts of the bitstream for digital rights management
(DRM) scenarios, e.g. a freely decodeable preview version
with embedded but encrypted high quality version.
The possible security goals we want to achieve with selective
encryption in different DRM scenarios are as follows:

Confidentiality Encryption means MP security (mes-
sage privacy). The formal notion is that if a system is MP-
secure an attacker can not efficiently compute any property
of the plaintext from the ciphertext [2].

Sufficient Encryption means we do not require full se-
curity, just enough security to prevent abuse of the data. Re-
garding video this could for example refer to destroying vi-
sual quality to a degree which prevents a pleasant viewing
experience.

Transparent Encryption means we want people to be
able to view a preview version of the video but in a lower
quality while prevent them from seeing a full version. This
is basically a pay per view scheme where a lower quality pre-
view version is available from the outset to attract the viewers
interest. The distinction is that for sufficient encryption we
do not have a minimum quality requirement, and often en-
cryption schemes which can do sufficient encryption cannot
ensure a certain quality and are thus unable to provide trans-
parent encryption.

Regarding attacks the focus will be to breach message
privacy under the assumption that the visual data is fully en-
crypted. We will look at header and motion field information
and determine what information can be produced regarding
the content of the video sequence.

1.2 The MC-EZBC Bitstream

A schematic overview of the MC-EZBC bitstream is given
in fig. 1 and an illustration of the decomposition of a GOP
is given in fig. 2. The main layout is a header followed by
GOP sizes (this is the size of the image data in a GOP) fol-
lowed by a sequential ordering of GOPs. Each GOP is lead
by a header, giving scene change information, i.e. which
frames are I frames, followed by the motion field and im-
age data. Motion field and image data are kept separate. For
image data the frames are ordered lowest to highest tempo-
ral resolution (which is equal to lowest to highest temporal
frequency bands). Likewise for each frame the image data
is stored from lowest to highest resolution (which is equal
to lowest to highest spatial frequency bands). Motion vector
fields are stored lowest to highest temporal resolution and in
order of frame for each temporal band, in case a given frame
is stored as an I-frame the motion vector field for this frame
is omitted. Each base layer and each enhancement layer is
stored as chunk of data (not shown in the figure), meaning a
leading header giving the length of the data block followed
by the data block itself.

For a parsing of the bitstream the layout into chunks is
beneficial since we do not have to search for marker se-
quences but can directly skip large parts of the file. Also
when headers, including chunk headers, and GOP size infor-
mation is kept intact the whole bitstream can subsequently be
parsed correctly, which is important to be able to scale after
the encryption.

2. RESIDUAL INFORMATION

The original approach to selective encryption of the MC-
EZBC [6] leaves the header and motion information unen-

Header Payload

Size GOP n GOP 1 GOP nSize GOP 1

GOP Header Motion Field Image Data

MV Base L. MV Enhancement L. LLLL HLLLH LLH

Base L. Enhancement L.

Figure 1: The layout of the MC-EZBC bitstream

LHLH

LLHLLL

H H H H

LHLH

LLHLLL

H H H H

Figure 2: Overview of the decomposition of a GOP with
GOP size 8 with marked high temporal layer (lower part),
high spatial layer (upper part) and possible I frames as dashed
outline on the lower part.

crypted. The motion information is left unencrypted in or-
der to be able to decode the bitstream with the original MC-
EZBC implementation. The header information is used for
scaling and has to be changed when scaling is performed,
so an encryption is not possible. In the following this resid-
ual information from the selective encryption approach will
be used to gain information about the encrypted video se-
quence. The akiyo, bus, coastguard, container, flower, fore-
man, mobile, news, silent, tempete and waterfall sequences
are used to perform these tests. In the following subsections
we refer to full selective encryption which means the format
compliant encryption of image data, cf. fig. 1 and [6], leaving
header information and motion fields in plain text.

2.1 Header Information

Assuming an attacker intercepts a video stream which is en-
crypted using full selective encryption. Assuming further
that we do have a catalog of available videos from the source
of the stream. If this information is present can we identify
the video sequence which was intercepted? If this is possible
message privacy would be breached since an attacker is able
to identify the video sequence.

Since the header information is available a video stream
with the same scaling parameters (bitrate and resolution) can
be requested. The size of the motion field and visual data is
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a part of the plain text headers in the encrypted stream. Us-
ing this information we can identify whether the requested
stream matches the intercepted stream. Also note that this
can be done even if the new stream is sent encrypted and
we have no possibility of decrypting it. For each stream re-
quested a similarity score S will be calculated in comparison
to the intercepted stream as follows,

S = ∑
i∈MV

(oi− ci)
2

where MV is the set of indices of motion vector chunk
lengths, oi and ci are the length of the ith motion vector chunk
of the original and comparison sequence respectively.

In the following experiment the sequences were split into
subsequences, each 8 frames in size, in order to simulate a
larger catalog of video sequences as well as to show that even
for this low number of frames the similarity score identifies
the source sequence with precision.

In fig. 3 a plot is shown where the waterfall32 subse-
quence, starting at frame 32, is compared to other subse-
quences, including waterfall. The dashed line shows sub-
sequences not connected to the waterfall sequence, the solid
line show subsequences from the waterfall sequence and the
mark at the abscissa shows the waterfall32 subsequence.
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Figure 3: Similarity calculation for various sequences com-
pared to waterfall32.

The plot is artificially capped at 1000 in order to show
the more interesting lower range of similarities. From the il-
lustration it can be seen that other subsequences originating
from the same sequence can also give a similarity response,
overall this is because the type of motion throughout subse-
quences are quite similar. The only other subsequence with a
decent similarity response is news8, sequence id 193, which
is a near static image with a downward motion from dancers
in the center similar to the motion in the waterfall sequence.
This similarity of motion over 8 frames is the reason for the
response, the longer the subsequences the lower the similar-
ity response outside a video sequence will be.

2.2 Motion Vector Information

Assuming an attacker intercepts a full selective encrypted se-
quence it is possible to inject image data into the bitstream
in order to gain information about the content, which again
breaches message privacy.

A visual object can be injected into the video sequence
by encoding a still image sequence of the injected object

and merging the two sequences using the motion informa-
tion from the original sequence and the visual data from the
still image sequence. The main header can be kept since it
is the same for both sequences resulting from using the same
parameters for encoding the still image sequence. Motion
header and image header information is taken from the re-
spective sequence. This leaves only the GOP length informa-
tion to be adjusted which is a trivial task. Regarding which
object to inject there are two possible courses, one is to an-
alyze the motion field in order to gain information about the
sequence. The other is to identify the sequence by using the
header information as described in the previous section and
utilize side channel information.

By analyzing the motion field it is relatively easy to deter-
mine in which parts of the image actual motion is happening
as opposed to general movement like panning or zooming.
A simple way of doing this is injecting a gradient image and
watch the resulting sequence. In the example of the foreman
sequence it is easily discernible that the sequence is of the
head and shoulders type, see fig. 4.

Frame 50 Frame 100

Figure 4: Frames 50 and 100 of the foreman sequence with
injected gradient image.

The related attack is given in fig. 5 where a head is in-
serted into the foreman sequence. For encoding a GOP
length of 128 was used and just the first GOP of the sequence
will be used here. A head which roughly fits the proportions
of the moving object in the center of the image was inserted,
the inserted head has not the exact right size nor the right
proportions. Note that the background in the inserted image
was left blank since there is nearly no background motion in
this GOP to work with.
While only two frames of the sequence are compared in fig. 5
it can be seen that the inserted head goes through the same
motion as the original foreman head. In the actual video se-
quence even the movements of the mouth are perceivable.
In any case the quality is a dramatic improvement over a di-
rect decoding of the encrypted sequence, frame 15 and 62 are
shown in fig. 6.

Under the assumption that the video sequence can be
identified through the header information a search can be
done for still images from the actual sequence. Given that
such a still image can be found, either a preview version or
a screenshot of the video sequence, a much better approxi-
mation can be done. In the example given in fig. 7 we used
frame 20 of the foreman sequence to inject. The steps for
injecting the image data are the same as for the more general
case, but the result is much better. This is mostly due to the
pictures being more similar and thus the artefacts introduced
by motion compensation are less visible.

This second attack using motion vectors also makes the
identification of the video sequence through header informa-
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Original Inserted

Frame 15

Frame 62

Figure 5: Foreman frames 15 and 62 compared with an in-
jected image of a head.

Frame 15 Frame 62

Figure 6: Frame 15 and 62 of a direct decoding of the en-
crypted foreman sequence.

tion much more dangerous. Not only do we gain knowledge
about the video sequence but we can mount a more effective
attack on the sequence.

3. SELECTIVE ENCRYPTION WITH MOTION
VECTORS

The currentMC-EZBC video codec supports scalable motion
vectors [12]. Motion vectors are available for each temporal
resolution and thus are structured in order of temporal res-
olution first and frame order in the given resolution second.
In terms of the bitstream the motion data is, like the image
data, given in chunks, i.e. a leading header gives the length
information of the following block of data. The amount of
motion data in relation to the whole bitstream, depending on
the bitrate of the sequence, ranges from 0.5% (full bitrate) to
nearly 40% (128kbps) under full temporal resolution.

The primary goal of adding encryption to motion vec-
tors is still to keep the scalability intact in the encrypted do-
main. However unlike with corrupt image data the decoder
is far less resistant to errors in the motion vectors. This re-
sults in format compliance only on a bitstream level, i.e. the
bitstream can still be parsed and scaled, but the standard de-
coder will most likely be unable to deal with the random in-
put of the encrypted motion vectors.

The encryption of the data in motion field chunks is not

Original Inserted

Frame 15

Frame 62

Figure 7: Foreman frames 15 and 62 compared with an in-
jected image of foreman frame 20.

block aligned so a stream cipher has to be used. Furthermore,
scaling away higher temporal resolution can disrupt ciphers
in feedback mode, like AES in OFB, when the feedback is
used over all chunks. Consequently it is best like with the
original version of the encryption algorithm to use feedback
only in a given chunk. The motion data encryption alone can
not be used for sufficient or transparent encryption.

In order to assess the encryption of motion vectors only
two attacks are used. One is the injection of a zero motion
field into the bitstream similar to what is described in sec-
tion 2.2. The other is to fix up the decoder to prevent it from
crashing during motion field decoding. In the case where
motion data is required beyond the bound of a chunk we in-
troduce a one bit spike to prevent the decoder from locking
up in a loop waiting for a symbol. Furthermore, the refer-
encing to image data outside the boundaries of a given frame
is prevented. The fix of the decoder will in the following be
referred to as ”mvfix” attack.

For sufficient encryption, depending on the video se-
quence, the quality can be too high. Figure 8 shows the
PSNR of the tempete sequence, high global motion, and
silent sequence, a head and shoulder sequence with low
global motion, for injection and mvfix attacks. In this at-
tacks all motion fields were encrypted. For sequences with
distinct global motion the mvfix attack does better because
the residuals are distributed throughout the image while for
a zero motion field the residual information is accumulated
which leads to severe color bleeding. Figure 9 illustrates the
color bleeding effect frames 62 and 250 of the tempete se-
quence. This effect becomes less distinct when the GOP size
decreases. Additionally, the mvfix attack introduces more
jitter resulting in a lower viewing quality.

Regarding transparent encryption the problem is how to
control a target quality. The way to use motion vector en-
cryption for transparent encryption would be to force the
receiver to downscale on the temporal resolution, i.e. re-
ducing the frame rate. Since the downsampling is done
with wavelets the difference from the original frames are
somewhat hard to measure since video quality indices (VQI)
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Figure 8: PSNR plot showing the comparison of the injection
and mvfix attacks on the tempete and silent sequence with
GOP size 256

inject mvfix

Frame 62

Frame 250

Figure 9: Comparison of injection and mvfix attacks based
on frames 62 and 250 of the tempete sequence with GOP
size 256.

like PSNR would rate the blurring effects introduced by the
downsampling as severe degradation even if the content is
still viewable. Furthermore, the impact of zero motion injec-
tion or mvfix attacks are hard to evaluate purely on the basis
of a VQI.

4. CONCLUSION

It was shown that confidentiality can not be reached with se-
lective encryption for the MC-EZBC, header data alone can
be used to identify a video sequence. Motion fields if left un-
encrypted have been shown to compromise content, i.e. an
approximation of the content can be created using only mo-
tion vectors.

An enhancement of a selective encryption scheme to in-
clude motion vectors has been introduced and discussed in
detail. The encryption of motion vectors alone has been
shown to be insufficient for transparent or sufficient encryp-
tion schemes. However, the encryption of motion vectors can
prevent reconstruction attacks as presented in this paper and
should be used in conjunction with the selective encryption
of image data.

Furthermore, since header data has to be left in plain
text in order to allow scalability in the encrypted domain the
identification attack is always possible. This shows that full
cryptographic security can only be achieved with traditional
methods, e.g. AES encryption over the whole bitstream.
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ABSTRACT

The structural similarity index measure is a well known and
widely used full reference visual quality index. In this paper
we introduce a new full reference visual quality index based
on local edges and edge gradients in the wavelet domain. The
proposed metric corresponds better to human judgement and
is more efficient, in terms of computational complexity, than
the structural similarity index measure. Furthermore, the pro-
posed metric is more efficient than other state of the art met-
rics and surpasses them for certain visual impairment classes.

Index Terms— Image analysis, Quality control

1. INTRODUCTION

The assessment of image and video quality is important for
transmission (assessment of transmission errors) and com-
pression (compression vs. quality). Optimally an evaluation
where human observers judge the perceived quality or im-
pairment should be performed. However, the time and cost
requirements to perform such tests are high. Thus, algorithms
to assess image quality automatically are employed, which
are referred to as visual quality indices (VQI). These VQIs are
in turn compared to human assessment over a number of dis-
tortion and compression types via established databases. It is
important for VQIs to strongly correlate to human judgement.
Furthermore, ease of use and low computational complexity
are desired traits.

Still widely used the peak signal-to-noise ratio (PSNR) is
unrivaled in speed and ease of use. However, it is also well
known that the correlation to human judgement is somewhat
lacking [1]. With this problem in mind newer VQIs were de-
veloped which take the human visual system (HVS) into ac-
count in order to increase the correlation with human judge-
ment.

These VQIs utilize the knowledge of the HVS to a lesser
or higher extent. However, the trend over all VQIs is the more
information about the HVS is included in the generation of a
quality score the more complex and time consuming the VQI
becomes. This ranges from the fast luminance and edge sim-
ilarity score (LSS and ESS) as introduced by Mao and Wu

[2] to the refined but slow visual information fidelity crite-
rion (VIF) by Sheikh and Bovik [3] and CPA1 by Carosi et
al. [4]. In terms of HVS LSS and ESS uses the basic knowl-
edge that edge information reflects the assessment of humans
regarding the shape or contour of objects and the luminance
score reflects changes in the color space. The VIF on the
other hand uses a more refined model which starts with the
modeling of the reference image using natural scene statistics
(NSS). Furthermore, the possible distortion is modeled as sig-
nal gain and additive noise in the wavelet domain and parts of
the HVS which have not been covered by the NSS are mod-
eled, i.e. internal neural noise is modeled by using a additive
white Gaussian noise model.

However, the most widely used VQI is the structural sim-
ilarity index measure (SSIM) by Wang et al. [5] because it
offers an excellent tradeoff between performance and quality.
The SSIM extracts three separate scores from the image and
combines them into the final score. First the visual influence
is calculated locally then luminance, contrast and structural
scores are calculated globally. These separate scores are then
combined with equal weight to form the SSIM score.

In this paper we propose a VQI which is more efficient
as well as more effective than the SSIM and for certain cases
is even better than VQIs which are heavily modelled on the
HVS. The proposed metric is a full reference metric, i.e. both
original and impaired image are used, based on local edge
direction and gradient which exploits properties of the HVS to
some extent. Based on the utilization of local edge gradients
we will refer to this metric as LEG for the rest of the paper.

Local edge information is a good feature when it comes
to image comparison, classification or retrieval. Local binary
patterns (LBP) have been widely employed to assess local
edge information. LBPs compare a center pixel to its neigh-
borhood to gain an edge description, and have been success-
fully used from face recognition, e.g. [6], to medical image
classification, e.g. [7]. Usually these LBPs are used in the
form of histograms in the comparison of images. In our case
image based histograms do not provide enough error localiza-
tion, thus a different approach of direct comparison is used.

Furthermore, we use a one-step wavelet decomposition
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which allows the utilization of HVS based knowledge to in-
crease the accuracy of error assessment. The decomposition
serves a number of purposes. First the peripheral vision is
taken into account by using the low frequency subband. The
eye of an observer focuses on one point but also takes in
surrounding information. Furthermore, the HVS is sensi-
tive to different spatial and temporal frequencies which are
present in a stimulus and this is modelled by using the high
frequency subbands. Additionally, error information is per-
ceived stronger among large edge structures in the image and
the high frequency bands can be used for structure detection.
In the proposed algorithm this structural information is used,
by means of local edge gradients, as a weighting function
for the local error features generated form the low frequency
bands. Furthermore, the difference of overall luminance will
be used to model the light sensitivity of the eye allowing to
detect impairments which do not change the structure of the
image.

In order to assess how the LEG performs in comparison
to other metrics based on edge features the local feature based
visual security metric (LFBVS) by Tong et al. [8] as well as
the natural image contour evaluation (NICE) quality index by
Rouse et al. [9] will be evaluated and compared to LEG.
The LFBVS uses basic color features as well as edge ampli-
tude and direction on local blocks. The NICE uses gradient
maps on different scales, adjusts for possible image shift by
using a morphological dilation with a plus shaped structuring
element. The actual score is computed by doing a threshold-
ing on the image and calculating differences. For the imple-
mentation of the NICE we choose the version with only one
scale, Sobel edge detector and morphological dilation since it
is significantly faster than using steerable wavelet decompo-
sition but shows similar performance, c.f. [9]. For weighting
the hamming distance and normalization as given in [10] was
used.

The implementations of NICE, LFBVS, LEG and SSIM
which are used in the following sections are available online
at http://www.wavelab.at/sources/VQI/.

In section 2 the algorithm for the LEG VQI will be given.
In section 3 we give the evaluation and analysis of the VQI
with respect to LIVE, MICT and IVC image database as well
as a comparison to other metrics. Section 4 concludes the
paper.

2. ALGORITHM

Let I and O denote the impaired and original (gray scale)
image of size W × H with maximum pixel value M = 2b

with b bits per pixel. The following steps are performed to
calculate the LEG index.

Step 1: The following steps only use edge difference, con-
sequently a change in the image which does not influence the
structural influence would go unnoticed. To compensate for
this the difference in luminance between I and O is calcu-

lated:

lum(I,O) = 1−
√
|µ(O)− µ(I)|

M
,

µ(X) =
1

WH

W∑
x=1

H∑
y=1

X(x, y),

where X(x, y) is the pixel value of image X at position x, y.
Step 2: One step wavelet decomposition with Haar

wavelets resulting in four sub images for each image X
denoted as X0 for the LL-subband, and X1, X2, X3 for LH,
HH and HL subband respectively. Figure 1 illustrates the
decomposition of a sample image, upper left is X0 and the
numbering continues clockwise.

Fig. 1: Wavelet decomposition of the lighthouse2 image with
the Haar wavelet.

Step 3:A local edge map is calculated for each position
x, y in the image, reflecting the change in coarse structure
of the image. Through the Haar wavelet decomposition and
the comparison of each center pixel with its neighborhood the
actual area of influence of the original image is a 6 × 6 win-
dow. The local edge map is used to prevent faulty information
gained from gradients on parts of the image where the edges
are off by a certain degree.

le(I,O, x, y) =


1 if EDC(I,O, x, y) = 8,
0.5 if EDC(I,O, x, y) = 7,
0 otherwise.

EDC(I,O, x, y) =
∑

p∈N(x,y)

ED(I,O, x, y, p)

ED(I,O, x, y, p) =


1 if I(x, y) < I(p) and O(x, y) < O(p),
1 if I(x, y) > I(p) and O(x, y) > O(p),
0 otherwise.

whereN(x, y) is the eight neighborhood of the pixel x, y.
Edge extension is done by copying the last edge value, e.g.
I(−1, 0) := I(0, 0).
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Step 4: In order to assess the contrast changes a differ-
ence of gradients in a neighborhood will be calculated. The
effect of a contrast change will be more pronounced along
large edges. Thus, this step serves as a contrast sensitivity
function as well as a detector for large structures in the im-
age.

led(I,O, x, y) =
1

8

∑
p∈N(x,y)

(
1−

√
|LD(I,O, x, y, p)|

M

)2

LD(I,O, x, y, p) = (O(x, y)−O(p))− (I(x, y)− I(p))

Step 5: The edge score is calculated by using local edge
conformity (le) and local edge difference (led).

es(I,O) =
4

WH

W
2∑

x=1

H
2∑

y=1

(
le(I0, O0, x, y)

∗ 1
3

3∑
i=1

led(Ii, Oi, x, y)
)
.

Step 6: The LEG visual quality index is calculated by
combining es and lum:

LEG(I,O) = lum(I,O) es(I,O).

An example of the generated edge score and edge con-
formity is given in fig. 2, where the original image O (lower
left) as well as an impaired image I (top right) is given in low
and high quality. The top left illustrates the values of le(I,O)
and the lower right gives the average of the led values as used
in step 5, i.e. 1

3

∑3
i=1 led(Ii, Oi, x, y). The values have been

mapped onto a continuous gray scale, [0, 1] 7→ [0, 255], where
black indicates a high amount of errors and white represents
no distortion between I and O.

2.1. Analysis of Weight Functions

The features used in the metric are average luminance (µ),
edge direction conformity (EDC) and contrast change differ-
ence (LD) which are combined with weight functions in or-
der to model their impact on the HVS. For example, should a
small difference in µ have a huge impact, super linear weight,
or a small impact, sub linear weight. In order to find the best
weight function for each feature the individual weight func-
tions were tested on the IVC database.

It turned out that super linear weight performed better, in-
dicating that the HVS is able to detect even small aberrations
from the original. For this reason we tested various functions,
as depicted in fig. 3, with varying degrees of superlinearity:
different slope for linear with capping at the boundaries, as
used in le for EDC; logarithmic or square root, again with
different forms of superlinearity, e.g., normal square root as
used in lum for µ or squared as used in led for LD.

(a) High Quality

(b) Low Quality

Fig. 2: Comparison of high and low quality error maps. The
original image is in the lower left corner, the impaired version
is in the top right corner, the edge error map is top left and the
difference of gradient error map is lower right.

Table 1 shows results for this test, for reasons of brevity
only some results are presented. The table gives the Spear-
man rank order correlation (SROC) for a given function on
each testset of the IVC database as well as the summation
of the SROC scores for overall comparison. The test uses
the final weight functions for all features except for the fea-
ture indicated in the table for which the given weight function
is evaluated. The weight functions indicated in the table are
those illustrated in fig. 3.

