
c© IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

Cost of In-Network Adaption of MC-EZBC for Universal Multimedia Access

Heinz Hofbauer

Salzburg University

Department of Computer Sciences

hhofbaue@cosy.sbg.ac.at

Andreas Uhl

Salzburg University

Department of Computer Sciences

uhl@cosy.sbg.ac.at

Abstract

A core concept of universal multimedia access is the use

of scalable content. The scalable content should be as flex-

ible as possible to achieve the credo of creating the con-

tent once and adapting it to fulfill given requirements. As

far as flexibility goes wavelet based codecs are superior. A

problem which arises is that the adaptation does not nec-

essarily happen on a device which is aware of the codec

which was used in content creation. To rectify this non-

awareness, MPEG-21 introduced digital item adaptation in

part 7 to abstract the bitstream of a given video. This al-

lows in-network adaptation on nodes which are DIA aware

to adapt any video stream as long as a DIA description is

given. The drawback is that the DIA description must be

sent parallel to the original video sequence. In this paper

we will look at how a DIA description for a t+2D scalable

wavelet codec looks like. We will evaluate the possibilities

we have with various description options and we will also

look at the overhead generated by the DIA description.

1 Introduction

The use of digital video in todays world is ubiquitous.

Videos are viewed on a wide range of clients, ranging

from hand held devices with QVGA resolution (320x240)

over PAL (768x576) or NTSC (720x480) to HD 1080p

(1920x1080) or higher. Furthermore, streaming servers

should be able to broadcast over the internet with regard

to a wide range of bandwidths, from fixed high bandwidth

lines like ADSL2 to changing low bandwidths for mobile

wireless devices. In such an environment it is simply not

possible to encode a video for every application scenario.

So content providers either have only a fixed number of op-

tions available or they use scaling video technology to adapt

the video for bandwidth and resolution requirements of the

client. The concept of creating the content once and adapt-

ing it to the current requirements is preferable and is better

known as Universal Multimedia Access (UMA) [10].

One of the enabling technologies of UMA is the use of

scalable video coding. This averts the need for transcoding

on the server side and enables the server to scale the video.

However, even scaling takes up computation time and re-

duces the number of connections the server can accept. Fur-

Streaming Server Access Point Mobile Device

Fixed Bandwidth
variable bandwidth

Request QVGA video with maximum bandwith 128kbps

Send QVGA, 128kpbs

Video Send QVGA Video

with adapted bandwith

Figure 1. Example of video adaptation for a
mobile device on the server and in the net

work.

thermore, variable bandwidth conditions, which happen fre-

quently on mobile devices, further taxes the server with the

need to adapt the video stream. The solution to this is usu-

ally in-network adaptation, shifting the need to scale to the

node in the network where a change in bandwidth is occur-

ring. Figure 1 shows an example of this scenario, where

a mobile device requests a video stream from the server

which fits its capabilities. The core adaptation with these

restrictions takes place on the server and on the fly adap-

tation due to actual channel capability is done in-network.

Wu et al. [11] give an overview of other aspects of stream-

ing video ranging from server requirements to protocols, to

QoS etc.

For video streaming in this environment, i.e. a high num-

ber of possible bandwidths and target resolutions, wavelet

based codecs can be considered. Wavelet based codes are

naturally highly scalable and rate adaptation as well as res-

olution or temporal scaling is easily achieved. Furthermore,

wavelet based codecs achieve a coding performance similar

to H.264/SVC, c.f. Lima et al. [7].

For this reason we will consider the ENH-MC-EZBC

wavelet based video codec for in-network adaptation. This

choice was made mainly because the source code is avail-

able 1, which enables our experiments. The MC-EZBC

codec [4, 12] is a scalable t-2D video codec which uses

motion compensated temporal filtering, with 5/3 CDF

wavelets, followed by regular spatial filtering, with 9/7 CDF

filtering, see fig. 2 for a GOP size of 8. This method, tem-

poral first and spatial later, is referred to as t+2D coding

scheme. For temporal filtering a full decomposition is used

and thus the GOP size is discernible by the number of tem-

1The source for the ENH-MC-EZBC is available from

http://www.cipr.rpi.edu/research/mcezbc/.

