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Abstract—In accordance with the ISO/IEC FDIS 19794-6
standard an iris-biometric fusion of image metric-based and
Hamming distance (HD) comparison scores is presented. In
order to demonstrate the applicability of a knowledge transfer
from image quality assessment to iris recognition, Peak Signal
to Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), Local Edge Gradients metric (LEG), Edge Similarity
Score (ESS), Local Feature Based Visual Security (LFBVS), and
Visual Information Fidelity (VIF) are applied to iris textures,
i.e. query textures are interpreted as noisy representations of
registered ones. Obtained scores are fused with traditional HD
scores obtained from iris-codes generated by different feature
extraction algorithms. Experimental evaluations on the CASIA-
v3 iris database confirm the soundness of the proposed approach.

I. INTRODUCTION

Iris recognition takes advantage of random variations in
the iris. The details of each iris are phenotypically unique
yielding recognition rates above 99% and equal error rates
of less than 1% on diverse data sets. In past years the ever-
increasing demand on biometric systems operating in less
constrained environments entails continuous proposals of new
iris feature extraction methods [1]. Still, the processing chain
of traditional iris recognition (and other biometric) systems has
been left almost unaltered, following Daugman’s approach [2]
consisting of (1) segmentation and preprocessing, (2) feature
extraction, and (3) biometric comparison.

The International Organization for Standardization (ISO)
specifies iris biometric data to be recorded and stored in
(raw) image form (ISO/IEC FDIS 19794-6), rather than in
extracted templates (e.g. iris-codes) achieving more interoper-
ability as well as vendor neutrality [3]. Biometric databases,
which store raw biometric data, enable the incorporation of
future improvements (e.g. in segmentation stage) without re-
enrollment of registered users. While the extraction of rather
short (a few hundred bytes) binary feature vectors provides a
compact storage and rapid comparison of biometric templates,
information loss is inevitable. This motivates a fusion of
comparators operating in image domain (e.g. image metrics)
and traditional HD-based comparators requiring binary feature
vectors. The contribution of this work is the proposal of a
fusion scenario combining image metrics and traditional HD-
based approaches. In contrast to common believe that original

iris textures exhibit too much variation to be used directly for
recognition we proof that (1) quality metrics, interpreting iris
textures as a noisy reproduction of the reference sample, can be
employed for recognition, and (2) global features extracted by
image metrics tend to complement localized features encoded
by traditional feature extraction methods.

This paper is organized as follows: related work is reviewed
in Section II. Subsequently, the proposed fusion scenario is
described in detail in Section III. Experimental results are
presented in Section IV. Section V concludes the paper.

II. RELATED WORK

In the context of iris biometrics, image quality metrics
are largely understood as domain-specific indicators to be
considered for quality checks rejecting samples if insufficiently
suited for comparison [4]. Such metrics have also been applied
for dynamic matcher selection in biometric fusion scenarios
[5], i.e. quality is employed to predict matching performance
and to select the comparator or adjust weighting of the fusion
rule. In contrast, in the proposed work general purpose image
quality metrics and their ability to measure the degree of sim-
ilarity between an original (enrollment sample) and degraded
version of an image (sample) are employed. In the proposed
model, the degradation of a sample to be compared does not
result from compression, but by biometric noise factors (time,
illumination, etc.), and the stored biometric gallery template
represents the (updated) ideal representation of the biometric
property of an individual.