The trends towards the selected weight functions as used
in the final version of LEG is clearly visible.

3. EXPERIMENTAL RESULT AND ANALYSIS

In order to evaluate the LEG VQI we compare it to the widely
used SSIM. Furthermore, a comparison to slow VQIs which
highly exploit the HVS, such as VIF and CPA1, is included.
In addition a comparison to fast VQIs, PSNR and LSS, which
rely less on the HVS are performed. Furthermore, a com-
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Fig. 3: Different forms of weight functions, log is actually
calculated as log = log(1 + x)/ log(2) to compensate for the
singularity at 0 and lin2 is min(2x, 1).

Testset

feature weight lar j2000 flou jpeg lumichr sum

LEG 0.8504 0.8837 0.9692 0.8962 0.9392 4.5386

µ lin 0.8535 0.8708 0.9669 0.8942 0.9473 4.5327
µ log 0.8535 0.8708 0.9669 0.8942 0.9473 4.5327

LE sqrt 0.7448 0.8361 0.9263 0.8015 0.6985 4.0072
LE log 0.8038 0.8724 0.9429 0.8375 0.8073 4.2639
LE lin 0.8087 0.8871 0.9519 0.8551 0.8615 4.3643
LE lin2 0.8390 0.8918 0.9692 0.8909 0.9338 4.5248

Table 1: Result of the test of a selected number of weight
functions and features on the IVC database.

parison with the NICE and LFBVS, which use similar image
features as LEG, is included.

The comparison is done based of the LIVE (release 2)
[11], MICT [12] and IVC [13] databases. Three different
image databases were used because a single database can be
biased due to different evaluation methodology, number of
participants, demography, expertise of participants etc. An
example of this are the JPEG and JPEG 2000 compression
testsets which are contained in each of the three databases.
Throughout this section the absolute value of the Spearman
rank order correlation (SROC) is given. We also used the
Kendall tau (τ ) measure for evaluation and both measures co-
incide.

The SROC for LIVE is given in table 2a, for MICT ta-
ble 2b lists the results and for IVC the results are given in
table 2c, where each table shows separate entries per testset.
Likewise the results for τ are given in table 4. The main fo-
cus of the comparison is SSIM versus LEG and the higher
correlation per testset is given in bold for both SROC and τ
for easier reference. Table 3 shows the SROC for NICE and
LFBVS in comparison to LEG and SSIM, for brevity reasons
no Kendall τ results are given for this comparison.

Overall the LEG outperforms the SSIM except for two

(a) LIVE

testset LSS PSNR SSIM LEG VIF CPA1

fastfading 0.843 0.891 0.942 0.971 0.965 0.881
gblur 0.916 0.782 0.903 0.966 0.972 0.927
jp2k 0.953 0.895 0.936 0.945 0.968 0.958
jpeg 0.970 0.881 0.946 0.960 0.984 0.962
wn 0.965 0.985 0.962 0.960 0.985 0.984

(b) MICT

testset LSS PSNR SSIM LEG VIF CPA1

jpeg 0.839 0.285 0.631 0.938 0.907 0.725
jpeg2000 0.908 0.860 0.915 0.914 0.956 0.923

(c) IVC

testset LSS PSNR SSIM LEG VIF CPA1

flou 0.889 0.805 0.869 0.969 0.973 0.902
j2000 0.938 0.850 0.851 0.884 0.936 0.927
jpeg 0.952 0.674 0.805 0.896 0.924 0.906
lumichr 0.914 0.563 0.749 0.939 0.878 0.834
lar 0.863 0.699 0.711 0.850 0.888 0.881

Table 2: Absolute Spearman rank order correlation (SROC)
for LSS, PSNR, SSIM, LEG, VIF, CPA1 on the IVC, MICT
and LIVE databases.

cases. For the white noise testset on the LIVE database the
SSIM reaches a SROC of 0.96151 while the LEG only scores
0.96000, a negligible difference given that the performance
over the other testsets is significantly higher. The other ex-
ception is the JPEG 2000 testset on the MICT database where
again the SSIM outperforms the LEG by a small margin.
However, for the JPEG 2000 testsets on both LIVE and IVC
the LEG performs better. This fluctuation is most likely due
to the, relatively low, number of human observations which
are used as ground truth.

When it comes to class of similar metrics we see that LEG
outperforms NICE on all three databases and all testsets. LF-
BVS on the other hand is slightly better than LEG on the
IVC lar testset and significantly better than LEG, and all other
metrics including VIF and CPA1, on the IVC lumichr testset.

For some testsets the LEG even surpasses the VIF and
CPA1 VQIs. On average the CPA1 is surpassed by LEG al-
though only by a small margin, the LEG is on average sur-
passed by the VIF with an equally small margin. For metrics
which use similar features the LEG on average outperforms
both LFBVS and NICE. The average difference of a given
VQI to the LEG is shown in table 5, and table 6 for NICE
and LFBVS, for the SROC on a per database basis. Posi-
tive results indicate a VQI which is on average better than the
LEG on the given database.
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(a) LIVE

testset SSIM LFBVS NICE LEG

fastfading 0.942 0.932 0.959 0.971
gblur 0.903 0.937 0.949 0.966
jp2k 0.936 0.853 0.925 0.945
jpeg 0.946 0.920 0.950 0.960
wn 0.962 0.891 0.910 0.960

(b) MICT

testset SSIM LFBVS NICE LEG

jpeg 0.631 0.814 0.861 0.938
jpeg2000 0.915 0.584 0.881 0.914

(c) IVC

testset SSIM LFBVS NICE LEG

flou 0.869 0.955 0.924 0.969
j2000 0.851 0.825 0.882 0.884
jpeg 0.805 0.889 0.860 0.896
lumichr 0.749 0.969 0.809 0.939
lar 0.711 0.853 0.795 0.850

Table 3: Absolute Spearman rank order correlation for SSIM,
LFBVS, NICE, LEG on IVC, MICT and LIVE databases.

(a) LIVE

testset LSS PSNR SSIM LEG VIF CPA1

fastfading 0.668 0.707 0.784 0.848 0.841 0.698
gblur 0.751 0.584 0.726 0.841 0.858 0.761
jp2k 0.811 0.711 0.771 0.785 0.843 0.817
jpeg 0.849 0.691 0.795 0.822 0.892 0.827
wn 0.835 0.894 0.832 0.824 0.894 0.888

(b) MICT

testset LSS PSNR SSIM LEG VIF CPA1

jpeg 0.644 0.199 0.446 0.791 0.737 0.524
jpeg2000 0.742 0.682 0.752 0.747 0.821 0.764

(c) IVC

testset LSS PSNR SSIM LEG VIF CPA1

flou 0.741 0.667 0.709 0.878 0.899 0.741
j2000 0.803 0.726 0.693 0.705 0.790 0.784
jpeg 0.822 0.519 0.627 0.719 0.791 0.750
lumichr 0.752 0.442 0.563 0.813 0.718 0.631
lar 0.659 0.571 0.571 0.656 0.713 0.705

Table 4: Absolute Kendall tau (τ ) for LSS, PSNR, SSIM,
LEG, VIF, CPA1 on the IVC, MICT and LIVE databases.

database LSS PSNR SSIM VIF CPA1

LIVE −0.031 −0.073 −0.023 0.015 −0.018
MICT −0.053 −0.354 −0.153 0.005 −0.102
IVC 0.003 −0.189 −0.111 0.012 −0.018

Table 5: Comparison of average SROC per database in rela-
tion to LEG.

database SSIM LFBVS NICE

LIVE −0.023 −0.053 −0.022
MICT −0.153 −0.227 −0.055
IVC −0.111 −0.010 −0.054

Table 6: Comparison of average SROC per database in rela-
tion to LEG.

3.1. Runtime Efficiency Analysis

For an efficiency analysis the LEG metric is compared to the
SSIM, LSS, PSNR, NICE and LFBVS. The CPA1 and VIF
are not included since they are only available as matlab im-
plementations and the matlab overhead would unfairly influ-
ence the results. However, the CPA1 uses a full frame Fourier
transformation which is of complexityO(N logN) while the
LEG is O(N). And for the VIF, Sheikh et al. [3] evaluated
that the VIF is 6.5 times slower than the MS-SSIM. The MS-
SSIM is a multi scale variant of the SSIM utilizing wavelet
decompositions and repeat calculations of the SSIM for dif-
ferent subbands, thus the VIF is at least 6.5 times slower than
the SSIM.

As testset the 779 impaired images from the LIVE
database were used. The results of the comparison are given
in table 7 where it is shown that LEG is faster than the SSIM
for best, worst and average case but can not match the effi-
cient simplicity of LSS or PSNR. For the average case LEG
is 6 times faster than the SSIM.

For the edge based metrics, NICE, LFBVS and LEG, the
performance is similar with the LEG outperforming LFBVS
and NICE by a factor of 1.46 and 1.22 respectively.

metric t̄ tmin tmax

SSIM 764 ms 588 ms 882 ms
LFBVS 186 ms 140 ms 247 ms
NICE 155 ms 107 ms 193 ms
LEG 127 ms 94 ms 198 ms
LSS 52 ms 40 ms 83 ms
PSNR 55 ms 43 ms 68 ms

Table 7: Runtime performance of the given metrics over 779
impaired images of the LIVE database.
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4. CONCLUSION

We have proposed a novel visual quality index based on local
edge features augmented by knowledge about the human vi-
sual system. We have given the algorithmic details of a new
visual quality index, LEG, and have evaluated it in terms of
runtime efficiency and correlation with human judgement.

It was shown that the proposed VQI is more effective, i.e.,
corresponds better to human judgement, than the SSIM and is
superior in runtime efficiency. Furthermore, on average the
proposed metric is more effective than the CPA1 and has a far
superior runtime efficiency than either CPA1 or VIF.

The LEG also has a higher runtime efficiency than NICE
and LFBVS, which use image features similar to those used
in LEG. Furthermore, LEG is more effective than NICE and
on average more effective than LFBVS.
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Abstract

Universal Multimedia Access (UMA) calls for solutions where content is created
once and subsequently adapted to given requirements. With regard to UMA
and scalability, which is required often due to a wide variety of end clients, the
best suited codecs are wavelet based (like the MC-EZBC) due to their inherent
high number of scaling options. However, most transport technologies for deliv-
ering videos to end clients are targeted toward the H.264/AVC standard or, if
scalability is required, the H.264/SVC. In this paper we will introduce a map-
ping of the MC-EZBC bitstream to existing H.264/SVC based streaming and
scaling protocols. This enables the use of highly scalable wavelet based codecs
on the one hand and the utilization of already existing network technologies
without accruing high implementation costs on the other hand. Furthermore,
we will evaluate different scaling options in order to choose the best option for
given requirements. Additionally, we will evaluate different encryption options
based on transport and bitstream encryption for use cases where digital rights
management is required.

Keywords: Scalable Video Coding (MC-EZBC), In-network Adaptation,
RTP/SRTP MANE, generic Bitstream Syntax Description (gBSD), Video
Encryption, Selective Encryption, Format Compliance

1. Introduction

The use of digital video in today’s world is ubiquitous. Content consumers
desire to retrieve content through a multitude of networks, from 3G to broad-
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band Internet, on a broad range of consumer devices, from cell phones to high
performance PCs. However, consumers do not care about the technicality nec-
essary to provide the content over this wide range of networks but rather about
their quality of experience (QoE), i.e., they want to consume the best possible
quality in a timely manner. This creates a problem for content providers since
it is costly, in both time and storage space consumption, to provide content for
every conceivable end device and network link. Re-encoding on the other hand
is expensive in the way that it requires significant time which reduces the QoE
for end users.

The solution to this problem is called Universal Multimedia Access (UMA)
[1]. The goal of UMA is to encode content once and adapt it in a timely
manner to current end user requirements. One of the enabling technologies of
UMA is the use of scalable video coding. This averts the need for transcoding
on the server side and enables the server to scale the video. However, even
scaling requires computation time and reduces the number of connections the
server can accept. Furthermore, variable bandwidth conditions, which happen
frequently on mobile devices, further tax the server with the need to adapt the
video stream. The solution to this is usually in-network adaptation, shifting
the need to scale to the node in the network where a change in bandwidth is
occurring. The core adaptation with these restrictions takes place on the server
and adaptation due to actual channel capability is done in-network.

For video streaming in the UMA environment, i.e., a high number of possible
bandwidths and target resolutions, wavelet based codecs should be considered.
Wavelet based codecs are naturally highly scalable and rate adaptation as well
as spatial and temporal scaling is easily achieved. Furthermore, wavelet based
codecs achieve a coding performance similar to H.264/SVC, c.f. Lima et al. [2].
Under similar considerations Eeckhaut et al. [3] developed a complete server to
client video delivery chain for scalable wavelet-based video. However, there are
already standardized ways of transporting multimedia data, namely the Real-
time Transport Protocol (RTP) [4]. Similarly, there is a protocol for handling a
single or several time-synchronized stream of continuous media, e.g., audio and
video, the Real Time Streaming Protocol (RTSP) [5] which can use RTP as its
mode of transportation. Besides RTP and RTSP the MPEG-21 Part 7 ”Digital
Item Adaptation” (DIA) [6] can be used to provide content related metadata.
A codec agnostic description, the generic Bitstream Syntax Description (gBSD)
[7], can also be used as a basis for an informed adaptation process.

In order to use existing technology, i.e., RTP streaming and in network
adaptation, modules for handling the motion compensated embedded zero bit
codec (MC-EZBC) have to be created to facilitate packetization for RTP and
media awareness for adaptation nodes. However, the existing technology can
already deal with H.264/SVC, e.g., [8] describes the H.264/AVC payload for
RTP and multimedia aware network elements (MANE) and [9] extends this
to H.264/SVC. Since the H.264/* bitstream is build from network abstraction
layer units (NALUs), the fastest route to utilize the existing infrastructure is
to encapsulate the MC-EZBC into a NALU bitstream which presents itself as
H.264/SVC to those components. Following this route it is, apart from the

2
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MC-EZBC to NALU conversion, trivial to use the existing infrastructure. Also
note that, while we only take a look at MC-EZBC to NALU conversion, such a
conversion can be constructed for other scalable video codecs and the theoretical
and experimental analysis will by and large also hold for those conversions.

In this paper we will provide a method of encapsulating the MC-EZBC into
a NALU bitstream. Additionally, we will investigate how this encapsulated bit-
stream can be transported, encrypted, and scaled, and at what cost in terms of
payload overhead and network delay. Furthermore, we will look at surrounding
issues which have to be taken into account, e.g., initial vectors for encryption.

In section 1.1 we will describe the basics of the chosen wavelet based video
codec, the MC-EZBC, in section 2.1 a description of the layout of the bitstream
will be given and the adaptation to the RTP packetization scheme will be given
in section 2.2. An overview of the MPEG-21 DIA generic Bitstream Syntax
Description (gBSD) will be given in section 2.3. Section 2.4 describes additional
requirements for the RTP streaming process for the MC-EZBC and presents the
outline of the encapsulation process.

The main concern of research regarding UMA is usually performance with
respect to scaling and in-network adaptation. However, digital rights manage-
ment and security is also a prime concern for providers of commercial videos.
Furthermore there are a range of other aspects of video streaming, ranging from
server requirements to protocols, to QoS etc., Wu et al. [10] give a good overview
of these aspects. General principles and possible goals of digital rights manage-
ment (DRM) will be explained in section 1.2 and application of encryption to
the MC-EZBC codec will be discussed in section 3.

In section 4 we will compare the different aspects and options of the adap-
tation and streaming process theoretically and experimentally.

1.1. The Motion Compensated Embedded Zero Bit Codec (MC-EZBC)

For reasons of scalability which fit the UMA principle we use the enhanced
MC-EZBC wavelet based video codec for in-network adaptation. This choice
was made mainly because the source code is available 1, which enables our
experiments. The MC-EZBC codec [11, 12, 13, 14] is a scalable t-2D video codec
which uses motion compensated temporal filtering, with 5/3 CDF wavelets,
followed by regular spatial filtering, with 9/7 CDF filtering, an overview of the
encoding pipeline is given in fig. 1a. This method, temporal first and spatial
later, is referred to as t+2D coding scheme, see fig. 1b for an example of this
decomposition for a group of picture (GOP) size of 8. For temporal filtering a
full decomposition is used and thus the GOP size is discernible by the number
of temporal decomposition levels. Both temporal and spatial filtering is done
in a regular pyramidal fashion. Statistical dependencies are exploited by using
a bit plane encoder, the name giving embedded zero bit coder. Motion vectors
are encoded with DPCM followed by an arithmetic coding scheme.

1The source for the ENH-MC-EZBC is available from
http://www.cipr.rpi.edu/research/mcezbc/.
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(a) Overview of the coding pipeline.

Original
Sequence

Temporal
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H H H H
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(b) Decomposition of a GOP of size 8 showing the arrange-
ment of temporally and spatially decomposed frames in
the bitstream.

Figure 1: MC-EZBC encoding overview.

For an overview of wavelet based video codecs and a performance analysis
as well as techniques used in those codecs see the overview paper by Adami et
al. [15]. Again, while we concentrate only on the MC-EZBC in this paper the
encapsulation process described later can in a modified version still be applied
to other scalable video codecs. Likewise the analysis performed will also be
indicative for other scalable video codecs.

1.2. Overview of Encryption and Digital Rights Management

Shannon’s work [16] on security and communication shows that the highest
security is reached through a secure cipher operating on almost redundancy free
plain text. Current video codecs exploit redundancy for compression and we
can consider the bitstream to be a redundancy free plain text in the sense of
Shannon. Thus for maximum security we just need to encrypt the whole bit-
stream with an state of the art cipher, i.e., the Advanced Encryption Standard
(AES) [17]. However, the choice was made to keep information in plain text
in order to facilitate scalability in the encrypted sequence. Regarding security,
Lookabaugh et al. [18] showed that such a selective encryption is sound and
demonstrated its relation to Shannon’s work. However, Said [19] showed that
side information can compromise security.

Thus, we can differentiate between:

Traditional Encryption or full encryption where the full range of the plain-
text is encrypted and security in the sense of Shannon is achieved.
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Selective Encryption or partial encryption where, carefully selected, parts
of the plaintext are left unencrypted. Two common reasons for this ap-
proach are reduction in resources, usually time saved when only a part of
a plaintext is encrypted, or maintaining properties of the plaintext in the
encrypted domain.

The encryption approach used for the MC-EZBC is of the second kind where
the objective is to retain the ability to scale the encrypted bitstream, which is
not possible when using traditional encryption.

Furthermore selective encryption can be utilized to protect only parts of
the bitstream for digital rights management (DRM) scenarios, e.g., a freely
decodeable preview version with embedded but encrypted high quality version.
The possible security goals we want to achieve with selective encryption in
different DRM scenarios are as follows:

Confidentiality Encryption means MP security (message privacy). The for-
mal notion is that if a system is MP-secure an attacker can not efficiently
compute any property of the plaintext from the ciphertext [20].

Sufficient Encryption means we do not require full security, just enough secu-
rity to prevent abuse of the data. Regarding video this could for example
refer to destroying visual quality to a degree which prevents a pleasant
viewing experience.

Transparent Encryption means we want consumers to be able to view a
preview version of the video but in a lower quality while preventing them
from seeing a full version. This is basically a pay per view scheme where
a lower quality preview version is available from the outset to attract the
viewer’s interest. The distinction is that for sufficient encryption we do
not have a minimum quality requirement, and often encryption schemes
which can do sufficient encryption cannot ensure a certain quality and are
thus unable to provide transparent encryption.

2. Particulars of the Protocols

In this section we will describe the details of the MC-EZBC bitstream which
are required to perform scaling. Furthermore we will describe the NALU bit-
stream requirements related to the encapsulation of the MC-EZBC bitstream
in order to provide scalability on the transport layer. Likewise, the subset of
gBSD syntax elements related to describing the MC-EZBC bitstream are dis-
cussed. The requirements introduced by utilizing the RTP are explained and an
overview of the process which encapsualtes the MC-EZBC bitstream into gBSD
and NALU with respect to RTP are presented.

2.1. MC-EZBC Bitstream

The basic layout of the MC-EZBC bitstream is depicted in fig. 2a and a more
detailed overview of the ’image data’ required for fine grain scalability is shown
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(a) General bitstream layout.
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(b) Layout of image data in the bitstream.

Figure 2: Layout of the MC-EZBC bitstream.

Figure 3: Grouping of decompositions for a frame with two spatial decomposi-
tion levels.

in fig. 2b. The bitstream is lead by a general header giving resolution, frame
rate, prediction options etc., most of which stay the same during scaling. The
header however has three fields we need to adjust when scaling is performed:
a bitrate field giving the bit rate to which the bitstream is scaled, t_level
giving the number of temporal layers dropped and s_level giving the number
of spatial layers dropped. The header is followed by a GOP size list giving the
size of a GOP without GOP header size and motion field, i.e., only specifying
the image data size. For any scaling done the GOP size list has to be adjusted
to reflect the new size of image data.

Following this general information are the motion and image data ordered
by GOP, i.e.: Header, motion vectors of GOP 1, image data of GOP 1, motions
vectors of GOP 2, and so on. Each GOP contains a GOP header, containing
scene change information, i.e., which frames are encoded as I frames. Following
the GOP header is the motion field for the current GOP. The GOP header and
motion field are not changed during scaling, i.e., motion vectors are not scaled
with the image data. Following the motion field is the image data in frame order
of temporal decomposition, c.f. fig. 1b and fig. 2 lower part.

The layout of the image data consists of a number of data chunks consisting
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+---------------+---------------+---------------+---------------+

|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|

+-+---+---------+-+-+-----------+-+-----+-------+-----+-+-+-+---+

|F|NRI| Type |R|I| PRID |N| DID | QID | TID |U|D|O| RR|

+-+---+---------+-+-+-----------+-+-----+-------+-----+-+-+-+---+

Figure 4: Schematic of the NALU header with SVC extension.

of size information and data. For each frame every spatial decomposition level
is given as one chunk where color information and direction of decomposition
are grouped together, fig. 3 illustrates this. The order of these chunks in the
bitstream is from lowest subband to highest subband. For scaling, the size
information of the chunks needs to be reset to the reduced data in the chunk,
consequently a description of the bitstream which allows scaling has to include
access to chunk size information. For a limited number of scaling options, this
would be enough since the chunk data can be subdivided into blocks which we
can remove. In each chunk there is a three byte header which must never be
removed for regular scaling, however when the whole resolution is dropped these
three bytes can be dropped too.