H H H H

LHLH

LLHLLL

H H H H

LHLH

LLHLLL

Figure 2. Overview of the decomposition of a

GOPwith GOP size 8 withmarked (gray parts)
high temporal layer (bottom), high spatial

layer (top) and possible Iframes as dashed

outline on the lower half.

poral decomposition levels. Both temporal and spatial fil-

tering is done in a regular pyramidal fashion. Statistical

dependencies are exploited by using a bit plane encoder,

the name giving embedded zero bit coder. Motion vectors

are encoded with DPCM followed by an arithmetic coding

scheme.

For an overview about wavelet based video codecs and

a performance analysis as well as techniques used in those

codecs see the overview paper by Adami et al. [1].

The scalability of the video codec is important for UMA

which means it is also necessary for servers and network

nodes to be able to perform scaling. This can either be

achieved by making them aware of the video codec, which

would make upgrading to a different codec later quite trou-

blesome, or by abstracting the actual bitstream. MPEG-21

gives a specification how such an abstraction has to look

like. Part 7 of MPEG-21 [5] deals with Digital Item Adap-

tion (DIA), more precisely it specifies a Bitstream Syntax

Description Language (BSDL) which is based on the XML

schema as specified by the W3C. The idea behind DIA with

BSDL is that a syntax description of the bitstream is avail-

able and can be used to extract a XML description of the

bitstream. On this abstraction of the bitstream the scaling

is performed and mapped back to the original bitstream via

the BSDL, see fig. 3 for an illustration of the process. As

a result each node in the network only needs to be capable

of understanding and handling DIA as per MPEG-21 part 7.

For bitstreams which do not follow a marker based syntax,

specifically if parsing the bitstream would be required to

generate a description, the approach using BSDL does not

work. For this cases a generic bitstream syntax description

(gBSD) is available in MPEG-21 part 7 (see Panis et al. [8])

which can be used to directly describe the bitstream.

Usually when research is done on in-network adaptation

the focus is on client and server layout as well as compu-

tational demand on the network node which performs scal-

BitstreamBS Scheme Adaption Scheme

BintoBSD

BS Description

BSD Transformation

Adapted BSD

BSDtoBin

Adapted Bitstream

Resource

End User

Adaption Engine

Figure 3. Overview of the adaptation process
using the bitstream syntax description lan

guage.

ing. That is, memory consumption on the network node and

the scaling options as well as resulting video quality un-

der those scaling options are evaluated, e.g. Eeckhaut et al.

[3]. What is missing, especially when considering gBSD

rather than BSDL, is that the transfer of the bitstream de-

scription also takes up bandwidth. Essentially for a fixed

bandwidth the use of a bitstream description reduces the

available bandwidth for the actual bitstream which in turn

results in a reduction of video quality. For similar research

regarding h.264/SVC see Kuschnig et. al. [6].

In section 2 we will describe the MC-EZBC bitstream in

such detail as is necessary to map it to gBSD and provide

possible gBSD descriptions of the bitstream. Section 3 will

look at the overhead generated by gBSD and section 4 will

give a conclusion and outlook.

2 Mapping anMC-EZBC Bitstream to gBSD

In the following the bitstream of the MC-EZBC will be

described with regard to the gBSD mapping. Then we will

give a brief description of the gBSD elements we use to map

the bitstream to gBSD and give two possible mappings. The

scaling option we want to maintain for in-network adapta-

tion reflects which information we will need in the gBSD.

We will focus on the two reasonable end points of the spec-

trum, i.e. full scalability in order to retain the advantage the

wavelet based codec has vs. regular rate-distortion scaling

with a limited number of scaling points reflecting the appli-

cation scenario given in fig. 1.

2.1 MCEZBC Bitstream

The basic layout of the MC-EZBC bitstream is depicted

in the upper part of fig. 4 and a more detailed overview

of the ’image data’ required for fine grain scalability is

given in lower part.The bitstream is lead by a general header

giving resolution, frame rate, prediction options etc., most

of which stay the same during scaling. The header how-

ever has three fields we need to adjust when scaling is per-

formed: a bitrate field giving the bit rate to which the

bitstream is scaled, t_level giving the number of tem-

poral layers dropped and s_level giving the number of

Header Payload

Size GOP n GOP 1 GOP nSize GOP 1

GOP Header Motion Field Image Data

MV Base L. MV Enhancement L.

