
c© IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.



VISUAL QUALITY INDICES AND LOWQUALITY IMAGES

Heinz Hofbauer and Andreas Uhl

Department of Computer Sciences

University of Salzburg

{hhofbaue, uhl}@cosy.sbg.ac.at

ABSTRACT

Visual quality indices are frequently used instead of human

evaluation for the quality assessment of impaired images (or

videomaterial). These visual quality indices are in turn evalu-

ated on databases containing impaired images in conjunction

with a score given by evaluation with human observers. The

fitness of these indices are judged on the entire quality scale

of the respective database. However, this leads to the incor-

rect assumption that these quality indices perform well over

the whole range possible qualities. This is unfortunately not

true, especially towards the low quality range of images these

quality indices often show little actual correlation to human

judgement. In this paper a number of visual quality indices

will be evaluated with regard to the lower quality spectrum

of impairments and it will be shown that the overall fitness

of a quality index is not generally related to its performance

regarding high impairment.

Index Terms— Image analysis, Quality control

1. INTRODUCTION

The assessment of image and video quality is important

whenever image and videos are transmitted (gauging of

transmission errors), encoded (compression vs. quality)

etc. Optimally a jury of humans would judge the impact

of the impairment, however the high time and cost required

to do this are prohibitive. Thus, visual quality indices(VQI)

are used to simulate the assessment that should be made by

humans. In order to judge the correlation of VQI to the av-

erage human judgement a number of databases have been

created containing distorted images along with a mean opin-

ion score (MOS) of human observers, for example LIVE [1]

or TID [2]. These databases typically contain different test-

sets which correspond to typical application scenarios, e.g.

JPEG or JPEG2000 compression, distortion scenarios, e.g.

transmission errors or denoising, and operations on images,

e.g. gaussian blur or masking.

The evaluation of a VQI is usually done over the whole

range of impairments in a given database. This is reasonable

to estimate the overall fitness of VQIs but there are certain

shortcomings in this approach. For example in high compres-

sion scenarios a VQI which does well overall is less useful

than one which performs best for the given low quality scale

(and the same is essentially true for a high quality range). The

underlying problem is that VQIs overall performance does not

correlate to performance for low quality scenarios or even,

though less frequently, for high quality scenarios. Typical low

quality scenarios are low bitrate videos [3, 4], video streaming

[5, 6], assessment of transmission errors [7] or quality control

for transparent encryption [8].

While there is some previous work regarding low qual-

ity video sequences [9], there is, to the extent of the authors

knowledge, no information available regarding low quality

image assessment over the range of recent VQIs. To rectify

this shortcoming, state of the art VQIs will be evaluated on

known databases where the focus is on low and high quality

subsets rather than the whole database. This will also show

that the databases which are already in existence are suffi-

cient to properly evaluate the performance of VQIs and point

out that it would be good practice to evaluating performance

in a more discerning way.

In order to facilitate the reproducibility of the research we

restricted ourself to publicly available data and implementa-

tions.

In section 2 a brief overview of the evaluated VQIs will

be given, in section 3 the evaluation based on the LIVE and

selected subsets of the TID database will be given.

2. OVERVIEW OF VISUAL QUALITY INDICES

Modern VQIs often use a sophisticated approach on quality

which heavily relies on knowledge about the human visual

system (HVS). In the following we will give a short review of

the VQIs which will be evaluated.

The most widely used VQI today is the peak signal-to-

noise ratio (PSNR) since it is easy to implement and fast to

compute. It is also well known that the PSNR does not re-

flect human judgement very well. In [10] Huynh-Thu and

Ghanbari showed that as long as the content is unchanged the

PSNR reasonably well reflects the human observer.

The luminance and edge similarity score (LSS and ESS)

was introduced by Mao and Wu [11]. They used the informa-



tion on the HVS to find criteria how observers judge images.

The edge information reflects the assessment of humans re-

garding the shape or contour of objects and the luminance

score reflects changes in the color space. Both algorithm use

8 × 8 windows to assess the edge direction and mean lumi-

nance of a region in the image.

The visual signal-to-noise ratio (VSNR) [12] uses a two

stage method of quality assessment. In the first stage contrast

detection thresholds are calculated by using wavelet (DWT)

based models of visual masking and summation to assess if

the errors are perceivable by the HVS. If the errors are judged

to be below the detection threshold the image is considered

pristine. When the errors are above the threshold of detection

a score is calculated by using the ratio of the RMS contrast

to the weighted values of the perceived contrast and global

precedence.