2.2. NALU Bitstream

The layout of the MC-EZBC bitstream lends itself naturally to the trans-
formation into a NALU bitstream. In the following we will describe the layout
of a valid NALU bitstream as well as an adaptation scheme of the MC-EZBC
bitstream. The NALU bitstream is composed of NALU headers, marker seg-
ments and payload. In order to properly parse the NALU bitstream, the headers
need to be valid, the payload must not contain marker sequences and a marker
sequence has to properly indicate the end of a payload segment.

Figure 4 shows the NALU header with SVC header extension, which is used
exclusively in our case.

The fields we use for adaptation are:

PRID The priority ID is a 6-bit field which provides application specific priority
settings and is used to specify the encoded bitstream part.

TID Temporal ID is a 3-bit field specifying the temporal level and is mapped
to the temporal decomposition level.

DID Dependency ID is a 3-bit field which provides inter-layer dependency,
i.e., higher DID depends on lower DID, and is used to indicate spatial
decomposition level.

QID The quality ID is a 4-bit field specifying quality level dependency and
is used to further subdivide a spatial decomposition level into bit rate
adaptation cutting points.
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More specifically, since we always use the SVC extension header, the header
type (denoted by Type) is always set to 20. The priority ID reflects the type of
data from the original MC-EZBC bitstream: header information (PID 0), GOP
header information (PID 1), motion field (PID 2) and image data (PID 3). The
GOP length information of the original MC-EZBC bitstream is dropped.

In order to ensure that no marker sequences appear in the bitstream, an
escape sequence can be used to escape such marker information. The following
table shows the transforms:

0x000000 → 0x00000300

0x000001 → 0x00000301

0x000002 → 0x00000302

0x000003 → 0x00000303

Also note that the escaped sequences are not allowed to appear in the bitstream
but since this is done by inserting 0x03 and the fact that 0x000003 is also in
the marker sequence list this problem solves itself.

Another problem with transforming the bitstream is that the NALU header
is prefixed with a marker sequence which is of the form 0x0000 (00)* 01.
Usually three byte sequences are used, except for the the first header which
uses a four byte sequence as a synchronization marker. The problem is the
arbitrary number of zero bytes in the marker sequence. The specification was
done with H.264/SVC in mind where an encoded slice can not end in 0x00. For
the MC-EZBC however this is not the case and thus a trailing zero byte would
be counted as belonging to a marker and be lost. To fix this, we append 0x03

to the end of every payload.
The transformation from the NALU bitstream to a MC-EZBC bitstream is a

bit more complicated. The data in the NALU bitstream follows the same order
as the bitstream representation of the MC-EZBC, i.e., no reordering has to be
performed. But since we need to reconstruct the header information for the
MC-EZBC bitstream in case scaling occurred, we need to put the information
in a treelike structure representing the temporal and spatial decompositions of
the MC-EZBC. This is done by monitoring drops in NALU header fields, i.e., a
drop in a field refers to parsing a lower *ID value than the previous parsed *ID
value. For example, if a drop in the QID occurs we move to a different spatial
decomposition or a different frame, depending if a drop in DID is also detected,
or to a different GOP and so on. After this is done, we need to restructure
the whole bitstream in order to find the maximum decomposition levels, e.g., if
there is a resolution drop in one GOP, the other GOPs need to be adjusted to
reflect this, in order to properly determine a resolution for the overall header.
When this is done the overall header information is calculated and corrected
and the GOP length information which was dropped in the transformation to
the NALU bitstream is reconstructed.

2.3. gBSD

The gBSD is part of the MPEG-21 part 7 ”Digital Item Adaptation” and is
used to describe a bitstream in a format agnostic way. This enables devices to
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understand a single high level interface (gBSD) and thus perform operations on
a bitstream, e.g., scaling, without knowledge about the actual bitstream. While
the gBSD allows more structural information to go into the description, we will
keep the bitstream description simple so as not to generate too much overhead.
For more information on the tags and attributes used see MPEG-21 part 7 [6].

The gBSD is prefaced with a dia:DIA root tag specifying namespaces fol-
lowed by a dia:Description tag specifying the description type (gBSDType)
followed by address information. Since the MC-EZBC bitstream is byte based,
we set it to addressUnit="byte" and addressMode="Absolute". The address
mode gives the method of accessing parts of the bitstream, this is reflected by
the use of start and length attributes in subsequent tags. For the bitstream
description we need two different types of tags.

First we need a copy descriptor specifying that a part of the original bit-
stream should be retained in the scaled version. The gBSDUnit tag is used
for this purpose, it takes start and length information to mark a part of the
bitstream to be kept.

Additionally we need access to the bitstream in positions where the header
has to be adapted, e.g., size information in a scaling case. Such information can
not be copied over from the original bitstream but has to be adapted depending
on the target resolution or bitrate. The Parameter tag is used for this purpose
and gives the length of the data block to insert into the bitstream. The actual
information contained in the parameter is given by the required child Value.
The attribute xsi:type gives the type of data and the content of the tag gives
the actual value.

By using Parameter and Value we can access the actual value and change
it according to the adaptation, while the gBSDUnit tags let us copy parts of the
actual bitstream. Both Parameter and gBSDUnit also have an attribute marker
which allows to give a handle to the tag to access it directly.

Figure 5 shows a part of the description of the bitstream for the flower
sequence which can be used to scale to 1024kbps and 512kbps. It also shows the
description of the header where it can be seen that only the bitrate has to be
described as Parameter and that it needs to be set to 1024 to properly reflect
the bitrate of the stream. The resulting description of the bitstream consists of
two gBSDUnit descriptions discerning between 512 and 1024 kbps.

In order to perform repeated adaptations in the network, the gBSD has to
encompass all adaptation possibilities and has to be kept accurate. In order to
do this, the gBSD has to be adapted via extensible stylesheet language trans-
formations (XSLT) which is done on the network adaptation node. However,
the more fine grained the adaptation choices should be, the more fine grained
the gBSD has to be which results in a bigger gBSD file and a more complicated
XSLT script. The gBSD together with the XSLT script produce an overhead
which limits the size of the actual bitstream, so it is best to keep them as simple
as possible. Furthermore, if no more adaptation steps are necessary, the gBSD
file can be dropped, i.e., from the last node in the network to the end device
the full channel bandwidth can be used.

Figure 6 illustrates how gBSD is used for adaptation, fig. 6a shows the overall
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...

<dia:Description xsi:type="gBSDType"

addressUnit="byte" addressMode="Absolute">

<gBSDUnit start="0" length="14" marker="hdr1"/>

<Parameter length="2" marker="bitrate Q0">

<Value xsi:type="xsd:unsignedShort">1024</Value>

</Parameter>

<gBSDUnit start="16" length="80" marker="hdr2"/>

...

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">118</Value>

</Parameter>

<gBSDUnit start="545775" length="18" marker="data"/>

<gBSDUnit start="545793" length="100" marker="data Q0"/>

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">185</Value>

</Parameter>

<gBSDUnit start="545895" length="21" marker="data"/>

<gBSDUnit start="545916" length="164" marker="data Q0"/>

</dia:Description>

</dia:DIA>

Figure 5: gBSD representation of the flower sequences quality scaling options
for 1024 kbps and 512kbps.

layout of an adaptation process, a bitstream and a corresponding gBSD are sent
together. According to an adaptation scheme the adaptation engine can scale
the bitstream, and adapt the gBSD to fit the scaled bitstream. The adaptation
scheme can be fixed, i.e., only certain fixed scaling options are included, or
it can be generated based on user preference or requirement, this part of the
adaptation engine process is illustrated in fig. 6b. The adaptation based on user
preference, especially if more than one user is involved, however increases the
size of the gBSD since more options have to be taken into account. Furthermore,
either the overhead is increased by creating a more complex adaptation scheme,
which anticipates possible user preferences, or the delay is increased by having
the adaptation engine request a custom adaptation scheme from the server.
A more detailed information about the gBSD adaptation of the MC-EZBC is
available in [21]. The paper also shows that there are problems with the gBSD
for different types of sequence, like the increase in relative gBSD description
size in low motion sequences.

2.4. RTP

Apart from the NALU encapsulation the RTP streaming requires timing
information for the packetization, cf. [8]. Furthermore, in order to stream
the gBSD with along the same channel utilizing RTP it has to be embedded
in the NALU bitstream. This is done by adding supplemental enhancement
information (SEI) messages, cf. [22], to the NALU bitstream.

In order to produce timing information for the RTP server, the conversion
from MC-EZBC to NALU will also produce an XML output which describes
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Figure 6: Overview of the gBSD adaptation planning process.

the resulting NALU bitstream, including timing information which can be calcu-
lated from the framerate given in the original MC-EZBC header and the frame
number. This XML description can be used not only as a source of timing in-
formation but also as a basis to generate interleaved gBSD descriptions. Should
a gBSD be required the produced XML description can be annotated to create
the basis of an SEI embedded gBSD description. The annotated XML file can
then be broken up to conform to the desired access units (AU) of the bitstream,
i.e., the interleaving granularity. This AU gBSD fragments are then compressed
and wrapped in an SEI message and inserted into the NALU bitstream in such a
way that they precede the AU which they describe. Figure. 7 gives a schematic
overview of the transformation process.

MC-EZBC

NALU

gBSD XML

timing

NALU over RTP

AUAU

gBSD AU XML

annotated

embed SEI
SEI MC-EZBCSEI MC-EZBC

NALU with SEI

MC-EZBCMC-EZBC

gBSD XML

NALU with SEI over RTP

timing

Figure 7: Scheme for MC-EZBC to NALU encapsulation with SEI embedding.

3. Encryption

In order to encrypt the content and still retain the ability to scale there are
two options, content encryption, i.e., encrypt the bitstream either on a MC-
EZBC or NALU level, or transport encryption. Both methods have advantages
and disadvantages regarding computational requirements and security provided.

3.1. Transport Encryption

Transport encryption can be done by using the Secure Real-time Transport
Protocol (SRTP), defined in RFC3711 [23]. SRTP is a profile to the Real-
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Time Transport Protocol (RTP), defined in RFC3550 [4], providing encryption,
message authentication and protection against replay attacks for both uni- and
multicast.

The drawback of using the SRTP is the need to decrypt the whole commu-
nication on any MANE, where potential scaling takes place. The decryption on
each MANE is required, whether scaling is performed or not, in order to inspect
the bitstream to determine if scaling has to be performed. This puts a high
computational strain on the MANE, which has to decrypt as well as encrypt,
compared to encryption only on the server and decryption only on the client.
Furthermore, since the key for decryption has to be known on any MANE where
scaling can take place each MANE introduces a potential attack point to the
system.
On the other hand, we gain security against replay attacks since the whole of
the communication is encrypted. Furthermore, the delay for delivery to the con-
sumer is reduced in comparison to prior encryption. Since no prior encryption
is employed the streaming can start sooner and the overhead of encryption is
distributed in time over the whole streaming process.
However, this option still does not provide confidential security akin to tra-
ditional encryption. Due to the headers of the encapsulating SRTP packages
remaining in plain text, the length information can be used combined with side
channel attacks to compromise security, see Hellwagner et al. [24].

3.2. Bitstream Encryption

For bitstream encryption the choices are either to encrypt the MC-EZBC
prior to encapsulating it into a NALU bitstream, or to directly encrypt the
NALU bitstream. However, the use of the NALU bitstream for encryption is
somewhat problematic. A cipher should optimally produce output resembling
a uniform distribution, and thus can create marker sequences which have a spe-
cial meaning, cf. section 2.2. However, the creation of marker sequences can
be prevented or remedied, for a more detailed discussion of NALU encryption
see Hellwagner et al. [24], in this paper we will not look into encryption on a
NALU level. Encrypting the MC-EZBC on the other hand is easier in technical
terms. Through the length information in data chunks, no marker sequences
are needed and the content of a chunk can be directly encrypted. Furthermore,
the transformation to NALU automatically takes care of possible NALU marker
sequences as described in section 2.2. When utilizing UMA, a highest quality
source video is used; thus in order to reduce computational cost, encryption
should be performed after defining quality levels, i.e., only a part of the source
video is used. Furthermore to reduce parsing cost the best option is to in-
clude encryption into the NALU encapsulation process. When the encryption
is applied just prior to NALU encapsulation, the occurrence of possible marker
sequences is automatically taken care of by the encapsulation process.

There are a number of options on how to encrypt the MC-EZBC bitstream
depending on the desired results in terms of DRM, i.e., transparent or sufficient
encryption, discussed in more detail in [25]. However, in order to allow scaling
in the encrypted domain, information about the bitstream has to be kept in
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plaintext, i.e., headers. This information can be used in side channel attacks as
shown in [26]. In these side channel attacks, the fact that the lengths of encoded
video sequence parts correlate to the contained video material is exploited. This
can be combined with the information of possible streaming content (the side
channel) to identify which video is streamed. While this does not allow an
attacker to reconstruct the visual material, the confidentiality is broken. In this
section we will mainly look initial vectors for encryption, how the encryption
schemes presented in [25] can be used in the NALU encapsulation scenario and
how they compare to transport encryption (SRTP).

3.2.1. Considerations for the Initial Vectors

The high scalability of the MC-EZBC bitstream introduces some require-
ments for a potential encryption method. First and foremost is the ability to
perform quality scalability which enables the bitstream to be cut at byte aligned
positions. This enforces the use of stream ciphers or block ciphers in streaming
mode, e.g., AES in CBC, CFB, OFB or counter mode, [27]. Additionally, due
to the scalability in temporal and spatial resolutions as well as scalability in
quality, a cipher needs to be restarted for each new chunk. Ciphertext feed-
back (CBC, CFB) is obviously not able to bridge the resulting gap of data,
since ciphertext feedback uses prior ciphertext information to generate a key
for following ciphertext. In case of missing data, the keystream for following
ciphertext can no longer be constructed. But since information about the origi-
nal length of a chunk is not kept, pre-ciphertext feedback (OFB, CTR) are also
unable to continue over this gap of data. In this case the ciphertext itself is not
needed but an iteration is performed in order to construct the keystream and
the number of iterations is tied to the length of the missing data. This requires
some form of providing an initial vector (IV) for each chunk of data. The data
of a chunk has no fixed minimal length and can be scaled down to arbitrary
small size. This prohibits the use of plaintext or ciphertext for crafting new IVs
for the next chunk in the bitstream.

The solution is to send IVs separately or generate them from a separate
source. A separate source could be a single IV which is encrypted to gener-
ate a different IV and thus iteratively generate the IVs of the chunks as they
appear in the bitstream. This can however lead to synchronization errors, i.e.,
when a whole GOP is dropped, the next chunk in the bitstream and all sub-
sequent chunks would receive faulty IVs. This happens because the GOPs are
not numbered and synchronization can not be restored. Something similar can
happen when a whole frame is dropped, then from this frame forward the rest
of the GOP would receive a faulty IV. However the next GOP can be properly
synchronized because the number of frames in a GOP is known. Similarly, a
dropped spatial resolution level would result in the faulty IVs for the rest of the
frame and be synchronized at the beginning of the next frame.

This leads to the following options:

• Send a limited number of IVs and generate subsequent IVs by iterated
encryption:
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– A single IV is sent at the beginning, resulting in the lowest overhead
but can result in synchronization loss for the whole bitstream when
a whole GOP is dropped during transport.

– An IV is sent for each GOP, leading to synchronization at the GOP
borders but frame drops can destroy the rest of the current GOP.

– An IV is sent for each frame, synchronization is now per frame but
a resolution drop can destroy the rest of the current frame.

• Send a single IV for each chunk of data in the bitstream. This has the
highest overhead but desynchronization can not occur.

Regarding overhead we can give a simple upper bound by looking at the
number of spatial resolutions. The number of frames per GOP remains the
same since full temporal decomposition is used. Assuming a framerate of f
with s spatial decomposition levels we can simply give the overhead as:

oIV = f ∗ (s+ 1) ∗ b,

for a block size of b. For AES of a PAL video, a resolution of 768x576, 6
decomposition steps and 25 frames per second, this would result in an overhead
of oIV = 21.875kbps. To put this into relation, consider streaming over an
old, low bandwidth IEEE 802.11 WLAN with a channel capacity of 2Mbps this
would be ≈ 0.01% of the channel capacity. In essence, the overhead of sending
frequent IVs is negligible and does hardly impact channel bandwidth. For newer
WLAN standards featuring higher bandwidth the overhead of sending frequent
IVs becomes even less of a problem.

4. Comparison and Evaluation

In this section we will compare the overhead introduced by encapsulation
in NALU and gBSD respectively. Since RTP is used as transport protocol for
both NALU and gBSD, we will not take into account the RTP overhead since
it is the same for both formats.

4.1. Protocol Overhead

In [28] it is shown that seven quality levels are usually enough to support
almost all required target applications. While this is a reasonable goal for
comparison we will look at the overhead in a more general fashion. This is
done mainly because if a request for a certain bandwidth, framerate or bitrate
is issued the MC-EZBC source can be transformed on the fly to support the
requested target scalability which can lead to an actual lower number of scaling
options. As a result of a lower number of scaling options the encapsulating
protocols generate less overhead. The encoding overhead is important since the
actual bitrate of the bitstream can only be the channel bitstream minus the
required overhead.
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In the following we will denote the number of frames as f , the number of
temporal decompositions as t and the number of spatial decompositions as s.
Consequently we have a GOP size of 2t and the number of GOPs is G = f/2t,
for simplicity we assume that the framerate is a multiple of the GOP size, and
in total we have s+ 1 spatial decomposition bands. Furthermore we will denote
the number of quality levels by q.

4.1.1. Evaluation of gBSD Overhead

For the number of bytes each descriptive element of the gBSD requires,
we use an approximation obtained from empirical analysis of the used bit-
streams and resulting gBSD descriptions. While most of the markers have a
fixed structure, like element and attribute names, the value of the attributes
change depending on the encoded sequence, see fig. 5 as an example containing
the gBSDUnit element. The average size in bytes a Parameter and gBSDUnit

require are p = 105 and g = 55 bytes respectively. These numbers are calcu-
lated with average variable length information (i.e., length value, start value)
but excluding the marker attribute since the value is essentially user defined.
Additionally, we have an overhead for the DIA declaration which is 393 bytes,
which is the length of the fixed header, see. fig. 5. This means that the start
and length fields as well as the value of parameters are only estimated since
this information can vary widely. However, the use of a typical marker element
is included since the marker will be a near constant in length. We can now
calculate an approximate size of the gBSD. The main header consists of three
changeable fields, bitrate, spatial and temporal scaling level, with size p and
five gBSDUnits of size g which stay constant. The main header is followed by a
list of GOP sizes, with one entry per GOP, each entry in the list is given as a
Parameter with size p. For each GOP we have a single gBSDUnit for the GOP
header and motion vectors. Then for each frame we have a single chunk for
each spatial decomposition level. The chunks here have to be separated into the
number of quality levels we want to deal with. The resulting approximation in
byte is thus size S:

S = 393 + 3p+ 5g︸ ︷︷ ︸
header

+ Gp︸︷︷︸
GOP size list

+G (g + 2t(s+ 1)(p+ qg))︸ ︷︷ ︸
single GOP

For a sequence with 128 frames, t = 7 and s = 2 this would estimate a gBSD file
size of 81kB for two quality levels and 60kB for the downscaled version. However,
this assumes that the gBSD is transferred in plaintext which is unusual. A gBSD
description is text based and can be compressed quite well, see Augeri et al.
[29] for an overview. Furthermore, there are XML aware compression schemes
which are designed for ease of access on network nodes and alleviate the need to
decompress the description of the whole bitstream, see Timmerer et al. [30] for
an overview. For the rest of this paper we will use bzip2 as compressor for gBSD
which will compress by an order of magnitude. For a more detailed overview of
gBSD regarding MC-EZBC and compression see Hofbauer et al. [21].
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Size increase when including gBSD

Filesize in byte for

sequence NALU NALU+SEI increase

bbbunny 12868259 12946658 0.61%
sintel 13424680 13546838 0.91%
football 1139309 1167002 2.43%
harbour 901722 928638 2.98%
crew 676359 702960 3.93%
foreman 449419 474891 5.66%

Table 1: Overhead of bzip2 compressed gBSD SEI inclusion into bitstreams of
different quality levels.

While this is an overhead calculation for the whole bitstream it can be used
as approximation for the AU based description as well. In order to create a well
formed gBSD document the header has to be replicated which increases the
overall size, but simultaneously the relative length information from the start of
the description is shorter, resulting in lower p and g values. As such the given
equation can be either used directly for overhead calculation, or in parts if a
better fitting calculation is desired. As an example we can consider the overhead
calculation for the whole sequence with GOP based gBSD descriptions. This
can be easily done by extracting the single GOP part of the given equation
and adding the cost of the header; the resulting overhead has to be taken into
account for each GOP. The resulting overhead is

SAUGOP
= G ∗ (393 + (g + 2t(s+ 1)(p+ qg)).

What is problematic about this overhead is the fact that the overhead size
is only dependent on the scaling options but not the quality of the contained
bitstream. This means that for a given gBSD description the overhead relative
to the size of the bitstream increases with decreasing quality. Table 1 shows
an example for this increase in size when including bzip2 compressed SEI mes-
sages, as described in fig. 7, for various bitrates. The sequences used in the
table are of CIF resolution with GOP size 16, 6 spatial levels and with bitrates
1045kbps(football), 822kbps (harbour), 611kbps (crew) and 398kbps (foreman),
and 720p resolution with GOP size 16, 4 spatial levels and bitrates 3072kbps
(bbbunny) and 2048kbps (sintel). The CIF sequences have a runtime of 10.24
sec while bbbunny and sintel have a runtime of 33sec and 52sec respectively.

4.1.2. Evaluation of NALU Overhead

For every piece of payload we have to take into account the marker sequence
leading up to it (3 bytes), the NALU SVC header (4 bytes) as well as the
payload end marker (1 byte). We denote the fixed overhead value as of = 8.
Furthermore we have an overhead of 1 byte since the first NALU marker is a
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4 byte synchronization marker, and we have a reduction in size resulting from
the drop of the GOP size table of the original MC-EZBC bitstream which gives
the overall overhead adjustment oo = 1−G 4, since every size entry in the GOP
table is a long integer 4 bytes in size. Thus, we can give the overhead as

O = oo + of + ofG(2 + q(s+ 1)2t)

A NALU is created for the global header and for every GOP q NALUs are
created per temporal and spatial resolution. This only reflects the fixed over-
head, a further overhead occurs when marker sequences appear in the original
bitstream and have to be escaped. However this can not be given in a deter-
ministic fashion. Assuming uniform distribution of byte values we can calculate
the chance P of a marker appearing at any given byte position as:

P =
1

28︸︷︷︸
0x00

∗ 1

28︸︷︷︸
0x00

∗ 22

28︸︷︷︸
0x{00,01,02,03}

=
1

222
.