Image Data

T-LLLL T-HT-LLHT-LLLH

S-0 S-1 S-2 S-n

MSB Bp LSB Bp

Figure 4. Layout of the MCEZBC bitstream.

spatial layers dropped. The header is followed by a GOP

size list giving the size of a GOP without GOP header size

and motion field, i.e. only image data size. For any scaling

done the GOP size list has to be adjusted to reflect the new

size of image data.

Following this general information are the motion and

image data ordered by GOPs in increasing order. Each GOP

contains a GOP header, basically giving scene change infor-

mation, i.e. which frames are encoded as I frames. Follow-

ing the GOP header is the motion field for the current GOP.

The GOP header and motion field are never changed during

scaling, i.e. motion vectors are never scaled with the image

data. Following the motion field is the image data in frame

order of temporal decomposition, c.f. fig. 2 and fig. 4 lower

part.

The layout of the image data consists of a number of

data chunks consisting of size information and data. For

each frame every spatial decomposition level is given as one

chunk where color information and direction of decomposi-

tion are grouped together, fig. 5 illustrates this. The order of

this chunks in the bitstream is from lowest subband to high-

est subband. For scaling, the size information of the chunks

needs to be reset to the reduced data in the chunk, thus a

description of the bitstream has to be at least down to the

level of chunks. For a limited number of scaling options this

would be enough since the chunk data can be subdivided

into blocks which we can remove. However, if we want to

retain the full scalability capability of the wavelet bitstream

we have to go into more detail. In each chunk there is a three

byte header which may never be removed for regular scal-

ing, however when the whole resolution is dropped these

three bytes can be dropped too. Then the data is ordered in

terms of bitplanes, most significant to least significant. The

reason we need the bitplane information is that the scaling

algorithm performs quantization at a bitplane level, so for

an implementation of the scaling algorithm the size infor-

mation of the bitplanes is paramount.

2.2 gBSD Mapping

We use the gBSD fromMPEG-21 DIA for describing the

bitstream. While the gBSD allows more structural informa-

s2

s1s0

s1 s1

s2 s2

Figure 5. Grouping of decompositions for a

frame with two spatial decomposition levels.

tion to go into the description we will keep the bitstream

description simple so as not to generate too much overhead.

The gBSD is prefaced with a dia:DIA root tag spec-

ifying namespaces followed by a dia:Description

tag specifying the description type (gBSDType) followed

by address information. Since the MC-EZBC bitstream

is byte based we set it to addressUnit="byte" and

addressMode="Absolute". The address mode gives

the method of accessing parts of the bitstream, this is re-

flected by the use of start and length attributes in subse-

quent tags. For the bitstream description we need two dif-

ferent types of tags. First we need a copy and paste de-

scriptor stating that a part of the original bitstream should

be carried over to the scaled version. The gBSDUnit tag

is used for this purpose, we give start and length informa-

tion to mark a part of the bitstream to be kept. Additionally

we need access to the size information, in a scaling case

this is not simply a copy from the original bitstream but

needs to be adapted. The Parameter tag is used for this,

which gives the length of the data block to insert into the

bitstream. The actual information contained in the param-

eter is given by the required child Value. The attribute

xsi:type gives the type of data and the content of the tag

gives the actual value. By using parameter and value we

can access the actual value and change it according to the

adaptation, while the gBSDUnit tags let us copy parts of the

actual bitstream. Both parameter and gBSDUnit also have

an attribute marker which allows to give a handle to the

tag to access it directly. For more information on the tags

and attributes used see MPEG-21 part 7 [5].

First we will look at the description of the bitstream for

a two case scenario to get lower bound for the limited case

scenario. The temporal and spatial resolutions stay fixed

and we give the option of scaling to 1024kbps and 512kbps.