The structural similarity index measure SSIM [13] ex-

tracts three separate scores from the image and combines

them into the final score. First the visual influence is calcu-

lated locally then luminance, contrast and structural scores

are calculated globally. These separate scores are then com-

bined with equal weight to form the SSIM score.

The multi-scale structural similarity index measure MS-

SSIM [14] is an extension of the SSIM to take into account

that the perceivability of image impairments is different de-

pending on the sampling density of the image signal, e.g.

as influenced by viewing distance. To take this into account

the similarity scores are calculated at different spatial scales.

The core operation is similar to SSIM, contrast and structural

scores are calculated at each scale and the luminance score is

calculated at the lowest scale. The factors for combining these

scores where found by experiments with human observers.

Criterion v4.0 C4 [15] uses a detailed model of the HVS,

and information regarding the score is extracted from a trans-

formation of the image in the perceptual space. The trans-

formation include compensation for display device gamma,

perceptual colorspace, luminance normalization, contrast sen-

sitivity functions, subband decomposition and modelling of

masking effects. From this perceptual model the contrast ori-

entation, length and width as well as the subband amplitude

and average luminance, red-green chroma and yellow-blue

chroma channels are extracted from characteristic points in

the model. The local scores are generated as averaging of the

extracted features and the overall score is generated by aver-

aging the local scores.

For the visual information fidelity criterion VIF [16] a

more refined model is used which starts with the modeling

of the reference image using natural scene statistics (NSS).

Furthermore, the possible distortion is modeled as signal gain

and additive noise in the wavelet domain and parts of the HVS

which have not been covered by the NSS are modeled, i.e. in-

ternal neural noise is modeled by using a additive white Gaus-

sian noise model. Using this model the VIF score reflects the

fraction of the reference image information which can be ex-

tracted from the impaired image.

The Weighted Signal to Noise Ration (WSNR) [17] is de-

fined as the ratio of the average weighted signal power to the

average weighted noise power. The weight function used is a

contrast sensitivity function (CSF) which is gained by using

the frequency response of HVS. A measure of the non-linear

HVS response to a single frequency, the contrast threshold

function (CTF), is used which is measured over the visible

radial spatial frequencies. The CTF is the minimum ampli-

tude necessary to detect a sine wave of a given angular spatial

frequency. The CSF is the frequency response obtained by

inverting the CTF.

With respect to implementations we used our own code1

for PSNR, SSIM, LSS, ESS. For C4 the implementation from

Carnec et al. was used and for all other VQIs the “MeTriX

MuX Visual Quality Assessment Package2 was used in ver-

sion 1.1. Also note that UQI, IFC and NQM from Metrix

Mux were not included in the evaluation since they are prede-

cessors of other VQIs which were evaluated.

3. EVALUATION OF VISUAL QUALITY INDICES

In the following evaluations the Spearman rank order corre-

lation (SROC) is used to compensate for non linearity. The

VQIs were evaluated on two different databases for two rea-

sons. First, we want to show that the shortcomings of the

VQIs are not based on the distortion and image types of a

single database. Secondly, we want to show that the prob-

lems of VQI with lower quality images are not a result of the

evaluation method employed in the database assembly. The

DMOS value of these two databases was derived differently,

the LIVE database uses a linear scale of perceived impair-

ment where observers judge each image individually while

the TID database uses a direct comparison of two impaired

images where the observer selects the higher quality image

and thus creates a ranking in order of perceived impairment.

3.1. Evaluation on the LIVE Database

The first comparison will be on base of the LIVE database3.

The comparison is between the full range of the database as

would be used for regular VQI evaluation, table 1, the low

quality part of the database with a DMOS of greater than 80

(70 for gblur in order to keep the number of distortions high

enough), table 3, and the high quality range with a DMOS

lower than 40, table 2. In these tables value with SROC lower

than 0.5 are underlined to show low correlation and the best

score per testset is printed in a bold font.

To get a better overview fig. 1 illustrates the relation of

the SROC from tables 1 through 6. Figure 2 shows the same

1http://www.wavelab.at
2http://foulard.ece.cornell.edu/gaubatz/metrix mux/
3http://live.ece.utexas.edu/research/quality/
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Fig. 1. For each entry the SROC for the full range of qualities is indicated by the line separating the light and dark background

ranging from SROC = 0.0 at the bottom to SROC = 1.0 at the top. Superimposed are two bar charts showing the SROC for

the high quality range on the left side and the low quality range on the right side.