In this unlikely case a single byte is inserted into the three byte sequence,
extending it by 4/3, thus on average the size of the bitstream will increase by
a factor F = 1 + 1

3∗220 ≈ 1.00000032. The increase in size due to this factor is
practically negligible. Furthermore, unlike the gBSD overhead this size increase
is multiplicative instead of additive, i.e., dependent on the size of the original
bitstream. Thus, while the overhead of the gBSD description stays the same
for reduced quality versions the overhead due to this factor is reduced together
with the bitstream size.

4.2. Encryption Performance

A direct comparison of bitstream encryption and transport encryption is not
really possible. Bitstream based encryption is done only on the server and client
and introduces a constant delay until streaming can start. Transport encryp-
tion (SRTP) on the other hand encrypts while streaming and thus the load on
the server and client are distributed over the time it takes to stream the video
sequence, but additional load is produced on the MANE where decryption and
encryption also has to take place. With SRTP the delay to start streaming is
basically shifted to frame delays during transport. As such we will, and can,
not provide a direct comparison, rather both methods are looked at differently.
Transport encryption will be looked at during the evaluation of adaptation per-
formance since both are tied together.

For bitstream based encryption it is most important to get a notion of how
long the delay to start streaming is since this has a direct influence on consumer
satisfaction (QoE). In order to evaluate the time requirement for encryption for
different DRM scenarios, a number of selective encryption types are used. As a
baseline we will use the same cipher used for selective encryption and encrypt
the whole bitstream. In order to better gauge the influence of the parsing
overhead generated when using selective encryption, the same video sequence is
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used but with different quality levels. Table 2a gives the encryption performance
for a full quality version of the foreman sequence, the full quality version has
a bitrate of about 9.5Mbps. For comparison we use a reduced quality version
with a bitrate of 398kbps, which is later also used in the analysis of streaming
performance, given in table 2b. For each bitrate version we performed different
types of encryption which correlate to possible DRM applications. For more
information about the encryption process and resulting quality see [25].

Full selective encryption refers to the encryption of all image data, i.e., ex-
cluding headers. Due to the plaintext headers, scaling is still possible with full
selective encryption. This method is put in direct comparison with full tradi-
tional encryption, i.e., encryption of the whole bitstream including headers and
motion fields. This option generates no parsing overhead but does not allow
scalability in the encrypted domain. The parsing overhead for both bitrate ver-
sions is the same, since the layout of the bitstream is unchanged. This leads
to an actual reduction in encryption time for very high quality bitstreams even
for full selective encryption. For low bitrates however the overhead is quite sig-
nificant, in the 398kbps test case the parsing overhead nearly doubles the time
required for encryption.

Sufficient encryption refers to a significant reduction in visual quality. This is
typically done by encrypting the base layer and leaving the enhancement layers
intact. This leads to a significant reduction in encryption time in relation to full
selective encryption. The time reduction is more pronounced for higher quality
versions of the bitstream because more refinement information is contained in
the bitstream and thus the reduction in the amount of data to be encrypted
is more pronounced. Table 2 shows the two extremes, on one hand we have
a high reduction in quality, and consequently the amount of data which needs
encryption. For this case the parsing overhead renders any selective encryption
slower than full traditional encryption. On the other hand, the high quality
case shows that the parsing overhead becomes negligible in comparison to the
amount of data which need encryption. Thus, the higher the quality the more
time reduction can be gained from selective encryption.

Transparent encryption usually targets enhancement layer information in
order to allow a decoding of a decent base layer quality as preview version. This
version normally, except for low quality versions of a bitstream, encrypts an
amount of data between sufficient and full encryption. Likewise the amount of
time required for encryption is between full selective and sufficient.

Regarding which kind of encryption to use we can distinguish between ap-
plication scenarios. Since we want to keep scalability intact, full traditional
encryption can not be used. When the goal is to produce sufficient encryption,
the best option usually is to encrypt I-frames only. I-frames have to be included
even when encrypting only lowest spatial bands, in order to prevent the intro-
duction of higher quality content in case of a scene change. Thus, the I-frames
only option is in any case faster than the encryption of lowest spatial bands,
since this would necessarily include I-frames. When transparent encryption is
desired, the options are highest spatial or highest temporal bands. Which op-
tion to choose depends strongly on the video sequence, i.e., when encrypting
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What was encrypted Time % of Bitstream

Sufficient Encryption

I-frames only 49ms 21.34%
lowest spatial band 80ms 35.54%
lowest temporal band 84ms 39.85%

Transparent Encryption

highest spatial band 179ms 88.96%
two highest temporal bands 156ms 75.74%

Full Encryption

full selective encryption 201ms 99.50%
full traditional encryption 207ms 100%

(a) Full quality (≈ 9.5Mbps)

What was encrypted Time % of Bitstream

Sufficient Encryption

I-frames only 16ms 63.42%
lowest spatial band 15ms 65.98%
lowest temporal band 14ms 77.70%

Transparent Encryption

highest spatial band 13ms 50.02%
two highest temporal bands 12ms 22.00%

Full Encryption

full selective encryption 18ms 87.60%
full traditional encryption 10ms 100%

(b) Reduced quality (398kbps)

Table 2: The time required for selective encryption and the amount of the
bitstream actually encrypted for the foreman sequence with CIF resolution, 256
frames and GOP size of 16.
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a scene which contains little motion the drop in framerate from encryption of
high temporal bands will hardly be noticeable. Otherwise, encryption of high-
est temporal bands usually contains less information and consequently is faster.
For a more in depth discussion of encryption types and application scenarios
see [25].

4.3. Adaptation Performance

As discussed in previous sections there are certain options for scaling and
encryption. However, depending on the method chosen, the computational load
for adaptation is increased. If SRTP is utilized for encryption, the stream has
to be de- and encrypted on the MANE. Likewise, gBSD description allows a
more fine grained scalability but introduces an overhead in data sent as well
as computational load on the MANE. While effects other than computational
requirements have already been discussed, the question of computational load
is still open. In this section we will compare gBSD and direct NALU scaling
over RTP as well as SRTP to gauge the effects on server, client and MANE.

4.3.1. Evaluation Setup

As test setup we use a loop to measure timing information accurately, i.e.,
both server and client are on the same machine. The server is connected to the
client via a MANE running on a second machine. Both machines have the same

hardware, a DELL Optiplex 960 with Intel R© Core
TM

2 Quad Q9650 (3GHz,
1333MHz, 2x6MB L2 Cache) CPU with 4GB of DDR2 RAM. The machines are
connected via Gigabit LAN using an Intel PRO/1000 GT Network Adapter and
run the same software with Ubuntu Linux 10.04 as OS. A schematic drawing of
the setup is given in fig. 8.

Figure 8: Schematic of test setup

As test sequences the well known crew, football, foreman and harbour se-
quences are used in CIF resolution with a running length of 10.24sec. The CIF
sequences use a GOP size of 16 with a total of 256 frames and an fps of 25.
Furthermore, two test sequences are chosen from an application point of view,
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the trailers for the Sintel2 and Big Buck Bunny3 (abbreviated to bbbunny in
tables and figures) movies in 720p resolution with a length of 52sec and 33sec
respectively. The two trailers are encoded with a GOP size of 16. For the test
each sequence was set to two quality levels. The quality levels and number of
possible scaling points for temporal and spatial resolution for all sequences are
given in table 3.

Sequence resolution T S Q1 Q0

bbbunny 720p 4 4 3072 2048
sintel 720p 4 4 2048 1045
football CIF 4 6 1045 822
harbour CIF 4 6 822 611
crew CIF 4 6 611 398
foreman CIF 4 6 398 256

Table 3: Overview of the video sequences in the testset. The quality levels Q0
and Q1 are given in kbps, the scaling options for temporal (T) and spatial (S)
resolution are equal to the number of wavelet decompositions in the respective
domain.

Scaling Test
Passed levels

CIF Resolution 720p Resolution

Temporal Spatial Quality Temporal Spatial Quality

None 4 6 2 4 4 2
Temporal 3 6 2 3 4 2
Spatial 4 4 2 4 3 2
Quality 4 6 1 4 4 1

Table 4: Overview of scaling tests, showing which temporal, spatial and quality
levels are passed through, bold numbers indicate scaling.

For evaluation, four tests were performed per video sequence, unscaled trans-
port, quality scaling, temporal (framerate) scaling and spatial (resolution) scal-
ing. For each test, 20 streams were simultaneously sent from server to client
with adaptation on the MANE. Table 4 gives an overview of which levels are
passed during which test. A temporal level of 4 represents the original 16 frames
per GOP while a temporal level of 3 indicates a GOP size of 8, and consequently
half the original framerate. For each sequence there are two quality levels, the
quality levels differ for each sequence and are given in table 3 as Q0 and Q1
respectively. For spatial scaling of CIF sequences, 6 refinement levels reproduce

2http://www.sintel.org
3http://www.bigbuckbunny.org
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the original CIF resolution while passing only the first 4 levels results in a re-
duction of resolution to SQCIF 88×72. For 720p sequences, 4 refinement levels
reproduce the original sequence at 720p (1280×720) while passing only 3 levels
results in a reduction of resolution to 640× 360.

4.3.2. In-Network Performance Evaluation

For the performance evaluation we use the testset as described above with
both RTP and SRTP. The difference in memory, CPU and frame delay when
using NALU and gBSD for adaptation will be investigated. The gBSD is used
to describe an underlying NALU bitstream. The NALU bitstream can easily
be used to scale spatial and temporal resolution as provided by the MC-EZBC
bitstream. Furthermore, during encapsulation of MC-EZBC into a NALU bit-
stream the number and range of quality scaling points can be freely chosen.
However, it is not possible to scale according to higher semantics, e.g., marking
certain frames or GOPs as less important. To enable such scaling options, gBSD
can be used but this incurs an overhead in the bitstream and, through XML
parsing and processing, in computational load. To facilitate a fair comparison,
the scaling options for the NALU bitstream as given in table 4 are also used for
gBSD testing.

What we expect to see is that the use of gBSD results in a distinct impact
on memory and CPU usage on the MANE due to decompression and processing
of the XML description. Likewise the use of SRTP is assumed to incur a higher
CPU usage on client, server and MANE due to encryption and decryption. Re-
garding delay in delivery time, both gBSD and SRTP are expected to negatively
impact frame delay due to processing cost.

Figure 9 shows the average memory and CPU consumption for the 20 parallel
streams on the server, MANE and client for transport via RTP. For each stream
30000 frames were sent. In the figure, NALU refers to scaling based on NALU
and SEI refers to scaling with a gBSD description, which is compressed and
embedded in the bitstream as SEI messages.

Likewise figure 10 shows the CPU and memory consumption for the same
test when using SRTP. This produces an overhead on server, MANE and client
due to the encryption and decryption of the bitstream in order to process it.
The ordinate for the MANE is different from server and client in order to see
the difference for client and server memory and CPU consumption. However, to
facilitate comparison between RTP and SRTP the ordinate scales are the same
for each case. What is evident from these figures is that encryption for SRTP
incurs a significant overhead, especially on the MANE which needs to decrypt
as well as encrypt, leading to an almost fourfold increase in CPU consumption.
Furthermore, the use of gBSD for scaling results in increased memory consump-
tion on the MANE. This increased memory consumption is more pronounced
when the relative size of the gBSD compared the NALU is higher, compare ta-
ble 1. Additionally the decompression and processing of the SEI gBSD messages
increases CPU consumption on the MANE.

In addition to the CPU and memory consumption for scaling, the processing
on the MANE incurs a frame delay. Figure 11 plots the cumulative distribution
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Figure 9: Average of CPU and memory consumption in percent over 20 simul-
taneous RTP streams and four scaling tests for Server, Client and MANE.
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Transport via SRTP
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Figure 10: Average of CPU and memory consumption in percent over 20 si-
multaneous SRTP streams and four scaling tests for Server, Client and MANE.
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CDF of Frame Delay
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Figure 11: Comparison of cumulative frame delay (CDF) for NALU and SEI
adaptation using (S)RTP as transport.
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function (CDF) for the frame delay over the actual delay, given in microseconds
on a logarithmic scale. This test is done for unscaled contents only since this is
the worst case. Any scaling of contents results in less information the MANE
has to send and thus smaller outgoing buffers and consequently lower delay.
The delay is given based on transport protocol, SRTP and RTP, as well as
encapsulation type, NALU and gBSD with SEI. What can be seen is that SRTP
causes more delay than RTP since the required decryption and encryption steps
have to be performed prior to adaptation checking and sending. Likewise SEI
messages incur a higher delay than pure NALU based adaptation. This is due to
the fact that the gBSD has to be decompressed and inspected before passing the
adapted bitstream along to the client. Furthermore, the higher the bitrate the
higher the frame delay, this stems from additional computational demand and
fuller outgoing buffers. However, even for higher bitrate sequences the overall
relation of SRTP, RTP, NALU and SEI holds.

sequence
RTP SRTP

NALU SEI NALU SEI

bbunny 13490 18521 28478 40524
sintel 2685 9934 6704 13688
football 925 10072 1165 10471
harbour 962 10428 1410 11136
crew 490 9682 756 10102
foreman 529 9501 938 10327

Table 5: Frame delay in µs for CDF= 0.99.

The CDF plot shows that the overall behavior is as expected, both SEI
and SRTP incur a delay in delivery time. To better assess the actual impact
rather than the general notion, we will take a closer look at the time delay for
CDF= 0.99. Table 5 gives the average time, over 30000 frames, to deliver 99%
of the image sequence to the end user, i.e., only 1% of the image sequence will
take longer to deliver to the client. What can be seen is that the impact of
SEI over NALU is tremendous: for RTP SEI is slower than NALU, but the
slowdown becomes less sever the higher the overall processing cost. For SRTP
the behavior is similar but overall less pronounces since the encryption and
decryption overhead slows down both scaling methods. For NALU the switch
from RTP to SRTP incurs a significant slowdown while for SEI the impact of
SRTP over RTP is less pronounced. This is due to the decryption and encryption
being faster by an order of magnitude than the decoding and parsing of SEI.
Table 6 gives the factors of slowdown for all cases.

Overall, the expected impact in delivery time due to SRTP and SEI messages
over RTP and NALU can clearly be seen.
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NALU → SEI

sequence RTP SRTP

bbbunny 1.37 1.42
sintel 3.70 2.04
football 10.89 8.99
harbour 10.84 7.90
crew 19.76 13.36
foreman 17.96 11.01

(a) Slowdown for RTP and SRTP
when switching scaling method
from NALU to SEI

RTP → SRTP

sequence NALU SEI

bbbunny 2.11 2.19
sintel 2.50 1.38
football 1.26 1.04
harbour 1.47 1.07
crew 1.54 1.04
foreman 1.77 1.09

(b) Slowdown for NALU and SEI
when switching from bitstream en-
cryption to SRTP

Table 6: Frame delay slowdown factor for the different scaling and encryption
options.

5. Conclusion

We have introduced a mapping of a wavelet based video coding format, the
MC-EZBC format, to an H.264/SVC compatible bitstream in order to utilize
existing transport and scaling protocols and technologies, i.e., RTP. Further-
more, we compared the bitstream based encryption to transport encryption, i.e
SRTP, and evaluated different scaling technologies, i.e., NALU based adaptation
versus MPEG-21 Part 7 ’Digital Item Adaptation’ with gBSD. In addition we
have also provided an overhead estimation which is introduced by the mapping
of MC-EZBC to a NALU based bitstream as well as the overhead introduced
by the inclusion of gBSD in the bitstream.

When it comes to scaling, it is clear that a NALU based approach is better
since it generates less overhead in terms of bitstream size. Furthermore, when
compared to gBSD, the memory and CPU consumption on network scaling
nodes is lower by a significant amount and consequently NALU based adaptation
has a lower frame delay. Consequently, even though the NALU based approach
is less flexible than gBSD based adaptation, NALU based adaptation should be
the baseline and only in those cases where scalability beyond NALU capabilities
is desired a gBSD based description should be used.

Regarding encryption, the available options are transport encryption via
SRTP and bitstream based encryption on either NALU or MC-EZBC level. It
is clear that encryption of the NALU bitstream provides no benefit over encryp-
tion of MC-EZBC bitstream prior to the mapping process. When comparing
MC-EZBC based encryption to transport encryption, it was shown that the
computational load on scaling network elements is much higher for transport
encryption and an additional frame delay is introduced. Furthermore, the en-
cryption and decryption of the streamed video content required on every MANE
poses a security risk. However, transport encryption has less overall delay to
start streaming than bitstream encryption. Any form of DRM, e.g., transparent
encryption multicast with sufficient encryption, required a bitstream based en-
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cryption since SRTP can not handle those cases. Confidential encryption is not
possible since header attacks to leak information about the streamed content
are always possible, whether they operate on the plain text information used to
scale the bitstream in-network or on the packetization headers of the streaming
protocol.
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Iris Recognition in Image Domain:
Quality-metric based Comparators?
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Abstract. Traditional iris recognition is based on computing efficiently
coded representations of discriminative features of the human iris and
employing Hamming Distance (HD) as fast and simple metric for bio-
metric comparison in feature space. However, the mapping into feature
space is likely to cause loss of information, which is crucial especially in
the case of unconstrained acquisition. In this paper we propose the ap-
plication of quality-metric based comparators operating directly on iris
textures, i.e. without transformation into feature space. For this task,
the Structural Similarity Index measure (SSIM), Local Edge Gradients
metric (LEG), Natural Image Contour Evaluation (NICE), Edge Simi-
larity Score (ESS) and Peak Signal to Noise ratio (PSNR) is evaluated.
Obtained results on the CASIA-v3 iris database confirm the applicability
of this type of iris comparison technique.

Keywords: Iris reconition, biometric comparators, image quality-metrics,
image domain

1 Introduction

Iris recognition is considered one of the most robust and reliable biometric tech-
nologies obtaining recognition rates above 99% and equal error rates of less than
1% on several data sets. Compared to other modalities, the iris offers the ad-
vantages of being extractible at-a-distance and on-the-move [12]. Taking into
account the ever-increasing demand on biometric systems operating in less con-
strained environments, new iris feature extraction methods have been proposed
continously over the past decade [2]. Still, the processing chain of traditional iris
recognition (and other biometric) systems has been left almost unchanged, fol-
lowing Daugman’s approach [3] consisting of (1) segmentation and preprocessing
normalizing the iris texture by unrolling into doubly-dimensionless coordinates,
(2) feature extraction computing a binary representation of discriminative pat-
terns of the rectified iris texture, and (3) biometric comparison in feature space
involving the fractional HD as dissimilarity measure, see Fig. 1.

? This work has been supported by the Austrian Science Fund, project no. L554-N15
and the Austrian FIT-IT Trust in IT-Systems, project no. 819382.
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Feature
Extraction

Segmention
Preproc.

Biometric
Comparator

Database

Image Domain Feature Domain

Fig. 1. Common processing chain: images are preprocessed and adaquate feature ex-
tractors generate (mostly binary) feature vectors, stored as biometric templates.

Segmention
Preproc.

Database

Image Domain

Quality-metric based Comparators

PSNR, SSIM, LEG, NICE, etc.

Fig. 2. Proposed processing chain: images are preprocessed and quality-metric based
comparators (operating in image domain) estimate similarities between pairs of images.

Recently, several improvements with respect to the employed matching tech-
nique as alternatives to the fractional HD have been proposed. In [6], [15] feature
extraction is left unchanged, aiming to exploit even more information from the
stored biometric template. However, it is clear, that the mapping of original
iris texture to short feature vectors, often less than a few hundred bytes in
size, induces a strong loss of information. Therefore in this work, we target the
application of comparison techniques able to operate in the image domain of
normalized iris textures, see Fig. 2. This architecture involves several benefits:
(1) The problem of iris recognition can be mapped to a standard image process-
ing problem, benefiting of results in this domain. (2) Features and comparators
can be easily replaced without the necessity of re-enrollment, as the entire iris
image is stored for comparison and available as reference for future compara-
tors. (3) The approach allows for easier continuous updates, e.g. by averaging
iris textures each time of successsful authentication. (4) Quality-based metrics in
the image domain may be combined with other image domain methods, such as
SIFT-based [1] or Phase-based [9] methods. Of course, the proposed technique
may also be combined with traditional feature-scale methods (in which case fea-
ture extraction has to be incorporated into the comparison module), since global
features used by image metrics complement the mostly localized biometric fea-
tures. (5) Finally, new techniques like [6], [14] have shown, that an incremental
refinement of comparison decisions saves precious computation time and can
target the drawback of traditional image quality metrics being considered slow
compared to trivial metrics, such as fractional HD. Regarding the security of the
stored templates it is suggested to apply standard encryption algorithms (e.g.
AES) in order to protect user privacy.

The following sections are organized as follows: related work is reviewed in
Section 2. The proposed approach and quality metrics are introduced in Section
3. Experiments are outlined in Section 4 using an open iris database and compar-
ing both original as well as normalized iris images. Finally, Section 5 summarizes
the paper.
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2 Related Work

In the context of iris biometrics, image quality metrics are largely understood
as domain-specific indicators, e.g. focus assessment or measurement of pupil/iris
diameter ratio, to be considered for quality checks rejecting samples if insuf-
ficiently suited for comparison [18]. Such metrics have also been applied for
dynamic matcher selection in biometric fusion scenarios [20], i.e. quality is em-
ployed to predict matching performance and to select the comparator or adjust
weighting of the fusion rule. Our approach is different in employing general pur-
pose image quality metrics and their ability to measure the degree of similarity
of image pairs if one of both images is subjected to a (more or less severe) degra-
dation in quality. In our model, the degradation of a sample to be compared is
not caused by compression, but by biometric noise factors (time, illumination,
etc.), and the stored biometric gallery template represents the (updated) ideal
representation of the biometric property of an individual.

Pursuing the idea of employing iris comparison in the image domain, the fol-
lowing works need to be acknowledged: Miyazawa et al. [13] identify the problem
of feature-based iris recognition being highly dependent on the feature extraction
process varying based on environmental factors, which can be avoided by com-
puting features in the image domain. The authors suggest to apply 2D Fourier
Phase components of iris images. This scheme is extended by Krichen et al. [9],
who propose to combine global and local Gabor (i.e. wavelet instead of Fourier
coefficients) phase-correlation-based iris matching directly on enhanced (using
adaptive histogram equalization) iris textures for unconstrained acquisition pro-
cedures. They employ normalized cross-correlation and a Peak to Slob Ratio
(PSR) as comparator, which uses mean and standard deviation of the correlation
matrix. As Local correlation-based method they correlated sub-images of fixed
size using correlation peak in terms of PSR and peak position of each window
computing a score out of means and standard deviation. Alonso-Fernandez et
al. [1] propose the application of Scale Invariant Feature Transformation (SIFT)
for recognition, as a means of processing without transformation to polar co-
ordinates, thus permitting less constrained image acquisition conditions. SIFT
features can be extracted from original templates in scale space and matched
using texture information around the feature points. Kekre et al. [7], [4] use
the image feature set extracted from Haar Wavelets at various levels of decom-
position and from walshlet pyramid for recognition. Simple Euclidean distance
on the feature set is applied as the similarity measure. Furthermore, numerous
advanced iris biometric comparators have been proposed [15].