Information fusion in biometrics is an efficient means to
enhance the accuracy of a biometric system by employing
multiple modalities, sensors, or comparators [6]. Compared
to other types of fusion, score level fusion enables transparent
enhancement of biometric systems by combining the matching
scores of multiple comparators yielding a score vector S =

(s1, . . . , sm), which is combined using a fusion rule, e.g. sum
rule s =

∑m
i=1 si or product rule s =

∏m
i=1 si [7]. Park et al.[8]

investigate this fusion type for local and global Gabor feature-
vector based algorithms and found their proposed SVM-based
fusion of HD scores to outperform each single Gabor filter
when restricting the features to reliable regions. In previous
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Fig. 1. Proposed Fusion Scenario: image quality metric-based scores are combined with Hamming distance-based feature-level scores to obtain a final score.

work [9], we have investigated score level fusion for com-
bining best with worst HD-based alignment of iris codes for
enhanced iris matching. If comparators are weakly dependent
and still contain rich discriminative information, the combined
score can be expected to provide better discrimination between
genuine and imposter comparisons. An essential step before
employing such fusion rules is a normalization of scores
[6], which has been conducted manually by normalizing the
mean of impostor score distributions for image metric-based
comparators to 0.5 in this work.

III. FUSION OF IRIS RECOGNITION ALGORITHMS AND
IMAGE QUALITY METRICS

The proposed fusion scenario is shown in Fig. 1. At the
time of authentication, segmentation and pre-processing is
performed on a given pair of iris images. Subsequently,
resulting iris textures are compared applying a distinct image
metric. The image quality metric-based comparison score,
SM , is normalized and fused with the according HD-based
score, SHD , after feature extraction has been applied to both
iris textures, in order to obtain the final score SMHD . The
biometric fusion is performed by applying sum-rule fusion
[6]:

SMHD =
1

2
(SM + SHD ). (1)

In the following subsections modules of the proposed sys-
tem, which comprise segmentation and pre-processing, iris-
biometric feature extractors, and image metrics, are described
in detail. All of the applied image metrics1 are full reference
metrics, meaning they utilize information from the original
image O and impaired image I, both of size W×H to calculate
an assessment of the visual similarity.

A. Pre-processing and Feature Extraction Algorithms

We apply multi-stage iris segmentation using a weighted
version of adaptive Hough transform for iterative iris center
detection at the first stage and pupillary and limbic boundary

1Implementation available at www.wavelab.at/sources/VQI/,
except for VIF for which we used MetriX MuX from
foulard.ece.cornell.edu/gaubatz/metrix_mux.

detection by applying an ellipsopolar transform and assessing
gradient information for finding the second boundary based
on the outcome of the first [10]. After having obtained a
parametrization of inner and outer iris boundaries, the iris
texture is unwrapped and normalized to a 512×64 pixel
texture using Daugman’s doubly dimensionless representation
[2] and enhanced using contrast-limited adaptive histogram
equalization [11]. Pre-processing is illustarted in Fig. 2.

In the feature extraction stage we employ custom imple-
mentations of two different algorithms used to extract binary
iris-codes. The first one was proposed by Ma et al. [12].
Within this approach the texture is divided into 10 stripes
to obtain 5 one-dimensional signals, each one averaged from
the pixels of 5 adjacent rows, hence, the upper 512×50 pixel
of preprocessed iris textures are analyzed. A dyadic wavelet
transform is then performed on each of the resulting 10 signals,
and two fixed subbands are selected from each transform. In
each subband all local minima and maxima above an adequate
threshold are located, and a bit-code alternating between 0 and
1 at each extreme point is extracted. Using 512 bits per signal,
the final code is then 512×20 = 10240 bit. The second fea-
ture extraction method follows an implementation by Masek2

applying filters obtained from a Log-Gabor function. Here,
a row-wise convolution with a complex Log-Gabor filter is
performed on the texture pixels. We use the same texture size
and row-averaging into 10 signals prior to applying the one-
dimensional Log-Gabor filter. The 2 bits of phase information
are used to generate a binary code, which therefore is again
512×20 = 10240 bit.

B. Peak Signal to Noise Ratio (PSNR)

The PSNR is still widely used because it is unrivaled in
speed and ease of use. However, it is also well known that the
correlation to human judgment is somewhat lacking.

The following steps are performed to calculate the PSNR,
where M is the maximum possible pixel value of the image.