We only need to describe the bitstream down to the level of

chunks of image data. Also, since we do not want resolution

dropping the header description is simplified since only the

bitrate field need to be changed. The GOP size list needs

to be described by the parameter tag as it will change when

scaling is done. Motion vectors and GOP headers however

can be put together as one gBSDUnit since they are consec-

utive and will remain unchanged. Following the GOP head-

ers are the chunks of image data, the header is described by

a parameter tag and the data is described by using two gB-

SDUnits reflecting the two scaling options we want. One

...

<dia:Description xsi:type="gBSDType"

addressUnit="byte" addressMode="Absolute">

<gBSDUnit start="0" length="14" marker="hdr1"/>

<Parameter length="2" marker="bitrate Q0">

<Value xsi:type="xsd:unsignedShort">1024</Value>

</Parameter>

<gBSDUnit start="16" length="80" marker="hdr2"/>

...

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">118</Value>

</Parameter>

<gBSDUnit start="545775" length="18" marker="data"/>

<gBSDUnit start="545793" length="100" marker="data Q0"/>

<Parameter length="2" marker="hdr Q0">

<Value xsi:type="xsd:unsignedShort">185</Value>

</Parameter>

<gBSDUnit start="545895" length="21" marker="data"/>

<gBSDUnit start="545916" length="164" marker="data Q0"/>

</dia:Description>

</dia:DIA>

Figure 6. gBSD representation of the flower
sequences scaled to 1024 kbps with marker

for 512kbps.

...

<dia:Description xsi:type="gBSDType"

addressUnit="byte" addressMode="Absolute">

<gBSDUnit start="0" length="14" marker="hdr1"/>

<Parameter length="2" marker="bitrate Q1">

<Value xsi:type="xsd:unsignedShort">512</Value>

</Parameter>

<gBSDUnit start="16" length="80" marker="hdr2"/>

...

<Parameter length="2" marker="hdr Q1">

<Value xsi:type="xsd:unsignedShort">18</Value>

</Parameter>

<gBSDUnit start="545775" length="18" marker="data"/>

<Parameter length="2" marker="hdr Q1">

<Value xsi:type="xsd:unsignedShort">21</Value>

</Parameter>

<gBSDUnit start="545895" length="21" marker="data"/>

</dia:Description>

</dia:DIA>

Figure 7. gBSD representation of the flower
sequence, downscaled to 512kbps.

gBSDUnit locates the data we need for the 512kbps version

of the bitstream, the next describes the additional data for

the 1024kbps case. The rest of the data, in case we start

with a bitstream with bitrate greater than 1024kbps, does

not need to be described since it will be cut out in case of

scaling anyway. Figure 6 gives a part of the description of

the bitstreamwhich can be used to scale to 1024kbps. It also

shows the description of the header where it can be seen that

only the bitrate has to be described as parameter and that it

needs to be set to 1024 to properly reflect the bitrate of the

stream. The resulting description of the stream still con-

sists of two gBSDUnit descriptions discerning between 512

and 1024 kbps. Compare this to fig. 7 which describes the

bitstream for the 512kbps scaling case. The shown part of

the description refers to the same section of the bitstream

as the 1024kbps case. It is clear that the scaling of the bit-

stream also entails a scaling of the gBSD description. But, it

also is clear that adding another scaling option for this fixed

case requires the insertion of another gBSDUnit partition

for each chunk.

The second scenario we want to look at is full grained

scalability. For this case we have to render a finer descrip-

tion of the bitstream down to bitplane level. The overhead

in the header is rather small, we just need to add the resolu-

tion drop fields as parameters. For the GOP size list, GOP

headers and motion vectors nothing changes compared to

the two case scenario. For the description of the image

data chunks however we need a lot more detail and con-

...

<gBSDUnit start="272992" length="1" marker="data sp 59"/>

<gBSDUnit start="272993" length="2" marker="data sp 58"/>

<gBSDUnit start="272995" length="1" marker="data sp 57"/>

<Parameter length="2" marker="hdr">

<Value xsi:type="xsd:unsignedShort">19</Value>

</Parameter>

<gBSDUnit start="272998" length="6" marker="data sp 79"/>

<gBSDUnit start="273004" length="3" marker="data sp 71"/>

<gBSDUnit start="273007" length="1" marker="data sp 67"/>

<gBSDUnit start="273008" length="3" marker="data sp 63"/>

<gBSDUnit start="273011" length="5" marker="data sp 62"/>

<gBSDUnit start="273016" length="1" marker="data sp 59"/>

...