3 Iris Recognition in the Image Domain

Given an image of the human eye as shown in Fig. 3 (a), the first task is the
transformation into Daugman’s rubbersheet model. While any accurate segmen-
tation technique may be applied for this task, we employ the preprocessing chain
in [19]. This method applies (1) reflection removal with image inpainting, (2) as-
sessment of edge magnitude and orientation by a Weighted Adaptive Hough
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(a) Image (b) Detection

(c) Texture

(d) Enhanced

Fig. 3. Preprocessing: (a) image of eye (b) detection of pupil and iris (c) unrolled iris
texture (d) preprocessed iris texture.

Transform for initial center detection, followed by (3) polar and ellipsopolar
transforms to detect boundary candidates, which are evaluated to (4) select the
most reliable ones to be used for un-wrapping the image to a rectangular texture
of 512 × 64 pixels. Since image-based methods are largely affected by different
illumination [9], we further enhance the iris texture applying CLAHE (Contrast
Limited Adaptive Histogram Equalization) [22], see Fig. 3 (b)-(d).

In image-domain iris processing, we store one full reference iris texture O
per user. While template-updates can easily be handled in such a scenario, for
evaluations we employ enrollment using the first eye image per user only. In order
to score an authentication attempt given a claimed identity, the corresponding
template image O is compared with the current sample image I. Both images of
W ×H pixels are compared by employing one of the following quality metrics
Q(s(I,m), O), where s(I,m) denote a shifting of m pixels to the left or right in
order to obtain a rotation invariant technique. For I and O the b bits per pixel
are used with a maximum pixel value of M = 2b.

All of the following image metrics1 are full reference metrics, meaning they
utilize information from the original and comparison image to calculate an as-
sessment of the visual similarity. The following subsections describe details of
applied image metrics and show, which features are used in the calculation of
the quality assessment.

3.1 Peak Signal to Noise Ratio (PSNR)

The PSNR is still widely used because it is unrivaled in speed and ease of use.

The following steps are performed to calculate the PSNR.

Step 1: Calculate the mean squared error MSE = 1
WH

∑W
i=1

∑H
j=i(I(i, j)−

O(i, j))2

Step 2: The PSNR is calculated:

PSNR = 10 log10

( M2

√
MSE

)
. (1)

1 The implementation is available online at http://www.wavelab.at/sources/VQI/
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3.2 Structural Similarity Index Measure (SSIM)

The structural similarity index measure (SSIM) by Wang et al. [21] uses the
local luminance as well as global contrast and a structural feature to calculate
a score as follows.

Step 1: Each image is transformed by convolution with a 11× 11 Gaussian
filter.

Step 2: The luminance, contrast and structural scores can be calculated and
combined in one step as follows.

SSIM(I,O) =
(2µIµO + c1)(2σIO + c2)

(µ2
I + µ2

O + c1)(σ2
I + σ2

O + c2)
, (2)

where µI is the average pixel value of image I, σ2
I is the variance of pixel values

of image I and σIO is the covariance of I and O. The variables c1 = (k1M)2 and
c2 = (k2M)2, with k1 = 0.01 and k2 = 0.03, are used to stabilize the division.

3.3 Local Edge Gradients Metric (LEG)

The image metric based on local edge gradients was introduced by Hofbauer
and Uhl [5] and uses luminance and localized edge information from different
frequency domains.

Step 1: First the global luminance difference between I and O id calculated

as LUM(I,O) = 1−
√
|µ(O)−µ(I)|

M , where µ(X) = 1
WH

∑W
x=1

∑H
y=1X(x, y), and

X(x, y) is the pixel value of image X at position x, y.
Step 2: One step wavelet decomposition with Haar wavelets resulting in four

sub images for each image X denoted as X0 for the LL-subband, and X1, X2, X3

for LH, HH and HL subbands, respectively.
Step 3:A local edge map is calculated for each position x, y in the image,

reflecting the change in coarse structure of the image.

LE(I,O, x, y) =


1 if EDC(I,O, x, y) = 8,

0.5 if EDC(I,O, x, y) = 7,

0 otherwise.

EDC(I,O, x, y) =
∑

p∈N(x,y)

ED(I,O, x, y, p)

ED(I,O, x, y, p) =


1 if I(x, y) < I(p) and O(x, y) < O(p),

1 if I(x, y) > I(p) and O(x, y) > O(p),

0 otherwise.

where N(x, y) is the eight neighborhood of the pixel x, y.
Step 4: In order to assess the contrast changes a difference of gradients in a

neighborhood is calculated

LED(I,O, x, y) =
1

8

∑
p∈N(x,y)

(
1−

√
|LD(I,O, x, y, p)|

M

)2

,
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where LD(I,O, x, y, p) = (O(x, y)−O(p))− (I(x, y)− I(p)).
Step 5: The edge score is calculated by combining local edge conformity

(LE) and local edge difference (LED) into

ES(I,O) =
4

WH

W
2∑

x=1

H
2∑

y=1

(
LE(I0, O0, x, y)

1

3

3∑
i=1

LED(Ii, Oi, x, y)
)
.

Step 6: The LEG visual quality index is calculated by combining ES and
LUM.

LEG(I,O) = LUM(I,O) ES(I,O). (3)

3.4 Natural Image Contour Evaluation (NICE)

The NICE quality index by Rouse and Hemami [17, 16] uses gradient maps, ad-
justed for possible image shift by using a morphological dilation with a plus
shaped structuring element. The actual score is computed by doing a thresh-
olding on the image and calculating differences. The following steps are used to
calculate the NICE score.

Step 1: Gradient amplitude image Î is generated from I such that for i ∈
[1, . . . ,W ] and j ∈ [1, . . . ,H] Î is defined as Î(i, j) =

√
Sx(I, i, j)2 + Sx(I, i, j)2,

where Î(i, j) is the pixel value at location i, j and Sx(I, i, j) and Sy(I, i, j) are
the results of a Sobol filter at position i, j in image I in direction x and y,
respectively. Likewise Ô is generated from O.

Step 2: A binary image BÎ is generated by thresholding with the average

gradient amplitude value. That is, BÎ(i, j) = 1 if Î(i, j) > TÎ and BÎ(i, j) = 0

otherwise, where TÎ = 1
WH

∑W
i=1

∑H
j=1 Î(i, j).

Step 3: The binary image BÎ is transformed into B+

Î
by applying a mor-

phological dilation with a plus shaped structuring element. That is, each pixel
B+

Î
(i, j) is set to 1 if at least one of the 4−connected neighbours of BÎ(i, j) or

BÎ(i, j) is 1, otherwise B+

Î
(i, j) = 0.

Step 4: The NICE score is calculated based on the normalized Hamming
distance as

NICE(O, I) =

∑W
i=1

∑H
j=1(B+

Ô
(i, j)−B+

Î
(i, j))2∑W

i=1

∑H
j=1B

+

Ô
(i, j)

(4)

3.5 Edge Similarity Score (ESS)

The ESS was introduced by Mao and Wu [11] and uses localized edge information
to compare two images.

Step 1: Each image is separate into N blocks of size 8× 8.
Step 2: For each image I a Sobel edge detection filter is used on each block

i to find the most prominent edge direction eiIand quantized into one of eight
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directions (each corresponding to 22.5◦). Edge direction 0 is used if no edge was
found in the block.

Step 3: Calculate the ESS based on the prominent edges of each block:

ESS =

∑N
i=1 w(eiI , e

i
O)∑N

i=1 c(e
i
I , e

i
O)

, (5)

where w(e1, e2) is a weighting function defined as

w(e1, e2) =

{
0 if e1 = 0 or e2 = 0

|cos(φ(e1)− φ(e2))| otherwise,

where φ(e) is the representative edge angle for an index e, and c(e1, e2) is an
indicator function defined as c(e1, e2) = 0 if e1 = e2 = 0 and c(e1, e2) = 1

otherwise. In cases where
∑N
i=1 c(e

i
I , e

i
O) = 0 the ESS is set to 0.5.

4 Experiments

Experiments are carried out on the CASIA-v3-Interval iris database2 using left-
eye images only. The database consists of good quality 320×280 pixel NIR illu-
minated indoor images where the applied test set consists of 1307 instances, a
sample is shown in Fig. 3 (a).

Recognition accuracy is evaluated in terms of false none match rate (FNMR)
at a certain false match rate (FMR). The FNMR defines the proportion of verifi-
cation transactions with truthful claims of identity that are incorrectly rejected,
and the FMR defines the proportion of verification transactions with wrongful
claims of identity that are incorrectly confirmed (ISO/IEC FDIS 19795-1), in
particular, ZeroFMR defines the FNMR at a FMR of 0.1%. As score distribu-
tions overlap the Equal Error Rate (EER) of the system is defined (FNMR =
FMR). At all authentication attempts 7 circular texture-shifts are performed in
each direction for all comparators. A summary of obtained EERs and ZeroFMR
rates at the corresponding decision thresholds for the underlying image quality
metrics is given in Table 1. Receiver operating characteristics, which illustrate
the tradeoff between FMR and FNMR, are plotted in Fig. 4 for experiments
evaluating (a) metrics, as well as (b) impact of the used image type: original
image, texture after segmentation, and enhanced texture after CLAHE normal-
ization. Score distributions for each metric (normalized to [0, 1]) with respect
to genuine (intra-) and impostor (inter-personal) comparisons are illustrated in
Fig. 5.

4.1 Which quality metrics are useful iris biometric comparators?

With respect to accuracy, the ranking of metrics is as follows: SSIM, LEG,
PSNR, NICE, and ESS, with the first three metrics exhibiting EERs of less

2 The Center of Biometrics and Security Research, CASIA Iris Image Database,
http://www.idealtest.org

Iris Recognition in Image Domain: Quality-metric based Comparators

95



8 H. Hofbauer et al.

Table 1. Recognition performance of Quality Metrics

Algorithm Type EER ZeroFMR Threshold

SSIM Enhanced 3.40% 5.34% 0.868
LEG Enhanced 3.99% 7.72% 0.785
NICE Enhanced 5.14% 13.32% 0.526
ESS Enhanced 9.61% 25.97% 0.311

PSNR Enhanced 4.21% 10.33% 0.592
PSNR Texture 18.88% 65.37% 0.478
PSNR Image 23.01% 80.67% 0.638

Ma et al. Iris-Code 1.83% 2.02% –
Ko et al. Iris-Code 4.36% 18.45% –
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Fig. 4. Receiver operating characteristics by (a) quality metric, and (b) image type.
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than 5%. It is interesting to see, that PSNR with 4.21% EER performs quite
well on the enhanced textures although it is the most simple metric. However, for
high security applications with requested low FMR, SSIM with 5.34% ZeroFMR
compared to 10.33% for PSNR is clearly the better alternative. Considering
recognition accuracy image metrics do not outperform feature-based techniques
[2]. For instance, on the same dataset the approaches of Ma et al. [10] and
Ko et al. [8], which extract binary iris-codes obtain EERs of 1.83% and 4.36%,
respectively (see Table 1). However, image metrics are rather useful as additional
features in fusion scenarios.

4.2 How useful is texture enhancement and preprocessing?

In a second experiment, we tested the effect of texture enhancement and segmen-
tation on iris recognition accuracy of quality metrics using PSNR as reference
metric. Obtained results indicate a high degradation in case texture enhancement
steps are skipped (18.88% EER instead of 4.21%). Recognition from the origi-
nal eye images (without segmentation) further degraded results (23.01% EER),
thus normalizaton and enhancement steps accounting for different illumination
enriching the texture in the image (see Fig. 3) are extremely useful.

5 Summary

This paper applies quality metrics in image domain to the problem of iris recogni-
ton. As opposed to the view that original iris textures exhibit too much noisy in-
formation to be used directly for comparison, we found that some metrics (SSIM,
LEG, PSNR) provide quite reasonable accuracy (3.4%, 3.99% and 4.21% EER,
respectively). The proposed architecture alleviates continuous template updates
and enables a transparent replacement of comparators without re-enrollment.
Iris texture enhancement is found to be essential to the accuracy of iris recog-
nition in the image domain. Future work is targeted at a sophisticated analysis
of fusion approaches of image-domain methods and a combination with serial
comparison techniques to accelerate processing time.
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ABSTRACT

In accordance with the ISO/IEC FDIS 19794-6 standard an
iris-biometric fusion of image metric-based and Hamming
distance (HD) comparison scores is presented. In order to
demonstrate the applicability of a knowledge transfer from
image quality assessment to iris recognition, Peak Signal
to Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), Local Edge Gradients metric (LEG), Edge Similarity
Score (ESS), Local Feature Based Visual Security (LFBVS),
and Visual Information Fidelity (VIF) are applied to iris
textures, i.e. query textures are interpreted as noisy repre-
sentations of registered ones. Obtained scores are fused with
traditional HD scores obtained from iris-codes generated by
different feature extraction algorithms. Experimental evalu-
ations on the CASIA-v3 iris database confirm the soundness
of the proposed approach.

Index Terms— Biometrics, image quality metrics, iris
recognition, biometric fusion

1. INTRODUCTION

Iris recognition takes advantage of random variations in the
iris. The details of each iris are phenotypically unique yield-
ing recognition rates above 99% and equal error rates of less
than 1% on diverse data sets. In past years the ever-increasing
demand on biometric systems operating in less constrained
environments entails continuous proposals of new iris feature
extraction methods [1]. Still, the processing chain of tradi-
tional iris recognition (and other biometric) systems has been
left almost unaltered, following Daugman’s approach [2] con-
sisting of (1) segmentation and preprocessing, (2) feature ex-
traction, and (3) biometric comparison.

The International Organization for Standardization (ISO)
specifies iris biometric data to be recorded and stored in
(raw) image form (ISO/IEC FDIS 19794-6), rather than in
extracted templates (e.g. iris-codes) achieving more interop-
erability as well as vendor neutrality [3]. Biometric databases,

This work has been supported by the Austrian Science Fund, project no.
L554-N15 and the Austrian FIT-IT Trust in IT-Systems, project no. 819382.

which store raw biometric data, enable the incorporation of
future improvements (e.g. in segmentation stage) without
re-enrollment of registered users. While the extraction of
rather short (a few hundred bytes) binary feature vectors pro-
vides a compact storage and rapid comparison of biometric
templates, information loss is inevitable. This motivates a
fusion of comparators operating in image domain (e.g. im-
age metrics) and traditional HD-based comparators requiring
binary feature vectors. The contribution of this work is the
proposal of a fusion scenario combining image metrics and
traditional HD-based approaches. In contrast to common
believe that original iris textures exhibit too much variation
to be used directly for recognition we proof that (1) qual-
ity metric, interpreting iris textures as a noisy reproduction
of the reference sample, can be employed for recognition,
and (2) global features extracted by image metrics tend to
complement localized features encoded by traditional feature
extraction methods.

This paper is organized as follows: related work is re-
viewed in Section 2. Subsequently, the proposed fusion sce-
nario is described in detail in Section 3. Experimental results
are presented in Section 4. Section 5 concludes the paper.

2. RELATED WORK

In the context of iris biometrics, image quality metrics are
largely understood as domain-specific indicators, e.g. focus
assessment or measurement of pupil/iris diameter ratio, to
be considered for quality checks rejecting samples if insuffi-
ciently suited for comparison [4]. Such metrics have also been
applied for dynamic matcher selection in biometric fusion
scenarios [5], i.e. quality is employed to predict matching
performance and to select the comparator or adjust weight-
ing of the fusion rule. Our approach is different in employ-
ing general purpose image quality metrics and their ability to
measure the degree of similarity of image pairs if one of both
images is subjected to a (more or less severe) degradation in
quality. In our model, the degradation of a sample to be com-
pared is not caused by compression, but by biometric noise
factors (time, illumination, etc.).
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Fig. 1. Proposed Fusion Scenario: image quality metric-based scores are combined with Hamming distance-based feature-level
scores in order to obtain a final comparison score.

Information fusion in biometrics is an efficient means to
enhance the accuracy of a biometric system by employing
multiple modalities, sensors, or comparators [6]. Compared
to other types of fusion, score level fusion enables transparent
enhancement of biometric systems by combining the match-
ing scores of multiple comparators yielding a score vector
S = (s1, . . . , sm), which is combined using a fusion rule, such
as e.g. sum rule s =

∑m
i=1 si or product rule s =

∏m
i=1 si [7].

Park et al.[8] investigate this fusion type for local and global
Gabor feature-vector based algorithms and found their pro-
posed SVM-based fusion of HD scores to outperform each
single Gabor filter when restricting the features to reliable re-
gions. In previous work [9], we have investigated score level
fusion for combining best with worst HD-based alignment
of iris codes for enhanced iris matching. If comparators are
weakly dependent and still contain rich discriminative infor-
mation, the combined score can be expected to provide better
discrimination between genuine and imposter comparisons.
An essential step before employing such fusion rules is a nor-
malization of scores [6].

3. FUSION OF IRIS RECOGNITION ALGORITHMS
AND IMAGE QUALITY METRICS

The proposed fusion scenario is shown in Fig. 1. At authen-
tication, segmentation and pre-processing is performed on a
given pair of iris images. Subsequently, resulting iris textures
are compared applying a distinct image metric. The prelim-
inary comparison score, denoted by SM , is normalized and
fused with the according HD-based score, denoted by SHD ,
after feature extraction has been applied to both iris textures,
in order to obtain the final score SMHD . The biometric fu-
sion is performed applying sum-rule fusion [6], i.e. SMHD is
defined as,

SMHD =
1

2
(SM + SHD ). (1)

In the following subsections modules of the proposed sys-
tem, which comprise (1) segmentation and pre-processing, (2)
iris-biometric feature extractors, and (3) image metrics, are
described in detail. All of the applied image metrics1 are full

1Implementation available at www.wavelab.at/sources/VQI/,

reference metrics, meaning they utilize information from the
original and comparison image to calculate an assessment of
the visual similarity.

3.1. Pre-processing and Feature Extraction Algorithms

We apply multi-stage iris segmentation using a weighted ver-
sion of adaptive Hough transform for iterative iris center de-
tection at the first stage and pupillary and limbic boundary
detection by applying an ellipsopolar transform and assessing
gradient information for finding the second boundary based
on the outcome of the first [10]. After having obtained a
parametrization of inner and outer iris boundaries, the iris
texture is unwrapped using Daugman’s doubly dimensionless
representation [2] and enhanced using contrast-limited adap-
tive histogram equalization [11].

In the feature extraction stage we employ custom imple-
mentations of two different algorithms used to extract binary
iris-codes. The first one was proposed by Ma et al.[12].
Within this approach the texture is divided into 10 stripes to
obtain 5 one-dimensional signals, each one averaged from
the pixels of 5 adjacent rows, hence, the upper 512× 50 pixel
of preprocessed iris textures are analyzed. A dyadic wavelet
transform is then performed on each of the resulting 10
signals, and two fixed subbands are selected from each trans-
form. In each subband all local minima and maxima above
a adequate threshold are located, and a bit-code alternating
between 0 and 1 at each extreme point is extracted. Using
512 bits per signal, the final code is then 512×20 = 10240 bit.
The second feature extraction method follows an implemen-
tation by Masek2 applying filters obtained from a Log-Gabor
function. Here, a row-wise convolution with a complex Log-
Gabor filter is performed on the texture pixels. We use the
same texture size and row-averaging into 10 signals prior to
applying the one-dimensional Log-Gabor filter. The 2 bits of
phase information are used to generate a binary code, which
therefore is again 512× 20 = 10240 bit.

except for VIF for which we used MetriX MuX from
foulard.ece.cornell.edu/gaubatz/metrix mux.

2L. Masek: Recognition of Human Iris Patterns for Biometric Identifica-
tion, Master’s thesis, University of Western Australia, 2003
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3.2. Peak Signal to Noise Ratio (PSNR)

The PSNR is still widely used because it is unrivaled in speed
and ease of use.

The following steps are performed to calculate the PSNR.
Step 1: Calculate the mean squared error MSE = 1

WH ∗∑W
i=1

∑H
j=i(I(i, j)−O(i, j))2

Step 2: The PSNR is calculated:

PSNR = 10 log10

( M2

√
MSE

)
. (2)

3.3. Structural Similarity Index Measure (SSIM)

The SSIM by Wang et al.[13] uses the local luminance as well
as global contrast and a structural feature.

Step 1: Each image is transformed by convolution with a
11× 11 Gaussian filter.

Step 2: The luminance, contrast and structural scores can
be calculated and combined in one step as follows.

SSIM(I,O) =
(2µIµO + c1)(2σIO + c2)

(µ2I + µ2O + c1)(σ
2
I + σ2O + c2)

, (3)

where µI is the average pixel value of image I, σ2I is the vari-
ance of pixel values of image I and σIO is the covariance of
I and O. The variables c1 = (k1M)2 and c2 = (k2M)2, with
k1 = 0.01 and k2 = 0.03, are used to stabilize the division.

3.4. Local Edge Gradients Metric (LEG)

The image metric based on local edge gradients was intro-
duced by Hofbauer and Uhl [14] and uses luminance and lo-
calized edge information from different frequency domains.

Step 1: First the global luminance difference between I

and O id calculated as LUM(I,O) = 1−
√
|µ(O)−µ(I)|

M , where
µ(X) = 1

WH

∑W
x=1

∑H
y=1X(x, y), and X(x, y) is the pixel

value of image X at position x, y.
Step 2: One step wavelet decomposition with Haar

wavelets resulting in four sub images for each image X

denoted as X0 for the LL-subband, and X1, X2, X3 for LH,
HH and HL subbands, respectively.

Step 3:A local edge map is calculated for each posi-
tion x, y in the image, reflecting the change in coarse struc-
ture. LE(I,O, x, y) = max(0,EDC(I,O, x, y) − 6)/2, i.e.
LE = 1 if EDC = 8, LE = 0.5 if EDC = 7 and 0 oth-
erwise. Here EDC(I,O, x, y) =

∑
p∈N(x,y) ED(I,O, x, y, p),

whereN(x, y) is the eight neighborhood of the pixel x, y, with
ED(I,O, x, y, p) = 1 if edge directions for I and O match, i.e.
if I(x, y) < I(p) and O(x, y) < O(p) or I(x, y) > I(p) and
O(x, y) > O(p), otherwise ED(I,O, x, y, p) = 0.

Step 4: In order to assess the contrast changes a dif-
ference of gradients in a neighborhood is calculated by

LED(I,O, x, y) = 1
8

∑
p∈N(x,y)

(
1−

√
|LD(I,O,x,y,p)|

M

)2

,

with LD(I,O, x, y, p) = (O(x, y)−O(p))− (I(x, y)− I(p)).