2L. Masek: Recognition of Human Iris Patterns for Biometric Identification,
Master’s thesis, University of Western Australia, 2003
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Fig. 2. Preprocessing: (a) image of eye (b) detection of pupil and iris (c)
unrolled iris texture (d) preprocessed iris texture.

Step 1: Calculate the mean squared error MSE = 1
WH ∗∑W

i=1

∑H
j=i(I(i, j)−O(i, j))2

Step 2: The PSNR is calculated:

PSNR = 10 log10

( M2

MSE

)
. (2)

C. Structural Similarity Index Measure (SSIM)

The SSIM by Wang et al.[13] uses the local luminance as
well as global contrast and a structural feature.

Step 1: Each image is transformed by convolution with a
11× 11 Gaussian filter.

Step 2: The luminance, contrast and structural scores can
be calculated and combined in one step as follows.

SSIM(I,O) =
(2µIµO + c1)(2σIO + c2)

(µ2
I + µ2

O + c1)(σ
2
I + σ2

O + c2)
, (3)

where µI is the average pixel value of image I, σ2
I is the

variance of pixel values of image I and σIO is the covariance
of I and O. The variables c1 = (k1M)2 and c2 = (k2M)2, with
k1 = 0.01 and k2 = 0.03, are used to stabilize the division.

D. Local Edge Gradients Metric (LEG)

The image metric based on local edge gradients was in-
troduced by Hofbauer and Uhl [14] and uses luminance and
localized edge information from different frequency domains.

Step 1: First the global luminance difference between I and
O is calculated as LUM(I, O) = 1 −

√
|µ(O)−µ(I)|

M , where
µ(X) = 1

WH

∑W
x=1

∑H
y=1 X(x, y), and X(x, y) is the pixel

value of image X at position x, y.
Step 2: One step wavelet decomposition with Haar wavelets

resulting in four sub images for each image X denoted as
X0 for the LL-subband, and X1, X2, X3 for LH, HH and HL
subbands, respectively.

Step 3: A local edge map is calculated for each position
x, y in the image, reflecting the change in coarse structure.
LE(I,O, x, y) = max(0,EDC(I,O, x, y) − 6)/2, i.e. LE = 1

if EDC = 8, LE = 0.5 if EDC = 7 and 0 otherwise. In
this case EDC(I, O, x, y) =

∑
p∈N(x,y) ED(I, O, x, y, p), where

N(x, y) is the eight neighborhood of the pixel x, y, with
ED(I, O, x, y, p) = 1 if edge directions for I and O match,
i.e. if I(x, y) < I(p) and O(x, y) < O(p) or I(x, y) > I(p) and
O(x, y) > O(p), otherwise ED(I, O, x, y, p) = 0.

Step 4: In order to assess the contrast changes a dif-
ference of gradients in a neighborhood is calculated by

LED(I, O, x, y) = 1
8

∑
p∈N(x,y)

(
1−

√
|LD(I,O,x,y,p)|

M

)2

, with

LD(I,O, x, y, p) = (O(x, y)−O(p))− (I(x, y)− I(p)).
Step 5: The edge score is calculated by combining local

edge conformity (LE) and local edge difference (LED) into

ES(I, O) = 4
WH

∑W
2
x=1

∑H
2
y=1

(
LE(I0, O0, x, y) ∗

1
3

∑3
i=1 LED(Ii, Oi, x, y)

)
.

Step 6: The LEG visual quality index is calculated by
combining ES and LUM.

LEG(I, O) = LUM(I, O) ES(I, O). (4)

E. Edge Similarity Score (ESS)

The ESS was introduced by Mao and Wu [15] and uses
localized edge information to compare two images.

Step 1: Each image is separate into N blocks of size 8× 8.
Step 2: For each image I a Sobel edge detection filter

is used on each block i to find the most prominent edge
direction eiIand quantized into one of eight directions (each
corresponding to 22.5◦). Edge direction 0 is used if no edge
was found in the block.