Table 1. LIVE Image Quality Assessment Database

fastfading gblur jp2k jpeg wn

ESS 0.956 0.939 0.944 0.945 0.958

LSS 0.898 0.941 0.928 0.939 0.967

SSIM 0.957 0.935 0.940 0.940 0.968

PSNR 0.927 0.865 0.923 0.913 0.982

VIF 0.965 0.972 0.968 0.984 0.985

WSNR 0.873 0.909 0.920 0.958 0.973

VSNR 0.903 0.941 0.955 0.966 0.978

MS-SSIM 0.932 0.958 0.965 0.979 0.973

C4 0.919 0.956 0.959 0.975 0.970

information for the Kendall τb rank order correlation, for rea-
sons of brevity we did not give tables of τb values since overall
the behavior is the same as for SROC which is nicely illus-

trated by the figures given.

It can be directly read from the comparison of low and

Table 2. LIVE Image Quality Assessment Database, high

quality (DMOS ≤ 40)

fastfading gblur jp2k jpeg wn

ESS 0.799 0.848 0.790 0.775 0.854

LSS 0.738 0.853 0.688 0.720 0.779

SSIM 0.821 0.879 0.789 0.780 0.868

PSNR 0.809 0.838 0.780 0.764 0.865

VIF 0.722 0.853 0.880 0.942 0.889

WSNR 0.444 0.707 0.732 0.881 0.810

VSNR 0.553 0.861 0.856 0.887 0.908

MS-SSIM 0.529 0.839 0.841 0.918 0.894

C4 0.473 0.826 0.818 0.883 0.753

high quality ranges that the VQIs, with a few exceptions,

perform worse for the lower quality range than the higher

quality range. Furthermore, the reduced performance for the

lower quality range can not be reduced to a lower number of
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Fig. 2. For each entry the τb for the full range of qualities is indicated by the line separating the light and dark background

ranging from τb = 0.0 at the bottom to τb = 1.0 at the top. Superimposed are two bar charts showing the τb for the high quality
range on the left side and the low quality range on the right side.

Table 3. LIVE Image Quality Assessment Database, low

quality (DMOS > 80, *70)

fastfading gblur* jp2k jpeg wn

ESS 0.686 0.74 0.291 0.583 0.062

LSS 0.738 0.828 0.573 0.268 0.210

SSIM 0.179 0.365 0.027 0.095 0.348

PSNR 0.398 0.451 0.227 0.243 0.549

VIF 0.767 0.919 0.191 0.703 0.692

WSNR 0.514 0.76 0.100 0.209 0.414

VSNR 0.492 0.547 0.491 0.257 0.303

MS-SSIM 0.665 0.819 0.409 0.607 0.741

C4 0.741 0.882 0.436 0.666 0.342

comparison images since the higher quality range used is the

same distance from the mean of the DMOS values and thus,

roughly, the same number of comparison images are used. A

notable VQI is the VIF which displays good performance for

all cases except high compression rates for JPEG2000 com-

pression where it is among the worst. All VQIs however

show certain deficiencies regarding low quality images, even

though the actual deficiency is dependant on the distortion in-

troduced. Furthermore, even if the distortion is known before-

hand, the evaluation over the full database can be misleading.

As an example the best VQI to evaluate highly compressed

JPEG2000 images would be the LSS, but the overall perfor-

mance of LSS regarding JPEG2000 compression is among the

worst.

Furthermore, while the reduction in performance is usu-

ally in the lower end of the quality spectrum this is not always

so. Compare for example the performance of C4 and WSNR

for the high and low quality range of the fastfading and gblur

testsets. For both VQIs and both testsets the performance on

highly impaired images is better than for high quality version.