Step 5: The edge score is calculated by combining local
edge conformity (LE) and local edge difference (LED) into

ES(I,O) =
4

WH

W
2∑

x=1

H
2∑

y=1

(
LE(I0, O0, x, y)∗

1

3

3∑
i=1

LED(Ii, Oi, x, y)
)
.

Step 6: The LEG visual quality index is calculated by
combining ES and LUM.

LEG(I,O) = LUM(I,O) ES(I,O). (4)

3.5. Edge Similarity Score (ESS)

The ESS was introduced by Mao and Wu [15] and uses local-
ized edge information to compare two images.

Step 1: Each image is separate into N blocks of size 8×8.
Step 2: For each image I a Sobel edge detection filter is

used on each block i to find the most prominent edge direc-
tion eiIand quantized into one of eight directions (each corre-
sponding to 22.5◦). Edge direction 0 is used if no edge was
found in the block.

Step 3: Calculate the ESS based on the prominent edges
of each block:

ESS =

∑N
i=1 w(e

i
I , e

i
O)∑N

i=1 c(e
i
I , e

i
O)

, (5)

where w(e1, e2) is a weighting function defined as

w(e1, e2) =

{
0 if e1 = 0 or e2 = 0

|cos(φ(e1)− φ(e2))| otherwise,

where φ(e) is the representative edge angle for an index e,
and c(e1, e2) is an indicator function defined as c(e1, e2) = 0

if e1 = e2 = 0 and c(e1, e2) = 1 otherwise. In cases where∑N
i=1 c(e

i
I , e

i
O) = 0 the ESS is set to 0.5.

3.6. Local Feature Based Visual Security (LFBVS)

The LFBVS was introduced by Tong et al. [16] utilizes lo-
calized edge and luminance features which are combined and
weighted according to error magnitude, i.e. error pooling.

Step 1: Separate an image I into N blocks BIi of size
16× 16.

Step 2: Calculate the average µ(BIi ) and standard de-
viation σ(BIi ) of the pixel luminance values in the given
block. Calculate the local luminance feature LUM(I,O, i) =

(|µ(BOi )− µ(BIi )|+ |σ(B
O
i )− σ(BIi )|) / 2Lmax.

Step 3: For each pixel in the macroblock (excluding bor-
ders) calculate the (luminance) edge directions δx(x, y) =

L(x+ 1, y)−L(x− 1, y), δy(x, y) = L(x, y + 1)−L(x, y − 1).
Generate a histogram HI

i [d] = A of cumulative edge ampli-
tude strength a =

√
δx(x, y)2 + δy(x, y)2 over edge direc-

tions d(8-bins for 360) for each block. And using the his-
togram calculate the local edge density feature ED(I,O, i) =∑8
d=1 |H

O
i [d]−HI

i [d]| /
∑8
d=1 max(HO

i [d], HI
i [d])
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Table 1. Obtained results for the proposed fusion scenario.

EER (%)
Ma et al. Masek PSNR SSIM LEG ESS LFBVS VIF

Ma et al. 1.43 1.46 1.56 1.53 1.32 2.51 2.01 1.65
Masek 1.77 1.97 1.72 1.58 2.43 2.12 1.78

PSNR 4.21 3.08 3.34 4.69 3.60 2.11
SSIM 3.40 3.40 4.51 2.71 2.18
LEG 3.99 5.76 3.46 2.10
ESS 9.61 4.90 2.20

LFBVS 5.54 1.86
VIF 2.06

Step 4: Calculate a local visual score incorporating local
luminance and edge density LV S(I,O, i) = 0.2LUM(I,O, i)+

0.8ED(I,O, i). Order the local visual features OLVS(I,O, j) =

LVS(I,O, ij) such that ∀x < ij LVS(I,O, x) ≤ LVS(I,O, ij)

and ∀x > ij LVS(I,O, x) ≥ LVS(I,O, ij).
Step 5: Weigh the ordered local visual feature scores to

further increase the prominent errors,

LFBVS(I,O) =

N∑
i=1

expi/N−0.5 OLVS(O, I, i) /

N∑
i=1

expi/N−0.5 .

3.7. Visual Information Fidelity (VIF)

The VIF by Sheikh and Bovik [17] uses a refined model which
starts with the modeling of the reference image using natural
scene statistics (NSS). Furthermore, the possible distortion is
modeled as signal gain and additive noise in the wavelet do-
main and parts of the HVS which have not been covered by
the NSS are modeled, i.e. internal neural noise is modeled
by using a additive white Gaussian noise model. While the
VIF can not be described in the available space the calcula-
tion roughly consists of the following steps.

Step 1: NSSs are calculated based on gaussian scale mix-
ture (GSM) model based on the wavelet domain.

Step 2: Calculate a model for the distorted image based on
the GSM model from the original image combined with signal
gain and additive noise in the wavelet domain (this compen-
sates for white noise and image blur in the image domain).

Step 3: Extend the model to include information from
HVS, i.e. optical point spread, contrast sensitivity and inter-
nal neural noise, which is not covered by the NSS model.

Step 4: Calculate the amount of the original signal, taking
into account different wavelet subbands, which can be recon-
structed from the distorted signal given the NSS and the HVS
model, this reconstructible fraction of the original signal is
termed VIF.

4. EXPERIMENTAL STUDY

Experiments are carried out on the CASIA-v3-Interval iris
database3 using left-eye images only. The database consists

3The Center of Biometrics and Security Research, CASIA Iris Image
Database, http://www.idealtest.org

of good quality 320×280 pixel NIR illuminated indoor im-
ages where the applied test set consists of 1307 instances.

Recognition accuracy is evaluated in terms of false none
match rate (FNMR) and false match rate (FMR). The FNMR
defines the proportion of verification transactions with truth-
ful claims of identity that are incorrectly rejected, and the
FMR defines the proportion of verification transactions with
wrongful claims of identity that are incorrectly confirmed
(ISO/IEC FDIS 19795-1). As score distributions overlap the
EER of the system is defined (FNMR = FMR). At all au-
thentication attempts 7 circular texture-shifts and according
bit-shift are performed in each direction for all comparators.
Image metric scores are normalized in a way that mean im-
postor scores are 0.5 and low scores indicate high similarity.
Obtained performance rates in terms of EERs for single and
paired combination of comparators are summarized in Ta-
ble 1. According ROC curves of individual image metrics,
feature extraction algorithms as well as selected fusion sce-
narios are plotted in Fig. 2. It is important to note, that all
combinations (IrisCode-Metric and Metric-Metric) represent
a challenging single-sensor multi-algorithm fusion scenario.

4.1. Combination of Image Metrics

Focusing on obtained EERs most individual image metrics
do not represent an alternative to traditional iris-based feature
extraction algorithms, see Table 1. While an exclusive appli-
cation of best image metrics yield EERs > 2% (see Fig. 2
(a)-(b)) traditional feature extraction algorithms obtain EERs
< 1.5% (see Fig. 2 (e)). However, as shown in Fig. 2 (c)-
(d) distinct combinations of image metrics yield significant
improvement in accuracy, e.g. a fusion of LFBVS and VIF
yields an EER of 1.86%.

4.2. Combination of Metrics and Traditional Algorithms

For the applied simple sum-rule, a combination of applied
feature extraction algorithms does not yield improvement
with respect to recognition performance, see Fig. 2 (e). In
addition, image metrics do not supplement traditional iris
recognition algorithms in general. While the incorporation of
most image metrics (e.g. PSNR, ESS and LFBVS) decreases
performance distinct image metrics represent adequate com-
plements (e.g. SSIM and LEG), see Table 1 and Fig. 2 (f)-(h).
In particular, combinations of the LEG metric and applied
feature extractors show significant improvements achieving
EERs of 1.32% and 1.58%, respectively. Obtained results ap-
pear promising since image metrics are applied without any
adaption using the most simple fusion rule to the proposed
application scenario, i.e. adjusted implementations of image
metrics are expected to further improve recognition accuracy.
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Fig. 2. Receiver Operation Characteristic (ROC) curves for image metric, traditional algorithms, and selected fusion scenarios.

5. CONCLUSION AND FUTURE WORK

In this paper a fusion of image metrics and traditional HD-
based comparators is presented. It is demonstrated that the
incorporation of distinct image metrics in a fusion scenario
is able to significantly improve recognition accuracy of iris
biometric systems.

Future work will comprise biometric fusions of sev-
eral image metrics and traditional biometric comparators
as well as an adaption of image metrics to biometric sys-
tems.Regarding security issues, image metrics will be as-
sessed for comparing iris images in encrypted domain.
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An Evaluation of Visual Security Metrics
Heinz Hofbauer, Andreas Uhl

Abstract—Visual security metrics are deterministic measures
with the (claimed) ability to assess whether an encryption method
for visual data is secure or not. These metrics are usually
developed together with a particular encryption method in order
to provide an evaluation of the encryption method based on the
visual output of the encryption scheme. However, visual security
metrics themselves are seldom evaluated and the claim to perform
as visual security metric is not tied to the specific encryption
method for which they were developed. In this paper we will
systematically evaluate these visual security metrics (along with
conventional image metrics used for the same task) for distinct
media encryption application scenarios and show that they are
not generally fit to perform their claimed task.

Index Terms—security metrics, image metrics, selective en-
cryption, confidence, partial encryption, sufficient encryption,
transparent encryption.

I. INTRODUCTION

The claim of visual security metrics (security metrics for
brevity) is usually the ability to assess the security of an
encryption method based on the output of the encryption of
visual data. In particular, that is the evaluation of an encryption
method based only on the visual output (the ciphertext), which
is either an image or video. While such metrics are often
created in conjunction with a specific encryption method and
tested, if at all, only for this encryption method, the claim to
perform as a security metric is usually universal. Furthermore,
regular image quality metrics, most frequently PSNR and
SSIM, are also utilized in literature to evaluate encryption
methods, e.g. [1], [2].

Regarding cryptographic security, Shannon’s work [3] on
security and communication shows that the highest security
is reached by applying a secure cipher to almost redundancy
free plain text. Current image/video codecs exploit redundancy
for compression and thus we can consider a bit stream to
be a redundancy free plain text in the sense of Shannon.
Thus, for maximal security, the encryption of the entire bit
stream with an state of the art cipher, i.e. AES, would suffice
(“conventional encryption”). However, there are well-founded
reasons not to stick to this approach, but to apply specifically
designed encryption routines:

I: The implementation of advanced application scenar-
ios where visual data has to be retained, such as transpar-
ent/perceptual encryption and privacy preserving encryption.
The goal of such applications can be different but directly
enforces certain quality restraints. Transparent encryption aims
at degrading the overall image quality to a certain extent.
Privacy preserving encryption aims at high quality overall
except where privacy is concerned, i.e. surveillance cameras
should provide an operator with a crisp image but should

The authors are with the Department of Computer Sciences, University of
Salzburg, e-mail: {hhofbaue, uhl}@cosy.sbg.ac.at

encrypt faces to preserve privacy, e.g. Dufaux and Ebrahimi
[4].

II: The preservation of properties and functionalities of
the bitstream, such as format compliance, scalability, stream-
ing/packetization, secure adaptation, fast forward, extraction
of subsequences, transcodability, watermarking, and error re-
silience.

III: The reduction of computational complexity (espe-
cially in the context of mobile computing).

In many of those specifically designed encryption routines,
techniques like Lightweight / Soft / Partial / Selective Encryp-
tion are employed, which achieve their respective advantages
with a loss in security / secrecy as compared to conventional
encryption. For example, in selective / partial encryption the
choice is made to keep information in plain text. Lookabaugh
et al. [5] showed that selective encryption is sound and
demonstrated its relation to Shannon’s work. However, Said
[6] showed that side information can compromise security.

In order to be able to discuss the exact notion of security
in such non-conventional encryption schemes, we need to dis-
tinguish distinct application scenarios of encryption schemes
for visual data:

a) Confidentiality Encryption: Means MP security (mes-
sage privacy). The formal notion is that if a system is MP-
secure an attacker cannot efficiently compute any property
of the plain text from the cipher text [7]. This can only be
achieved by the conventional encryption approach.

b) Content Confidentiality: Is a relaxation of confidential
encryption. Side channel information may be reconstructed or
left in plaintext, e.g. header information, packet length, but
the actual visual content must be secure in the sense that the
image content must not be intelligible / discernible [8].

c) Sufficient Encryption: Means we do not require full
security, just enough security to prevent abuse of the data. The
content must not be consumable due to high distortion (e.g.
for DRM systems) by destroying visual quality to a degree
which prevents a pleasant viewing experience or destroys the
commercial value. This implicitly refers to message quality
security (MQ), which requires that an adversary cannot re-
construct a higher quality version of the encrypted material
than specified for the application scenario [9].

d) Perceptual / Transparent Encryption: Means we want
consumers to be able to view a preview version of the video
but in a lower quality while preventing them from seeing a
full version. This for example can be used in a pay per view
scheme where a lower quality preview version is available
from the outset to attract the viewers interest, e.g., Li et al.
[10]. The difference between sufficient and transparent is the
fact that there is no minimum quality requirement for suffi-
cient encryption. Encryption schemes which can do sufficient
encryption cannot necessarily ensure a certain quality and are
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thus unable to provide transparent encryption.
Given these different application scenarios it is clear that

depending on the goal, a security metric has to fulfill dif-
ferent roles. For example, under the assumption of sufficient
encryption a given security metric would have to evaluate
which quality is low enough to prevent a pleasant viewing
experience. In contrast, for the transparent encryption case a
metric not only has to judge whether the quality of an image
or video is low enough, but also has to grade if the quality
is high enough to be useful to attract interest. When it comes
to content confidentiality the question of quality is no longer
applicable. Content confidentiality requires that image content
must not be identified by human or automated recongnition.
This requirement also has to be maintained for any part of
the image. Image metrics, in general, do not deal with such
questions but rate the overall image quality, the question of
intelligibility is usually not covered at all. A drastic example
would be an image where only a small part of the image is
partly visible. Classical metrics would judge the whole image
and consequently would attribute a high security, even though
a part of the image is still recognizable which contradicts
content confidentiality. Still, it has to be pointed out that
also content confidentiality can have different formings. To
prevent a face recognition scheme from working properly it
is sufficient to protect any facial information in a surveillance
video, while humans could still be identified in such a video
by using gait recognition. Furthermore, if the appearace of a
person has to be concealed entirely, a much stronger extent
of protection (i.e. higher security) is required. Finally, con-
fidential encryption cannot be solely assessed with security
metrics since the scope goes beyond assessing security based
on the visual appearance only. Furthermore, we should note
that the application of security metrics on video is performed
at a frame by frame basis in literature. We will adopt this
model but should note that for the discussion of confidential
encryption motion data is of importance, e.g. Hofbauer and
Uhl showed in [11] that a replacement attack combined with
motion information can reveal the content of a scene even
though the visual content of every frame is encrypted.

Consequently, depending on a given application scenario
different properties are required from a security metric and
different approaches to construct such a metric might per-
form better or worse for some applications scenarios. This
dependence on the evaluation goal of a security metric is
hardly ever discussed in the papers introducing a metric.
Sufficient and transparent encryption scenarios have a clear
and distinct link to the traditional notion of (low) visual
quality, while it is highly questionable or at least doubtful if
content confidentiality can be assessed by the classical quality
notion. While the lack of relation to spatial areas of most
security metrics could be compensated in the design to provide
locally varying results, the lack of relation to intelligibility in
general can probably not be easily resolved.

For both, security metrics and regular image metrics, in
literature we do not find any evaluation whether a given
metric can perform the claimed function or how such an
evaluation correlates to actual security. However, for regular
image metrics it is well known that the correlation with human

observations over the full range of possible quality (from high
to low quality) does not imply a good performance on a
given subset. More specifically, it was pointed out recently
by Hofbauer and Uhl [12] that most image metrics perform
very poorly for the low quality range. For security metrics,
not even this question has been covered so far.

In this paper we will try to remedy this situation and give
an overview of requirements regarding security goals as well
as evaluate the various metrics in relation to these goals.
However, we will not deal with every application scenario
equally explicitely. We will only make a first step to cover the
content confidentiality scenario. The main reason for this is a
lack of ground truth. It is not obvious how to generate gound
truth for this scenario since there is a disparity between how an
image metric works and what is necessary to evaluate content
confidentiality. Image metrics, and as an extension security
metrics, measure the quality of an image respective to human
judgement. This works well for high quality images but suffers
for low quality images where human observers can have diffi-
culties differentiating between the severity of an impairment.
Thus the methodology to systematically generate ground truth
based on human observation needs to be changed for content
confidentiality which is not in the scope of this paper. On the
other hand, for the image quality-related scenarios (sufficient
and transparent encryption), ground truth data is available, in
the form of image impairment databases with mean opinion
scores (MOS) based on a number of human observations.

In the following we will evaluate whether security met-
rics can actually be used to perform security assessment of
encrypted visual data. In order to do this we will give an
overview of security metrics used in literature in section II.
In section III we will describe what is expected of security
metrics and the methodology how security metrics can be
evaluated. In section IV we will present the actual evaluation
and section V will conclude the paper.

II. OVERVIEW OF SECURITY METRICS

In this section a brief overview of security metrics will be
given. The metrics discussed are taken from recent literature
and are specifically designed to ascertain whether the image
quality after encryption is sufficiently reduced. The metrics
given in this section are discussed as general security metrics,
i.e., not limited to the specific method with which they were
designed together. References to the original work will be
given for each security metric as well as some examples where
the metric fails to assess given example images as would be
expected from a general security metric. The SSIM and PSNR
are also included in this overview. Even though they were not
designed to be security metrics, they are frequently used as
such, e.g., [13], [14] (SSIM),[15], [16] (PSNR) and [1], [2]
(SSIM and PSNR).

All the following image metrics, with the exception of the
local entropy metric (LE), are full reference metrics, meaning
they utilize information from the original and comparison
(encrypted) image to calculate an assessment of the visual
similarity. The local entropy metric by Sun et al. is a no
reference metric, i.e. it utilizes only the impaired image to
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judge the resulting quality. By measuring entropy, LE can
also be interpreted to assess the encrypted image compared
to random noise (which exhibits maximal LE). Since all of
the given security metrics are proposed to be general we will
not differentiate between full- and non-reference metrics in
the following but compare them solely on the task they are
supposed to solve.

Considering the metrics’ design, the LE seems to be the
only one suited to cover content confidentiality. An image con-
sisting entirely of noise obviously satisfies the requirements
of content confidentiality. Thus, determining the difference to
noise by measuring entropy can be interpreted as measuring
the extent of security. In contrast, all other metrics determine
the difference to the original plaintext image, thus rather
correspond to the classical notion of quality.

Peak Signal to Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is still widely used
because it is unrivaled in speed and ease of use. However, it
is also well known that the correlation to human judgement
is somewhat lacking even for high and medium quality [17].
Figure 1 illustrates the performance of the PSNR metric on
samples from the IVC-SelectEncrypt [18], [19] database (see
section III).

(a) 24.4566 (b) 24.4767 (c) 33.2437

Fig. 1. PSNR metric scores for images from the IVC-SelectEncrypt database.
According to PSNR images (a) and (b) are of the same quality and (c) is of
much higher quality, i.e. less secure than (a) and (b).

Structural Similarity Index Measure (SSIM)

The structural similarity index measure (SSIM) by Wang
et al. [20] extracts three separate scores from the image and
combines them into the final score. First the visual influence
is calculated locally then luminance, contrast and structural
scores are calculated globally. These separate scores are then
combined with equal weight to form the SSIM score. Figure 2
illustrates the performance of the SSIM metric on samples
from the IVC-SelectEncrypt [18], [19] database.

(a) 0.568381 (b) 0.561515 (c) 0.293894

Fig. 2. SSIM metric scores for images from the IVC-SelectEncrypt database.
According to SSIM images (a) and (b) are of the same quality and (c) is of
much lower quality, i.e. more secure than (a) and (b).

Edge Similarity Score (ESS)

The edge similarity score (ESS) was introduced by Mao
and Wu [21] and uses localized edge direction information
to compare two images. Figure 3 illustrates the performance
of the ESS metric on the foreman sequence when encryption
according to [22] is applied in comparison to white noise.

(a) Original (b) Processed

(c) White noise
(0.273534)

(d) Extracted
(0.053214)

Fig. 3. ESS comparison for frame 80 of the foreman sequence (a). ESS judges
the white noise (c) to be of higher quality than the residual information from
the encrypted frame (d). In order to show the amount of information actually
retained in the encrypted frame a post processed version is also shown (b).

Luminance Similarity Score (LSS)

The luminance similarity score (LSS) was introduced by
Mao and Wu [21] and uses localized luminosity information
to compare two images. Figure 4 illustrates the performance
of the LSS metric on the foreman sequence when encryption
according to [23] is applied in comparison to noise.

(a) Noise (-1.3080) (b) Extracted (-1.6388) (c) Original

Fig. 4. LSS comparison for a frame of the foreman sequence (c). LSS judges
the noise (a) to be of higher quality than the residual information from the
encrypted frame (b).

Neighborhood Similarity Degree (NSD)

The neighborhood similarity degree metric (NSD), intro-
duced by Yao et al. [24], uses local pixel similarity correlation
between original and impaired image. The NSD depends on
two parameters, one to define the region for pixel similarity
correlation (d) and one to define the similarity threshold (m).
The parameters m and d were set to the same values as in
the experiments in [24], i.e., m = 5, d = 3, border extension
is done by repeating the last border pixel. Figure 5 illustrates
the performance of the NSD metric on samples from the IVC-
SelectEncrypt [18], [19] database.
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Local Entropy (LE)

The local entropy metric was introduced by Sun et al. [25]
(LE), it is a no reference metric operating only on an impaired
image. The LE metric uses the average of normalized localized
entropy scores, on 8 × 8 blocks, as image quality predictor.
Figure 6 illustrates the performance of the LE metric on
samples from the IVC-SelectEncrypt [18], [19] database.

Local Feature Based Visual Security (LFBVS)

The local feature based visual security metric (LFBVS) was
introduced by Tong et al. [26] and utilizes localized edge
and luminance features which are combined and weighted
according to error magnitude, i.e. error pooling. Figure 7
illustrates the performance of the LFBVS metric on the silent
sequence when encryption according to [22] is applied in
comparison to white noise.

From the description of the various security metrics it can
be seen that a wide range of approaches exist, from metrics

(a) 0.066527 (b) 0.068766 (c) 0.111781

Fig. 5. NSD metric scores for images from the IVC-SelectEncrypt database.
According to NSD images (a) and (b) are of the same quality and (c) is of
much lower quality, i.e. more secure than (a) and (b).

(a) 0.039396 (b) 0.039555 (c) 0.045168

Fig. 6. LE metric scores for images from the IVC-SelectEncrypt database.
According to LE images (a) and (b) are of the same quality and (c) is of
much lower quality, i.e. more secure than (a) and (b).