Figure 8. Detailed gBSD representation of the

flower sequence, downscaled to 512kbps.

sequently a lot more gBSDUnit tags. First we need the sub-

band header, which will not be changed in any case. This

can either be described as an extra tag or can be contained in

the first bitplane following the size information. We choose

the latter version since the scaling algorithm must be aware

of the header anyway when calculating the overhead. For

the rest of the image data we have to model each bitplane

as a separate gBSDUnit since the size of the bitplanes is re-

quired by the scaling algorithm. Despite the possibility that

a bitplane is reduced in size we still can describe them with

a gBSDUnit because the actual content does not change and

a reduction in size can be achieved by resetting the length

attribute. Figure 8 shows a part of the gBSD description for

a downscaled version to 512kbps, the bitplane quantization

can be clearly seen, i.e. the lowest bitplane in the figure is

the 57th.

In our examples the description is kept as simple as pos-

sible so as not to use up too much bandwidth. However, for

an actual application it would be beneficial to retain some

structure by nesting gBSDUnits. While this increases the

size of the gBSD description it makes XSLT writing much

easier and helps to avoid errors.

3 Evaluation of gBSD Overhead

In the two case scenario we can give a good approxi-

mation of the overhead. The framerate f in the video se-

quence and the encoded sequence stay the same but the

number of GOPs is dependant on the temporal decompo-

sitions t. The number of spatial decompositions s depends

on the resolution of the original and can change from se-

quence to sequence. We also have an approximate number

of bytes each descriptive element of the gBSD requires. The

number of bytes a Parameter p and gBSDUnit g require are

105 and 55 bytes respectively. This numbers are calculated

with average variable length information (i.e. length value,

start value), additionally we have a overhead for the DIA

declaration which is 393 bytes. This means that the start

and length fields as well as well as the value of parameters

are only estimated since this information can vary widely.

However, the use of a typical marker element is included

since the marker will be a near constant in length. We can

now calculate an approximate size of the gBSD. The main

header consists of one changeable field with size p and two

gBSDUnits of size g which stay constant. With a temporal

resolution of t we have a GOP size of 2t and the number of

Scenario kbps size compressed

Bitstream full 5.5M

Bitstream 1024 540k

Bitstream 512 272k

Detailed gBSD full 1.2M 112k

Detailed gBSD 1024 400k 32k

Detailed gBSD 512 268k 20k

Two case gBSD full 84k 8k

Two case gBSD 1024 84k 8k

Two case gBSD 512 64k 4k

Table 1. Comparison of bitstream and gBSD
file sizes for the flower sequence with 128

frames, GOP size of 128 and two spatial de

compositions.

GOPs is G = f/2t, for each GOP the header is followed

by a GOP size entry as a parameter p. For each GOP we

have a single gBSDUnit for the GOP header and motion

vectors. Then for each frame we have a single chunk for

each spatial decomposition level (s + 1)g, i.e. if we do two
spatial decompositions we have three subbands, see fig. 5.

The chunks here have to be separated into the number of

cases C we want to deal with. The resulting approximation

in byte is thus size S:

S = 393+p + 2g︸ ︷︷ ︸
header

+ G ∗ p︸ ︷︷ ︸
GOP size list

+G (g + 2t(s + 1)(p + Cg))︸ ︷︷ ︸
single GOP

For a sequence with 128 frames, t = 7 and s = 2 this

would estimate a gBSD file size of 81kb for the two case

gBSD and 60kb for the downscaled version. This is com-

pared experimentally to the actual file sizes of the flower

sequence in table 1. The table gives the file size of the bit-

stream under the bitstream ’scenario’, it also gives the two

case gBSD file sizes scaled and unscaled. Note that the de-

scription for full is simply the complete gBSD containing

both scenarios. When scaling to 1024kbps we still use the

full description and for 512kbps the gBSD is reduced by

the gBSDUnit sizes describing the 1024kbps parts of the

bitstream. As can be seen the approximation given reflects

the actual gBSD size quite accurately. Note that other se-

quences have a similar size for the limited case scenario,

differing by less than 2%.