Step 3: Calculate the ESS based on the prominent edges of
each block:

ESS =

∑N
i=1 w(eiI , e

i
O)

∑N
i=1 c(e

i
I , e

i
O)

, (5)

where w(e1, e2) is a weighting function defined as

w(e1, e2) =

{
0 if e1 = 0 or e2 = 0

|cos(φ(e1)− φ(e2))| otherwise,

where φ(e) is the representative edge angle for an index e,
and c(e1, e2) is an indicator function defined as c(e1, e2) = 0

if e1 = e2 = 0 and c(e1, e2) = 1 otherwise. In cases where∑N
i=1 c(e

i
I , e

i
O) = 0 the ESS is set to 0.5.

F. Local Feature Based Visual Security (LFBVS)

The LFBVS was introduced by Tong et al. [16] utilizes
localized edge and luminance features which are combined
and weighted according to error magnitude, i.e. error pooling.

Step 1: Separate an image I into N blocks BI
i of size 16×16.

Step 2: Calculate the average µ(BI
i ) and standard deviation

σ(BI
i ) of the pixel luminance values in the given block. Cal-

culate the local luminance feature LUM(I, O, i) = (|µ(BO
i ) −

µ(BI
i )|+ |σ(BO

i )− σ(BI
i )|) / 2Lmax.
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Fig. 3. Receiver Operation Characteristic (ROC) curves for image metric, traditional algorithms, and selected fusion scenarios of the proposed approach.

Step 3: For each pixel in the macroblock (excluding borders)
calculate the (luminance) edge directions δx(x, y) = L(x +

1, y)−L(x−1, y), δy(x, y) = L(x, y+1)−L(x, y−1). Generate
a histogram HI

i [d] = A of cumulative edge amplitude strength
a =

√
δx(x, y)2 + δy(x, y)2 over edge directions d(8-bins for

360o) for each block. And using the histogram calculate
local edge density feature ED(I,O, i) =

∑8
d=1 |HO

i [d] −
HI

i [d]| /
∑8

d=1 max(HO
i [d], HI

i [d])

Step 4: Calculate a local visual score, i.e. local lumi-
nance and edge density LV S(I, O, i) = 0.2LUM(I,O, i) +

0.8ED(I, O, i). Order local visual features OLVS(I, O, j) =

LVS(I, O, ij) such that ∀x < ij LVS(I, O, x) ≤ LVS(I, O, ij)

and ∀x > ij LVS(I, O, x) ≥ LVS(I, O, ij).
Step 5: Weigh the ordered local visual feature scores to

further increase the prominent errors,

LFBVS(I, O) =
N∑

i=1

exp
i

N−0.5 OLVS(O, I, i) /
N∑

i=1

exp
i

N−0.5 .

(6)

G. Visual Information Fidelity (VIF)

The VIF by Sheikh and Bovik [17] uses a refined model
which starts with the modeling of the reference image using
natural scene statistics (NSS). Furthermore, the possible dis-
tortion is modeled as signal gain and additive noise in the
wavelet domain and parts of the HVS which have not been
covered by the NSS are modeled, i.e. internal neural noise
is modeled by using a additive white Gaussian noise model.
While the VIF can not be described in the available space the
calculation roughly consists of the following steps.

Step 1: NSSs are calculated based on Gaussian scale mixture
(GSM) model based on the wavelet domain.

Step 2: Calculate a model for the distorted image based
on the GSM model from the original image combined with

signal gain and additive noise in the wavelet domain (this
compensates for white noise and image blur in the image
domain).

Step 3: Extend the model to include information from HVS,
i.e. optical point spread, contrast sensitivity and internal neural
noise, which is not covered by the NSS model.

Step 4: Calculate the amount of the original signal, taking
into account different wavelet subbands, which can be recon-
structed from the distorted signal given the NSS and the HVS
model, this reconstructible fraction of the original signal is
termed VIF.