(a) Original (b) Processed

(c) White noise
(0.730991)

(d) Extracted
(0.757152)

Fig. 7. LFBVS comparison for frame 80 of the silent sequence (a). LFBVS
judges the residual information from the encrypted frame (d) to be about
the same as the information contained in white noise (c). In order to show
the amount of information actually retained in the encrypted frame a post
processed version is also shown (b).

targeting signal properties, e.g. PSNR which targets noise,
to LE which targets local entropy, metrics which use higher
level information, e.g. NSD or ESS which use a form of
object detection (mostly based on edges), to metrics which use
information about he HVS to improve their performance, e.g.
SSIM or LFBS which use simulation of the fovea centralis
and error pooling respectively. However, for every security
metric the accompanying figure demonstrates a fault in the
performance of the given metric. Such examples can be found
for every metric of course, the question we will try to answer
in the following sections is whether the demonstrated fault is
singular or systemic.

III. EVALUATION METHODOLOGY

In this section we will outline the evaluation methodology,
the reason to use this methodology, and the application sce-
nario which can be assessed employing a certain methodology.
A discussion of desired outcome from these test for security
metrics will also be given. This section is the guideline of how
the security metrics and image metrics are evaluated for the
use as security metrics in section IV.

A. Comparison to Regular Quality Metrics

In order to gauge the effectiveness of a dedicated security
metric it is useful to compare them to regular metrics. If
the security metrics improve on the regular image metrics
in some aspect regarding the security considerations then the
security metric is worthwhile even if a regular image metric
outperforms it in quality control tasks. A second reason to
include those metrics is to gauge whether they can be used
as security metrics. In order to facilitate a fair comparison,
three additional recent metrics are chosen (in addition to SSIM
and PSNR which are often used as security metrics as well).
The local edge gradient image metric (LEG) by Hofbauer and
Uhl [27] shows a good correlation with human judgement and
is reasonably fast to compute such that it can be used even
under time constraints. The visual information fidelity (VIF)
by Sheikh and Bovik [28] and CPA1 by Carosi et al. [29]
outperform the SSIM and LEG in regard to correlation with
human judgement but are a lot slower to compute [27].

B. Application Domain

Frequently security metrics are applied on a direct recon-
struction of the encrypted bitstream. This can have adverse
effects since encryption introduces noise which can hide plain
text data and consequently a security metric might judge
that an encryption method is more secure then it actually
is. There are a number of options how a security metric can
be applied as illustrated in fig. 8. All security metrics under
evaluation are applied on a direct reconstruction (decoding) of
the encrypted bitstream (which we will denote as encrypted
domain) by the authors in the respective original papers. The
other options would be to attack the encryption method in a
way which does not break it but reduces the obfuscation of
the plain text data in the encrypted domain (denoted extracted
in the figure). Such attacks usually utilize knowledge about
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the bitstream rather than the encryption method (other than
location), typical attacks would be error concealment and
replacement attacks against selective encryption schemes [30],
[31]. Another possibility would be to utilize post processing
to further help the metric detect residual information (denoted
processed in the figure).

Original

Encrypted Extracted Processed

Security Metric

Fig. 8. The possible domains which can be used by a metric to compare to an
original image. Either the direct output of an encrypted bit stream for format
compliant encryption or an extraction of the plain text data which minimizes
the disruptive effect of the encrypted data on the resulting bit stream. Another
possibility would be post processing to further accent the residual plain text
data contained in an image.

In the evaluation we only handle the difference between se-
curity metrics applied directly in the encrypted domain versus
application in the extracted domain. The post processing step
is only provided to better highlight the information remaining
in an image. It cannot be directly used as an application
domain since the post processing step is either specific to the
encryption, in which case it should be included in the attack,
or specific to the metric, in which case it should be included
in the security metric. Post processing in general can influence
different metrics in different ways, an example of this is given
in fig. 9 where the post processing increases ESS and at the
same time decreases the SSIM.

Original/ Metric Extraction Processed

ESS 0.053214 0.339692
SSIM 0.476891 0.269659

Fig. 9. An example of how post processing influences different metrics.

In order to test whether a security metric can operate in the
encrypted domain a number of well known video sequences
have been encrypted for three target qualities, utilizing ECBZ
encryption methods described in [22]. To generate the different
target qualities the selective encryption was applied to either
all I-frames (low quality), low frequency bands of all frames
(medium quality), and high frequency bands of all frames
(high quality). Figure 10 illustrates the quality targets of the
encryption process. The targets where chosen to contain high,
medium and low residual information. Under the assumption
that a security metric can operate in the encrypted domain it
should be able to reliably order the encrypted frames of each

sequence for every sequence from highest to lowest quality.

Domain Quality

High Medium Low

Encryption

Extraction

Processed

Fig. 10. A sample of the quality ordering test set based from the foreman
sequence. Samples from the high, medium and low quality sequences are
shown in the encryption, extraction and processed domain.

This evaluation consists of two comparisons: For each frame
of each sequence the security metric must do two comparisons,
high versus medium and medium versus low quality. Results
of this ordering can be averaged over each sequence in order
to get the number of correct orderings. Results around 50% are
akin to random decisions while results close to 100% and 0%
show a strong ability to order the encrypted images correctly
and give the direction of the ordering. The reason why both
100% and 0% are valid orderings is because image metrics
can either measure similarity of images, i.e., quality metrics,
or the difference between images, i.e., impairment metrics.

Furthermore, since the low quality range chosen is in (or
at least close to) the domain of content confidentiality this
setting also serves as an indication whether an image metric
might be useful for content confidentiality. While a good
performance on this evaluation does not necessarily mean a
image metric is qualified for content confidentiality, a low
performance is a strong indicator that the metric is unfit for
this task. Based on the information which parts of the data
have been encrypted and the entirely evident differences in
visual appearance, ground truth is out of question here.

C. Correspondence to HVS: Confidence

Besides the encryption application scenarios where a certain
quality is required (sufficient and transparent encryption),
further examples for the importance of the quality notion are
watermarking where the resulting quality should not be below
a certain threshold, and of course, lossy compression. How-
ever, the notion of quality in this cases is not as straightforward
as it seems. On the one hand we use the term quality in the
context of the human visual system (HVS), i.e. how a person
consuming the content would judge the quality. On the other
hand, the term quality can refer to the score returned by a
(security) metric which is tied to the quality in the HVS sense.
This relation is not exact and it is not inherently clear how to
choose a metric which correlates to the HVS quality which is
targeted, although in practice algorithm 1 is usually applied.
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Algorithm 1 Method for finding a target metric score based
on a target HVS quality.
1: Chose a source image.
2: Alter the image until it fits the perceived target quality.
3: Apply the security metric on the altered and original

image, the resulting metric score is the target quality.
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Fig. 11. Illustrations of zero false negative Vmin(D), zero false positives
Vmax(D) and confidence CD for a MOS value of D = 3 is shown based
on the IVC-SelectEncrypt database and the LEG metric.

While this results in a target quality which can be used, we
know nothing about how well this score actually reflects the
human judgement, since it is well known that the correlation
between human judgement and image metrics is not perfect. In
other words, how confident can we be in the choice of image
metric score in relation to the perceived quality?

In order to evaluate this, well known databases which
contain impaired and encrypted images and the perceived
quality, in the form of mean opinion scores (MOS), will be
used. The databases contain a set of points p representing
impaired images with associates values pv for metric value
and pd for MOS value, ordered from lowest to highest quality.
Based on a target MOS quality score D two values can be
calculated, fig. 11 illustrates this.

Zero false negative: Vmin(D) refers to the metric value
for which the following holds:

pd > D =⇒ pv > Vmin(D). (1)

That is if the metric score is below Vmin(D) we are sure that
the perceived quality is below the MOS quality score (D).

Zero false positives: Vmax(D) refers to the metric value
for which the following holds:

pv > Vmax(D) =⇒ pd > D. (2)

That is if the metric score is above Vmax(D) we are sure that
the perceived quality is above the MOS quality score (D).

This also means that if a target metric quality score ptv is
obtained as given by algorithm 1 we are assured that

Vmin(D) ≥ ptv ≥ Vmax(D). (3)

Thus we can define the confidence CD for a metric score
based on a given perceived quality D as CD := |Vmax(D) −
Vmin(D)|. A confidence score over the full perceived quality

range can be given as

C =
1

#S

∑
D∈S

CD, (4)

where S is the set of distinct MOS samples from the database.
Also note that we can interpret C as µD∈S(CD) and can

also calculate σD∈S(CD). The reason for calculating σ is to
estimate how stable the confidence range is over the whole
range of visual quality. This has to be taken into account since
it is well known that image metrics exhibit different correlation
to human judgement depending on the quality range, see e.g.
Hofbauer and Uhl [12].

For security metrics, and image metrics in general, the lower
µ(CD) and σ(CD) the better algorithm 1 can be used to estimate
a target image quality metric score.

Furthermore, since the signal is reduced to statistical com-
ponents it is also of interest which shape the signal takes
in conjunction with µ(CD) and σ(CD). The shape, together
with the monotonicity (see subsection III-D), can be used to
indicate a possible application scenario for a security metric,
essentially whether the security metric can be used for all
quality ranges or only on high/low quality applications.

By shape of the signal we mean the distribution of outliers,
where we define outlier based on the z score1 of a datapoint
D as

zD =
CD − µ(CD)

σ(CD)
. (5)

We will define high outliers as outliers with zD < −1 and
likewise low outliers as outliers with zD > 1, indicating
a higher and lower confidence respectively. Based on the
distribution of high and low outliers we can specify the shape
of the signal as follows.

• A signal is stable if there are no outliers, i.e. −1 ≥ zD ≥ 1

holds for all D ∈ S.
• A signal is biased if there exists a Dt such that zD <

−1 =⇒ D < Dt and zD > 1 =⇒ D > Dt or zD <

−1 =⇒ D > Dt and zD > 1 =⇒ D < Dt. If a low
D indicates a high quality we specify the shape to be
biased towards high quality if zD < −1 =⇒ D < Dt

or biased towards low quality if zD > 1 =⇒ D < Dt.
If a low D indicates low quality the definition is switched
accordingly.

• A signal which is neither stable nor biased is considered
unstable.

D. Correspondence to HVS: Monotonicity

What is required from image metrics in general is mono-
tonicity with regard to human observations. That is, if an image
metric decides that image A is of better quality than image B
a human observer should also prefer image A over image B.
This is akin to correlation but since the human visual system
is not a linear system regular linear correlation is meaning-
less. Thus in order to ascertain the correlation of an image
metric and human observations the notion of monotonicity is
utilized. Rank order correlation, which essentially judges the

1NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.
gov/div898/handbook/, April 2012
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monotonicity of the signals, is most often used, usually in
the form of Spearman’s rank oder coefficient (SROC) [32] or
Kendall Tau (τ ) [33].

Hofbauer and Uhl [12] pointed out that the correlation of
an image metric over the full quality range does not imply
that a high correlation is achieved for the low quality range.
This is especially important for security metrics since certain
application scenarios specifically target the low quality range
of images, e.g. sufficient encryption. We cannot confine the
evaluation to the low quality range since there are also ap-
plications for higher quality, i.e. transparent encryption. Also
note that this is a dual property to the confidence in the sense
that for the confidence we evaluate the relation of choosing a
MOS value and evaluating the range of metric scores which
can potentially fall onto this MOS value. Monotonicity is
evaluated on specific sets of impairment and looks at how
well an increase in metrics score reflects an increase in the
MOS.

To properly evaluate security metrics for all encryption
scenarios we will evaluate them using a high quality, a low
quality and a full quality range dataset. The reason to also
include the high quality range is to be inclusive in terms of
possible application scenarios. For example the upgrade to
high definition quality from PAL/NTSC quality is just as valid
in terms of application scenarios as from hand held quality to
PAL/NTSC quality. As basis for the evaluation we will use
well known databases which contain mean opinion score of
human judgement over different impairments. The SROC will
be used for evaluation purpose, as is current best practice for
metric evaluation.

From security metrics we would expect a high correlation
with human judgement for the low quality range. While the
low quality range is often the target of encryption some
transparent encryption schemes could target a higher quality,
consequently, a good correlation with human judgement on
the high quality range is also desirable.

IV. EVALUATION

In this section we will present the results of the evaluation
process as detailed in section III. Each evaluation will be lead
with a short description of the test data, contain the actual data
from the evaluation and a discussion.

With respect to implementations we used our own code2

for LSS, ESS, LE, NSD, LFBVS, SSIM and PSNR. For the
VIF we used the implementation from the “MeTriX MuX
Visual Quality Assessment Package”3, version 1.1. For the
CPA1 we used the matlab implementation provided by Florent
Autrusseau4.

A. Evaluation of the Application Domain

In order to evaluate the extraction versus encrypted domain
applicability of metrics we used a number of standard se-
quences: akiyo, bus, coastguard, container, flower, foreman,

2http://www.wavelab.at/sources/VQI
3http://foulard.ece.cornell.edu/gaubatz/metrix_mux/
4http://www.irccyn.ec-nantes.fr/~autrusse/Softwares.html

mobile, news, silent, tempete and waterfall5. The ordering as
discussed above is performed on a frame by frame basis and
averaged over all the frames in a given sequence. Additionally
we provide the average over all sequences in order to simplify
the comparison. Table I shows the results for the encryption
and extraction domain. The optimal result would be for a
metric to perform equally well independent of the application
domain.

From the overall averages it can be clearly seen that the
performance in the encrypted domain is worse than in the
extraction domain with the exception of LE. While the LE
performs better in the encrypted domain than in the extraction
domain the performance is still very low. In the extraction
domain most metrics still perform poorly, only the LEG,
SSIM, VIF, CPA1 and to a lesser degree the ESS exhibit good
performance. Aside from the ESS all other security metrics
perform extremely poorly. From this we can easily see that the
application in the encrypted domain should not be performed
(although it is routinely done in all corresponding papers).

When looking closer at the detail information from the
extraction domain some interesting effects can be observed.
While the performance of the LEG, SSIM and VIF are
persistently good we can also observe that there are cases
where even a metric which shows good performance can have
problems. In the actual case the performance of the ESS is
significantly reduced for the waterfall sequence and the CPA1
shows poor performance on the bus sequence. It stands to
reason that there are other, untested, sequences which would
lead to similar reduced performance for the LEG, SSIM and
VIF. Another noteworthy fact is the appearance of 50% scores,
in all such cases one of the comparisons always yielded
the correct result and one always the incorrect result. In the
case of the LE for example the high quality was consistently
and correctly rated higher than the medium quality, but the
low quality was also consistently and incorrectly rated higher
than the medium quality resulting in the overall bad score.
A somewhat similar case can also be observed for LSS and
PSNR. The PSNR rated the foreman sequence consistently and
correctly in order of high, medium, low quality but reversed
the order for the container sequence, i.e. the ordering was low,
medium, high.

B. Evaluation of Confidence

In order to evaluate the confidence, databases with either
pertinent content, i.e. encrypted images, or a large dataset
of distortions are optimal. The IVC-SelectEncrypt database
[18], [19] contains various examples of JPEG 2000 transparent
encryption and is an obviously useful tool for the evaluation of
confidence regarding encrypted images. It is the only database
available containing encrypted visual data and correspond-
ing MOS. The test sets contained in the IVC-SelectEncrypt
database (and their abbreviation) are traditional encryption
(trad), truncation of the code stream (trunc), window encryp-
tion without error concealment (iwind_nec), window encryp-
tion with error concealment (iwind_ec), and wavelet packet
encryption (res), for detailed information see Stütz et al. [19].

5Available for example at http://media.xiph.org/video/derf
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TABLE I
RESULTS FOR THE ORDERING OF HIGH VERSUS MEDIUM AND MEDIUM VERSUS LOW QUALITY SEQUENCES IN THE ENCRYPTION AND EXTRACTION

DOMAIN. THE AVERAGES OVER ALL THE FRAMES IN A SEQUENCE AS WELL AS THE AVERAGE OVER ALL SEQUENCES IS SHOWN PER IMAGE METRIC.

Results for the Encryption Domain

LEG SSIM LSS ESS PSNR LFBVS LE NSD VIF CPA1
akiyo 16.80 % 50.00 % 49.61 % 44.14 % 52.73 % 50.00 % 60.94 % 48.05 % 44.92 % 49.61 %
bus 39.84 % 38.28 % 40.23 % 33.20 % 55.47 % 51.56 % 89.45 % 42.58 % 38.28 % 25.00 %
coastguard 50.00 % 39.06 % 33.98 % 43.36 % 58.20 % 58.98 % 75.39 % 42.19 % 50.78 % 25.39 %
container 24.61 % 48.44 % 20.70 % 39.06 % 34.77 % 50.00 % 77.73 % 56.25 % 58.59 % 3.52 %
flower 19.14 % 42.97 % 52.73 % 41.02 % 44.53 % 48.83 % 99.61 % 39.84 % 48.83 % 39.45 %
foreman 28.91 % 48.05 % 49.22 % 41.02 % 50.78 % 50.39 % 54.69 % 45.31 % 50.00 % 48.05 %
mobile 33.98 % 48.05 % 50.00 % 30.47 % 45.70 % 51.17 % 68.75 % 49.22 % 45.31 % 47.27 %
news 42.97 % 50.00 % 39.45 % 41.80 % 74.22 % 50.00 % 50.00 % 45.70 % 36.33 % 49.61 %
silent 26.95 % 33.20 % 24.22 % 10.16 % 25.00 % 60.16 % 99.22 % 37.50 % 32.03 % 14.84 %
tempete 41.41 % 48.05 % 50.00 % 39.45 % 50.00 % 50.00 % 74.22 % 48.05 % 44.92 % 46.48 %
waterfall 42.19 % 49.22 % 48.83 % 46.09 % 71.48 % 50.78 % 53.91 % 51.17 % 49.22 % 49.61 %

average 33.35 % 45.03 % 41.73 % 37.25 % 51.17 % 51.99 % 73.08 % 45.99 % 45.38 % 36.26 %

Results for the Extraction Domain

LEG SSIM LSS ESS PSNR LFBVS LE NSD VIF CPA1
akiyo 100.00 % 100.00 % 51.56 % 94.14 % 100.00 % 50.00 % 50.00 % 50.00 % 94.53 % 9.38 %
bus 99.61 % 100.00 % 51.17 % 96.88 % 99.22 % 50.00 % 50.00 % 46.09 % 98.05 % 23.44 %
coastguard 100.00 % 100.00 % 50.78 % 99.22 % 99.61 % 45.70 % 50.00 % 24.61 % 100.00 % 0.78 %
container 100.00 % 100.00 % 100.00 % 94.14 % 0.00 % 50.00 % 50.00 % 50.00 % 100.00 % 0.39 %
flower 100.00 % 100.00 % 95.31 % 92.58 % 6.25 % 41.80 % 50.00 % 47.27 % 98.44 % 9.38 %
foreman 100.00 % 100.00 % 53.12 % 99.61 % 50.00 % 50.00 % 50.00 % 50.00 % 99.61 % 0.00 %
mobile 98.44 % 100.00 % 92.19 % 97.66 % 43.36 % 50.00 % 50.00 % 41.02 % 98.44 % 1.95 %
news 100.00 % 100.00 % 50.00 % 99.61 % 100.00 % 50.00 % 50.00 % 50.00 % 99.61 % 0.00 %
silent 100.00 % 100.00 % 90.23 % 98.05 % 57.81 % 50.00 % 50.00 % 50.00 % 100.00 % 0.00 %
tempete 100.00 % 100.00 % 57.03 % 99.22 % 100.00 % 50.00 % 50.00 % 48.05 % 100.00 % 0.00 %
waterfall 95.70 % 99.22 % 69.53 % 82.81 % 92.97 % 50.00 % 50.00 % 24.61 % 98.05 % 0.78 %

average 99.43 % 99.93 % 69.18 % 95.81 % 68.11 % 48.86 % 50.00 % 43.79 % 98.79 % 4.19 %

However, the IVC-SelectEncrypt database has a rather small
set of impairments, five per test set, and is focused on JPEG
2000 only.

In order to get a more diverse view on the confidence of
metrics we utilize the LIVE database [34] to supplement the
IVC-SelectEncrypt database of encrypted images. While the
LIVE database does not contain encrypted images the quality
range of images contained in the LIVE database reaches
from high to low quality which makes it at least relevant
for transparent encryption where a certain target quality is
required. Furthermore, the low quality range of the LIVE
database displays strong distortions an can be equated to
encrypted images in the sense that strong distortions mask
a lot of the information contained in an image. Consequently,
the distorted images can be used to assess how well a metric
can identify information contained in a distorted/encrypted
image, which is exactly the property wanted from security
metrics. An example of these strong distortions are given in
fig 12, which contains an encrypted image from the IVC-
SelectEncrypt database as well as heavily distorted versions
of images from the LIVE database. These examples show
that the LIVE database contains not only images which are
similar to the IVC-SelectEncrypt database in terms of content
masking but also image which are clearly in the quality realm
of sufficient encryption. The test sets contained in the LIVE
database (and their abbreviation in plots and figures) are JPEG
2000 compression (jp2k), JPEG compression (jpeg), white
noise (wn), Gaussian blur (gblur), and bit errors in JPEG2000

LIVE (jp2k) LIVE (fastfading) LIVE (jpeg)
DMOS=91.372 DMOS=104.7 DMOS=108.77

LIVE (wn) LIVE (gblur) IVC (truncation)
DMOS=111.77 DMOS=93.409 DMOS=1

Fig. 12. The lowest quality images of each test set in the LIVE database as
well as one of the lowest quality images from the IVC-SelectEncrypt database.

bit stream transmission over a simulated fast fading Rayleigh
Channel (fastfading), for detailed information see Sheikh et al.
[35].

While the TID database [36]also has a huge number of
observer scores and distortion types it also has a severe
drawback. Due to the evaluation process a given distortion
type does not necessarily span the whole range of MOS
values which would result in a non-uniform evaluation of
confidence over the MOS range. Thus only the LIVE and
IVC-SelectEncrypt databases are used for the evaluation of
confidence.

Figure 13 shows the detailed evaluation of confidence on the
LIVE database. For each metric the figure presents a scatter
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plot of MOS and metric values, the bounding curves Vmin(D)

and Vmax(D) as well as a plot of the local confidence value
CD. Table II gives the confidence score values µ(CD) and
σ(CD) for each metric on the LIVE database. In order to make
the confidence scores comparable a pseudo normalization was
used. Bounded metrics are normalized and unbounded metrics,
e.g., PSNR, are normalized by mapping the range of metric
score actually occurring on the database into unity range. For
the calculation of the signal shape the leading and trailing 10%
of the DMOS range where not taken into account because at
the high and low ends of the DMOS the difference in metric
scores is limited due the boundary of the metric range, see
figure 13, which would result in false outliers. The shape was
calculated, like µ(CD) and σ(CD), on pseudo normalized local
confidence value CD. In figure 13 the outliers are indicated
by down and up arrows for high and low quality outliers,
respectively.