Table 4. TID2008 Tampere Image Database 2008 (v1.0)

denoising jpeg tr. er. j2k tr. er. cor. noise

ESS 0.922 0.827 0.789 0.777

LSS 0.912 0.460 0.850 0.917

SSIM 0.930 0.818 0.840 0.833

PSNR 0.942 0.752 0.831 0.916

VIF 0.919 0.858 0.851 0.870

WSNR 0.934 0.738 0.834 0.848

VSNR 0.929 0.806 0.791 0.766

MS-SSIM 0.957 0.874 0.853 0.819

C4 0.918 0.901 0.808 0.777

Table 5. TID2008 Tampere Image Database 2008 (v1.0),

high quality (DMOS > 3.5)

denoising jpeg tr. er. j2k tr. er. cor. noise

ESS 0.815 0.596 0.676 0.613

LSS 0.798 0.179 0.744 0.819

SSIM 0.834 0.582 0.615 0.738

PSNR 0.856 0.577 0.578 0.805

VIF 0.801 0.623 0.634 0.781

WSNR 0.846 0.438 0.720 0.677

VSNR 0.823 0.575 0.715 0.619

MS-SSIM 0.868 0.680 0.739 0.703

C4 0.774 0.745 0.640 0.655

3.2. Evaluation on the TID Database

The second comparison will be based on the TID Tampere

Image Database 20084. Due to reasons of space we only

present a subset of the 17 testsets contained in the database,

these are ”Image denoising”, ”JPEG transmission errors”,

”JPEG2000 transmission errors” and ”Spatially correlated

noise” abbreviated as ”denoising”, ”jpeg tr. er.”, ”j2k tr. er.”

and ”cor. noise” respectively in the tables. The comparison is

again between the full quality range, Table 4, the low quality

part DMOS of lower than 3.5, table 6, and the high quality

range greater than 3.5, table 5. Again, in these tables val-

ues with SROC lower than 0.5 are underlined to show low

correlation and the best score per testset is printed in a bold

font.

Overall the comparison again shows that the VQIs per-

formworse for a low quality subset than a high quality subset,

even if the performance over the full range is high. However,

there are some VQIs which perform better for lower quali-

ties. The LSS for example performs better on the low quality

version of the JPEG transmission error testset than on the full

quality range.

Furthermore, like with the LIVE database, a high perfor-

mance of an VQI over the whole quality range can not be

taken as indicator that the VQI will perform optimally in ei-

ther a low or high quality range.

4http://www.ponomarenko.info/tid2008.htm

Table 6. TID2008 Tampere Image Database 2008 (v1.0), low

quality (DMOS < 3.5)

denoising jpeg tr. er. j2k tr. er. cor. noise

ESS 0.634 0.248 0.335 0.109

LSS 0.628 0.471 0.649 0.685

SSIM 0.650 0.393 0.507 0.224

PSNR 0.773 0.600 0.513 0.584

VIF 0.690 0.562 0.691 0.357

WSNR 0.682 0.411 0.686 0.590

VSNR 0.652 0.425 0.480 0.269

MS-SSIM 0.868 0.497 0.451 0.180

C4 0.743 0.567 0.415 0.247
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Fig. 3. Scatter plot of VIF over DMOS for the JPEG 2000

transmission errors testset from the TID 2008 database for

low quality images (DMOS < 3.5)

To examine in more detail which effects lead to this prob-

lem fig. 3 gives a scatter plot of VIF ratings over DMOS for

the low quality range of the J2K transmission errors testset,

containing 44 of the 100 image in the testset. It can clearly be

seen that the overall tendency of higher VIF for higher DMOS

ratings holds. It is also clear that locally a high variance in

VIF ratings can be observed leading to large mismatches. To

illustrate the problem observe that the lowest quality accord-

ing to VIF would be at about DMOS 2.5, resulting in 8 images

being rated higher quality than the corresponding observers

would, this is more than 18% of the image in the low quality

testset. The same holds regarding the highest quality image

according to the VIF.

4. CONCLUSION

It was shown that even seemingly well performingVQIs actu-

ally have flaws which can be seen under close scrutiny. When

performance is measured only using the full quality range



provided by image evaluation databases these flaws tend to be

concealed since the overall correlation between DMOS and

VQI overrides the large variance when taking into account

a subset of qualities. Two statements can be made regard-

ing the availability of VQIs and the corresponding testing of

VQIs. One, there is a lack of VQIs which target the low qual-

ity images and performs well over a wide range of distortion

types. There are VQIs which are well suited for evaluation

of such images when the distortion type is known in advance

and a proper VQI can be chosen, however, this becomes less

clear when a mix of two or more distortion types can be ex-

pected. Second, the evaluation process of VQIs should be

done in a more elaborate way, specifically it should differenti-

ate between overall fitness and fitness on low and high quality

ranges to better identify shortcomings of certain VQIs. While

at least a split into low and high qualities should be done,

it might be expedient to differentiate between low, medium

and high quality ranges where the database allows, i.e. when

enough levels of distortion in the database exist to keep the

significance high.
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