IV. EXPERIMENTAL STUDY

Experiments are carried out on the CASIA-v3-Interval iris
database3 using left-eye images only. The database consists of
good quality 320×280 pixel NIR illuminated indoor images
where the applied test set consists of 1307 instances, a sample
is shown in Fig. 2 (a).

Recognition accuracy is evaluated in terms of false none
match rate (FNMR) and false match rate (FMR). The FNMR
defines the proportion of verification transactions with truthful
claims of identity that are incorrectly rejected, and the FMR
defines the proportion of verification transactions with wrong-
ful claims of identity that are incorrectly confirmed (ISO/IEC
FDIS 19795-1). As score distributions overlap the EER of
the system is defined (FNMR = FMR). At all authentication
attempts 7 circular texture-shifts and according bit-shift are
performed in each direction for all comparators. Image metric
scores are normalized in a way that mean impostor scores
are 0.5 and low scores indicate high similarity. Obtained

3The Center of Biometrics and Security Research, CASIA Iris Image
Database, http://www.idealtest.org



TABLE I
OBTAINED RESULTS FOR THE PROPOSED FUSION SCENARIO.

EER (%)
Ma et al. Masek PSNR SSIM LEG ESS LFBVS VIF

Ma et al. 1.43 1.46 1.56 1.53 1.32 2.51 2.01 1.65
Masek 1.77 1.97 1.72 1.58 2.43 2.12 1.78

PSNR 4.21 3.08 3.34 4.69 3.60 2.11
SSIM 3.40 3.40 4.51 2.71 2.18
LEG 3.99 5.76 3.46 2.10
ESS 9.61 4.90 2.20

LFBVS 5.54 1.86
VIF 2.06

performance rates in terms of EERs for single and paired com-
bination of comparators are summarized in Table I. According
ROC curves of individual image metrics and selected fusion
scenarios, described feature extraction algorithms as well as
selected fusion scenarios of image metrics and these are
plotted in Fig. 3. It is important to note, that all combinations
(IrisCode-Metric and Metric-Metric) represent a challenging
single-sensor multi-algorithm fusion scenario.

A. Combination of Image Metrics

Focusing on obtained EERs most individual image metrics
do not represent an alternative to traditional iris-based feature
extraction algorithms, see Table I. While an exclusive appli-
cation of best image metrics yield EERs > 2% (see Fig. 3
(a)-(b)), traditional feature extraction algorithms obtain EERs
< 1.5% (see Fig. 3 (e)). However, as shown in Fig. 3 (c)-
(d) distinct combinations of image metrics yield significant
improvement in accuracy, e.g. a fusion of LFBVS and VIF
yields an EER of 1.86%.

B. Combination of Metrics and Traditional Algorithms

For the applied simple sum-rule, a combination of applied
feature extraction algorithms does not yield improvement with
respect to recognition performance, see Fig. 3 (e). In addition,
image metrics do not supplement traditional iris recognition
algorithms in general. While the incorporation of most image
metrics (e.g. PSNR, ESS and LFBVS) decreases performance
distinct image metrics represent adequate complements (e.g.
SSIM and LEG), see Table I and Fig. 3 (f)-(h). In particular,
combinations of the LEG metric and applied feature extractors
show significant improvements achieving EERs of 1.32% and
1.58%, respectively. Obtained results appear promising since
image metrics are applied without any adaption using the most
simple fusion rule to the proposed application scenario, i.e.
adjusted implementations of image metrics are expected to
further improve recognition accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper a fusion of image metrics and traditional HD-
based comparators is presented. It is demonstrated that the

incorporation of distinct image metrics in a fusion scenario
is able to significantly improve recognition accuracy of iris
biometric systems.

Future work will comprise biometric fusions of several
image metrics and traditional biometric comparators as well
as an adaption of image metrics to biometric systems, e.g. by
applying image metrics only to distinct parts of biometric data.
Regarding security issues, image metrics will be assessed for
comparing iris images in encrypted domain.
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