For the IVC-SelectEncrypt database the accordant plot and
confidence scores are given in fig. 14 and table III, respec-
tively. Notice that while a MOS score of 0 is high quality on
the LIVE database a MOS score of 0 represents low quality
on the IVC-SelectEncrypt database.

When it comes to confidence we can safely state that none
of the metrics show overall good performance, i.e. none of the
metrics are stable with a low µ(CD) and σ(CD). However for
certain test sets there are metrics with good performance, the
CPA1 on the IVC-SelectEncrypt test set shows exceptionally
high confidence and is stable. The CPA1 metric on the LIVE
database however shows extremely poor performance.

Furthermore, µ(CD) and σ(CD) alone cannot properly pre-
dict the performance of a metric unless it is stable. But µ(CD)

is a good overall estimation and σ(CD) together with signal
shape is an indicator for the magnitude of the bias of the signal
shape. As an example for this compare LEG and SSIM: While
the LEG shows better overall µ(CD) and σ(CD) the SSIM is
biased much more than the LEG, i.e. the SSIM outperforms
the LEG where its bias is, while the LEG outperforms the
SSIM outside of the bias. This behaviour is clearly reflected
when the σ(CD) is considered in conjunction with the shape,
i.e. even though the LEG is biased due to the small σ(CD)

we can deduct that the bias is far smaller than the bias of the
SSIM which shows a high σ(CD).

A similar conclusion can be drawn for the unstable shape.
A metric with an unstable shape and a high σ(CD) will have
much more severe outliers than one with a low σ(CD). This
behaviour is nicely illustrated by the PSNR, although unstable,
the magnitude of the outliers should be relatively small since
the PSNR shows a low σ(CD), which is exactly the behaviour
shown in the plots of figure 13 and 14.

For a stable shape the µ(CD) becomes more important since
it shows where the stable part of the confidence lies. The LE
metric on the IVC-SelectEncrypt database is a prime example
of this: While it is stable, the actual confidence score shows
that it is stable in the sense that it exhibits exceedingly poor
performance over the whole quality range.

Regarding confidence values and shape it can be seen from
tables II and III that metrics perform differently on different
test sets. If this is the case the worse value should be taken into

account when it comes to overall performance. What is also
noticeable from the two tables is the fact that the evaluated
image and security metrics are more often biased towards the
high quality range. Indeed on the IVC-SelectEncrypt database,
which is the actual encryption database, not a single metric is
biased towards the low quality range. Furthermore, the metrics
biased towards the low quality metric range on the LIVE
database, i.e. LEG, VIF and LFBVS, are all biased towards
high quality on the IVC-SelectEncrypt database, and should
thus be considered unstable overall.

To sum up the findings regarding the confidence of the
metrics we can state the following: First, the LE, LSS and
CPA1 show extremely poor performance overall. While the
CPA1 performs exceptionally well on the IVC-SelectEncrypt
database it performs very poorly on the LIVE database, so
overall the performance of the CPA1 is not good.

Second, the LEG, VIF, ESS, LFBVS and PSNR, while not
stable, exhibit a low σ(CD) and are thus closest for being
considered good metrics on the whole quality range. However,
in each case the µ(CD) is overall relatively high, at least from
a security standpoint, and thus could use some improvement,
or replacement.

Third, the SSIM and NSD show a strong bias towards the
high quality range. While the confidence for these metrics is
overall not good the confidence on the high quality range
is actually quite good. Consequently, when the application
scenario is known to target the higher quality range, e.g.
transparent encryption, these metrics should be considered.

C. Monotonicity for Low Quality Images
The monotonicity of an image metric over the MOS for

the full quality range is what defines the quality of an image
metric. However, for transparent encryption and evaluation of
image distortion due to encryption it is important that a given
metric has good monotonicity properties on the lower quality
range rather than the overall quality range. It is well known,
c.f. Hofbauer et al. [12], that this can be a problem so it is
necessary to study this in more detail.

The absolute SROC values for the test sets of the LIVE
database are given in table IV(a) for the full quality range,
the low quality range and the high quality range. In the table,
high, i.e. SROC > 0.9, (bold) and unsatisfactory, i.e. SROC
< 0.5, (underlined) SROC scores are marked for each test set.
For the IVC-SelectEncrypt database the same information is
given in table IV(b).

In order to better compare the difference in high, low
and overall rank order correlation for a given test set and
database a graphical representation of the relation is given
in table IV for the LIVE and IVC-SelectEncrypt databases.
For each combination of test set and metric the graphical
entry displays the range of possible SROC as a dark gray
background, SROC= 0 at the bottom and SROC= 1 at the
top. The light gray background bar shows the SROC value for
the full quality range while the smaller bars give the SROC
for high quality, green bar on the left, and low quality range,
orange bar on the right.

What can be directly seen is that the overall performance
of a metric does not imply a good performance for either
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Fig. 13. Confidence Plots for LIVE database for the different image metrics. The plot shows the scatter plot for the MOS and metric score pairs, the plot
of Vmin(D), Vmax(D) and CD .

TABLE II
AVERAGE AND STANDARD DEVIATION OF NORMALIZED CONFIDENCE AND SIGNAL SHAPE ON THE LIVE DATABASE.

SSIM LEG VIF CPA1 LSS ESS LFBVS LE NSD PSNR
µ(CD) 0.357 0.291 0.285 0.431 0.415 0.300 0.370 0.906 0.537 0.265
σ(CD) 0.225 0.070 0.110 0.109 0.159 0.133 0.071 0.069 0.277 0.038
Signal Shape Bias High Bias Low Bias Low Bias High Bias High Bias High Bias Low Bias High Bias High Unstable

TABLE III
AVERAGE AND STANDARD DEVIATION OF NORMALIZED CONFIDENCE AND SIGNAL SHAPE ON THE IVC-SELECTENCRYPT DATABASE.

SSIM LEG VIF CPA1 LSS ESS LFBVS LE NSD PSNR
µ(CD) 0.319 0.268 0.277 0.119 0.374 0.168 0.273 0.540 0.394 0.196
σ(CD) 0.226 0.077 0.098 0.066 0.173 0.090 0.139 0.107 0.274 0.063
Signal Shape Bias High Bias High Bias High Stable Bias High Bias High Bias High Stable Bias High Unstable

Chapter 3. Publications

114



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, JUNE 201X 11

CPA1 VIF LEG

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

ch
o
ic
e
ra
n
g
e

MOS

Vmin(D)
Vmax(D)

CD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

ch
o
ic
e
ra
n
g
e

MOS

Vmin(D)
Outlier Low

Vmax(D)
Outlier High

CD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5

ch
o
ic
e
ra
n
g
e

MOS

Vmin(D)
Outlier Low

Vmax(D)
CD

PSNR LE SSIM

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Outlier Low

Vmax(D)
Outlier High

CD

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Vmax(D)

CD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Outlier Low

Vmax(D)
Outlier High

CD

LFBVS LSS ESS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Outlier Low

Vmax(D)
CD

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Outlier Low

Vmax(D)
CD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Outlier Low

Vmax(D)
CD

NSD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

ch
oi
ce

ra
n
ge

MOS

Vmin(D)
Outlier Low

Vmax(D)
Outlier High

CD

Fig. 14. Confidence Plots for IVC-SelectEncrypt database for the different image metrics. The plot shows the scatter plot for the MOS and metric score
pairs, the plot of Vmin(D), Vmax(D) and CD .

the high or low quality range, although most metrics tend to
perform better on the high quality range. In some cases a
metric can even perform better on a limited quality range than
for the whole range of quality, e.g. the VIF performs better
for the low quality end of resolution encryption on the IVC-
SelectEncrypt database than for the whole range of resolution.
In other cases the performance of full range case is drastically
reduced for a reduced quality range, e.g. the VIF performs
poorly on the high quality range for resolution encryption on
the IVC-SelectEncrypt database. For other test sets the impact
of either low or high quality is slight and most likely due to the
reduced number of samples from the database, e.g. the VIF

performs well for the white noise distortion from the LIVE
database no matter which quality range. This in essence shows
that the actual performance of an image metric is dependent
on the distortion type as well as the quality range. For most
test set and image metric combinations the SROC over the full
quality range can at most be used as an upper limit for the
limited quality cases, although there are exceptions, e.g. VIF
for the low quality range of the resolution test set performs
better than on the overall quality range for the same test set.

With regard to security metrics and their performance on the
low quality range there is no noticeable difference in behavior
to regular image metrics. Rather for each test set the best
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TABLE IV
SPEARMAN RANK ORDER CORRELATION (SROC) FOR FULL, HIGH AND LOW QUALITY RANGE

Full Quality Range

fastfading gblur jp2k jpeg wn

SSIM 0.942 0.903 0.936 0.946 0.962
LEG 0.971 0.966 0.945 0.960 0.960
VIF 0.965 0.972 0.968 0.984 0.985
CPA1 0.881 0.927 0.958 0.962 0.984
LSS 0.843 0.916 0.953 0.970 0.965
ESS 0.933 0.888 0.929 0.949 0.886
PSNR 0.891 0.782 0.895 0.881 0.985
LFBVS 0.932 0.937 0.853 0.920 0.891
LE 0.241 0.236 0.076 0.766 0.228
NSD 0.815 0.803 0.741 0.806 0.657

High Quality Range

fastfading gblur jp2k jpeg wn

SSIM 0.517 0.815 0.710 0.879 0.875
LEG 0.652 0.792 0.638 0.761 0.734
VIF 0.632 0.782 0.797 0.920 0.891
CPA1 0.681 0.689 0.761 0.889 0.840
LSS 0.504 0.762 0.754 0.825 0.700
ESS 0.473 0.618 0.694 0.744 0.827
PSNR 0.517 0.662 0.676 0.801 0.869
LFBVS 0.289 0.707 0.393 0.651 0.572
LE 0.295 0.127 0.228 0.136 0.143
NSD 0.028 0.760 0.275 0.370 0.674

Low Quality Range

fastfading gblur jp2k jpeg wn

SSIM 0.662 0.487 0.635 0.339 0.802
LEG 0.893 0.872 0.617 0.699 0.804
VIF 0.937 0.920 0.646 0.829 0.911
CPA1 0.614 0.669 0.657 0.402 0.897
LSS 0.788 0.732 0.647 0.595 0.817
ESS 0.877 0.847 0.397 0.735 0.570
PSNR 0.611 0.408 0.510 0.046 0.897
LFBVS 0.863 0.849 0.391 0.702 0.659
LE 0.268 0.338 0.070 0.720 0.290
NSD 0.731 0.582 0.427 0.668 0.231

(a) SROC for the LIVE Image Quality Assessment Database

Full Quality Range

iwind ec iwind nec resolution trad truncation

SSIM 0.925 0.954 0.887 0.968 0.879
LEG 0.869 0.956 0.876 0.966 0.863
VIF 0.937 0.969 0.767 0.982 0.954
CPA1 0.925 0.953 0.906 0.967 0.959
LSS 0.888 0.907 0.955 0.948 0.948
ESS 0.868 0.894 0.933 0.906 0.860
PSNR 0.909 0.910 0.916 0.965 0.889
LFBVS 0.756 0.930 0.916 0.943 0.878
LE 0.136 0.579 0.562 0.550 0.201
NSD 0.698 0.922 0.790 0.757 0.523

High Quality Range

iwind ec iwind nec resolution trad truncation

SSIM 0.652 0.863 0.714 0.975 0.835
LEG 0.713 0.852 0.643 0.920 0.610
VIF 0.729 0.907 0.143 0.885 0.662
CPA1 0.683 0.890 0.000 0.868 0.934
LSS 0.705 0.945 0.393 0.865 0.975
ESS 0.809 0.846 0.571 0.679 0.794
PSNR 0.636 0.857 0.500 0.879 0.830
LFBVS 0.521 0.863 0.250 0.698 0.723
LE 0.095 0.489 0.464 0.431 0.019
NSD 0.251 0.736 0.179 0.236 0.602

Low Quality Range

iwind ec iwind nec resolution trad truncation

SSIM 0.191 0.694 0.644 0.680 0.695
LEG 0.141 0.823 0.490 0.652 0.181
VIF 0.518 0.732 0.823 0.913 0.832
CPA1 0.400 0.628 0.897 0.592 0.706
LSS 0.523 0.240 0.875 0.386 0.679
ESS 0.422 0.411 0.551 0.609 0.549
PSNR 0.251 0.474 0.688 0.663 0.541
LFBVS 0.188 0.562 0.507 0.416 0.022
LE 0.386 0.004 0.152 0.166 0.272
NSD 0.100 0.655 0.290 0.589 0.291

(b) SROC for the IVC-SelectEncrypt Image Quality Assessment Database

performance over the low quality range can be found among
the traditional image metrics.

Comparing the high and low quality ranges we can see that
the low quality range has a far higher number of unsatisfactory
SROC scores. This shows that overall image metrics tend
to perform better at differentiating the different strength in
distortion for high quality images. A high SROC over the
whole quality range indicates that the metric can differentiate
between high and low quality images. In essence, image
metrics which perform well on the overall quality range can
still be utilized to identify sufficient encryption, even though
a metric which exhibits good performance in the range of
the quality threshold should be preferred. For transparent
encryption, where the goal is to give the best image below
a certain threshold, the monotonicity in the chosen range
of quality becomes more important. In this case the target
quality is a lot closer to the threshold so a high monotonicity,
expressed by a high SROC, is required.

Another interesting aspect of the high versus low quality
test is the fact that not a single metric among those tested has
overall better performance on either the high or low quality

range. Consequently, the metrics cannot be reduced to an
overall SROC score and a bias towards either high or low.
There are cases where the performance of both high and low
quality is far lower than the overall quality, e.g., LFBVS on
the jp2k test set, and no metric shows an overall preference for
high or low quality range, e.g. for the SSIM the low quality
range of the fastfading test set performs better while for the
gblur test set the high quality range performs better. Thus,
in order to evaluate whether an image metric is fit to be
used as a security metric, tests regarding low and high quality
performance have to be conducted.

Summing up the monotonicity tests we can state the follow-
ing: Regarding the overall quality the VIF, CPA1, SSIM, LSS
and LEG perform best, LFBVS, PSNR and ESS also show a
good behaviour while NSD and especially LE perform poorly.

For the high quality range most quality metrics still show
a decent performance, however, only SSIM, LEG, and PSNR
exhibit no unsatisfactory performance in a single test set.

On the low quality side only the VIF exhibits good perfor-
mance over all test sets. All other metrics have at least two
test sets where their performance is unsatisfactory.
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V. CONCLUSION AND FUTURE WORK

We have outlined an evaluation method for security metrics
based on practical application scenarios and considerations.
These methods were used to evaluate state of the art security
metrics, image metrics which are used as security metrics as
well as state of the art image metrics. A summary of the
evaluation and a basic evaluation score is given in table VI.
From the summary it is clear that none of the security metrics
are fit to perform as general purpose security metrics.

Regarding transparent and sufficient encryption, the LE
and NSD metrics especially show that metrics engineered
to fit a certain application scenario cannot claim generality.
Furthermore, the SSIM and PSNR which were used as security
metrics in literature also perform poorly. Most state of the
art image metrics hardly perform the security metric task
adequately, only the VIF, apart from a borderline confidence
score and stability, demonstrates good performance.

Regarding content confidentiality we cannot make a strong
statement, due to lack of ground truth for recognizability tests.
However, the performance in the encrypted domain during the
evaluation of the application domain gives a strong indication
that no image metric, among those tested, can perform the task
of evaluating the content confidentiality.

The inability to properly evaluate image metrics in regard
to content confidentiality naturally leads to the conclusion that
more data is required. This also holds true for the lower quality
ranges in regard to regular metrics which would undoubtedly
benefit from a dataset specially designed for high impairment
cases. In future work we will gather ground truth data for
content confidentiality (and will also design protocols how to
properly capture human assessment for these data sets) and
extend the work presented in this paper to properly encompass
content confidentiality. Similarly, we will gather more data on
the low quality range to better evaluate security metrics for
transparent and sufficient encryption as well as aid in their
development.
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TABLE V
VISUAL REPRESENTATION OF THE SPEARMAN RANK ORDER CORRELATION (SROC) FOR THE LIVE IMAGE QUALITY ASSESSMENT AND

IVC-SELECTENCRYPT DATABASES FOR FULL QUALITY RANGE (LIGHT GRAY), LOW QUALITY RANGE (ORANGE BAR ON THE RIGHT) AND HIGH QUALITY
RANGE (GREEN BAR ON THE LEFT SIDE).

LIVE

fast-
fading gblur jp2k jpeg wn

IVC-SelectEncrypt

iwind
ec

iwind
nec

res-
olu-
tion

trad trunca-
tion

SSIM

LEG

VIF

CPA1

LSS

ESS

PSNR

LFBVS

LE

NSD

TABLE VI
SUMMARY OF EVALUATION

SSIM LEG VIF CPA1 LSS ESS PSNR LFBVS LE NSD

Application Domain

Encryption 45.03 % 33.35 % 45.38 % 36.26 % 41.73 % 37.25 % 51.17 % 51.99 % 73.08 % 45.99 %
Extraction 99.93 % 99.43 % 98.79 % 4.19 % 69.18 % 95.81 % 68.11 % 48.86 % 50.00 % 43.79 %

Confidence on the LIVE database

µ(CD) 0.357 0.291 0.285 0.431 0.415 0.300 0.265 0.370 0.906 0.537
σ(CD) 0.225 0.070 0.110 0.109 0.159 0.133 0.038 0.071 0.069 0.277
Signal Shape Bias High Bias Low Bias Low Bias High Bias High Bias High Bias Low Bias High Bias High Unstable

Confidence on the IVC-SelectEncrypt database

µ(CD) 0.319 0.268 0.277 0.119 0.374 0.168 0.196 0.273 0.540 0.394
σ(CD) 0.226 0.077 0.098 0.066 0.173 0.090 0.063 0.139 0.107 0.274
Signal Shape Bias High Bias High Bias High Stable Bias High Bias High Bias High Stable Bias High Unstable

Low Quality SROC on the LIVE database

fastfading 0.662 0.893 0.937 0.614 0.788 0.877 0.611 0.863 0.268 0.731
gblur 0.487 0.872 0.920 0.669 0.732 0.847 0.408 0.849 0.338 0.582
jp2k 0.635 0.617 0.646 0.657 0.647 0.397 0.510 0.391 0.070 0.427
jpeg 0.339 0.699 0.829 0.402 0.595 0.735 0.046 0.702 0.720 0.668
wn 0.802 0.804 0.911 0.897 0.817 0.570 0.897 0.659 0.290 0.231

Low Quality SROC on the IVC-SelectEncrypt database

iwind ec 0.191 0.141 0.518 0.400 0.523 0.422 0.251 0.188 0.386 0.100
iwind nec 0.694 0.823 0.732 0.628 0.240 0.411 0.474 0.562 0.004 0.655
resolution 0.644 0.490 0.823 0.897 0.875 0.551 0.688 0.507 0.152 0.290
trad 0.680 0.652 0.913 0.592 0.386 0.609 0.663 0.416 0.166 0.589
truncation 0.695 0.181 0.832 0.706 0.679 0.549 0.541 0.022 0.272 0.291

Comparison Score, -1 for insufficient performance, +1 for good performance, per above test, -1 for conflict in signal shape

SSIM LEG VIF CPA1 LSS ESS PSNR LFBVS LE NSD
Score -3 1 6 0 -3 0 -2 -5 -11 -12
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4. Conclusion

We have identified wavelet based codecs as a practical solution to the universal multimedia
principle. We chose the MC-EZBC codec since it is mature and exhibits performance compa-
rable to other state of the art codecs, most notably the standardized H.264/SVC. Two main
challenges have been identified in order to utilize this codec in an application: Transporting a
bitstream over hard- and software designed for the standardized H.264 codec; Encryption of
the MC-EZBC with the goal of facilitating secure end-to-end connections as well as allowing for
adaptation in the network.

We have solved the task of transporting the MC-EZBC based bitstream over hardware and
software designed for the standardized H.264 codec. These methods use bitstream description
protocols and an embedding of an MC-EZBC in a faux H.264 bitstream. Since the adaptation
can be done on the fly on the server, the resulting computational load is low and allows the
MC-EZBC to be utilized for UMA. This encapsulation into H.264 allows not only to use current
hardware for transport but also allows the utilization of MANEs for JIT scaling and adaptation.
This essentially allows an MC-EZBC bitstream to utilize the full range of options that a H.264
bitstream has on modern hardware. Nota bene: We specifically designed this encapsulation
procedure for the MC-EZBC but the approach can easily be adapted to other wavelet based
bitstreams.

In order to provide security to the streaming process we designed an encryption strategy for
the MC-EZBC. This method allows for a secure end to end connection and is format compliant,
i.e., scaling is possible on the encrypted bitstream without knowledge of the key or the need
to decrypt the bitstream. Since the encrypted bitstream is format compliant we could eliminate
possible points of attack from the network since the keys are only required at the endpoints of
the secure channel. Furthermore, computational resources are reduced if in-network scaling is
performed since scaling is done on the encrypted bitstream which allows to skip decryption and
encryption on the MANE. This in turn leads to shorter frame delays and overall faster delivery
of the bitstream.

To assess the security of the encryption method we did an in-depth analysis of the encryp-
tion method and identified that a confidential encryption is never possible with this method.
Actually we showed that if format compliance with regard to scaling is required no encryption
method can achieve confidential encryption, since information needed for scaling also allows
identification of the content.

Since we utilized image metrics as security metrics, as is standard in literature, we found
certain shortcomings of this evaluation method. Most notably the ability of image metrics to
deal with low quality content is severely limited, but this is exactly the quality range which is of
importance during security evaluations. Furthermore, we noted that there is no existing testing
methodology for security metrics.

Consequently, we introduced a testing methodology for security metrics based on common
application scenarios for said metrics. However, we could only concisely state a methodology
for testing security metrics for transparent and sufficient encryption since we lack the ground
truth to tackle content confidentiality. Furthermore, we tested image metrics, which are com-
monly used for security evaluation, as well as security metrics proposed in literature. The
conclusion of this test unfortunately showed that almost none of the tested metrics are fit to
perform security analysis. Only the LEG and VIF scored positive on the conducted tests, and
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only the score of the VIF was not borderline.
During our work with image metrics and security evaluations we also found the lack of an

image metric which is fast to compute and highly correlated with human observer scores. In
order to rectify this we introduced the LEG image metric, based on local edge gradients. The
LEG shows a high correlation with human judgement and is fast to compute, showing better
performance in both fields than the SSIM which previously filled the role as a fast and robust
image metric. Furthermore, during evaluation as security metric the LEG showed the second
best performance, after the VIF.
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