The transmission of the gBSD description will usually

not be in plain text. XML which is the basis of gBSD can

be compressed quite well, see Augeri et al. [2]. We used

bzip2 to generate the compressed file sizes as given in ta-

ble 1. While this may not be the best way to compress the

data with regard to network nodes, where a XML aware

compression scheme would be beneficial to save memory

and time (see Timmerer et al. [9]), we will still use it as a

baseline as it offers better compression.

For the detailed description case it is not possible to give

a formula since the description, especially when scaling is

performed, is heavily dependant on the layout of the bit-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

g
B

S
D

 f
ile

s
iz

e
 i
n

 k
b

kbps

flower
foreman

akiyo
waterfall

Figure 9. File size of the detailed gBSD de

scription depending on the bitrate for a num

ber of sequences, each with 128 frames and
one GOP.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
ti
o
 o

f
c
o
m

p
re

s
s
e
d

 g
B

S
D

 t
o

 f
ile

s
iz

e

kbps

flower
foreman

akiyo
waterfall

Figure 10. Ratio of compressed gBSD de

scriptions to bitstream size plotted over kbps
for various sequences.

planes. The number and size of the bitplanes however vary

widely depending on the content of the sequence. During

scaling it is possible that a number of bitplanes with a low

amount of data are removed which reduces the gBSD file

size drastically. For a different sequence the same scaling

operation could only reduce the number of bytes in the af-

fected bitplanes which would leave the gBSD size nearly

unchanged. Figure 9 gives a plot of gBSD file size over

kbps for a number of sequences. What is interesting here is

that the gBSD file size is higher for low motion videos like

Akiyo. This is due to the fact that sequences like Akiyo can

be predicted very well which results in a low file size. Con-

sequently, when scaling to a certain bitrate is performed,

fewer bitplanes have to be dropped and likewise fewer bit-

plane descriptions are deleted. This results in a larger gBSD

file when compared to high motion sequences.

Figure 10 shows an overview over the ratio of com-

pressed gBSD descriptions to bitstream size. What can be

seen is that the ratio gets worse as the bitstream size is re-

duced. While the description of the bitplanes scales along

with the bitstream there is also a fixed amount of data con-

sisting of DIA overhead and bitstream headers. The effect

of low reduction in bitplane description and fixed overhead

is especially detrimental. This effect is especially observed

for low motion sequences like Akiyo where the compressed

gBSD size can reach up to 25% of the bitstream size.

4 Conclusion

We have seen that the overhead of the gBSD descrip-

tion can be quite high depending on the actual bitrate of

the video stream. This is true for both a limited case sce-

nario as well as for a detailed description. The difference is

that for a limited case scenario we can precalculate the esti-

mated size of the description and it is the same whether we

use two cases for a 2048kbps or a 128kbps bitstream. For

the detailed description we retain the full flexibility of the

wavelet codec even for in-network adaptation. At the same

time however the description can become quite large, this

is especially true for video sequences which attain a high

compression ratio with the codec. Thus the use of either

limited cases or detailed description depends on the appli-

cation scenario. The main problem with the detailed de-

scription is that the network node can not judge how much

of the gBSD will remain after scaling. As such, it is hard to

allocate an overhead bandwidth to calculate the target rate

to which to scale the video sequence. It would be possible to

do a number of iterations but doing so would result in delay

and higher computational load on the node. As such, the de-

tailed description is somewhat problematic to use when the

gBSD actually has to be transfered over the network link.

However, there are scenarios when this is not necessary, e.g.

the example in fig 1. Here we have a high bandwidth link to

the access point where we can transfer the video sequence

without problem. The ability to do a fine grained scaling

is beneficial here since we can optimally use the available

bandwidth to the client. Furthermore, the end client does

not need the gBSD anymore so the possible overhead is of

no concern here. The limited case scenario is for applica-

tions where the gBSD needs to be sent too. Since we can

approximate how much overhead the description will take

the bitstream can be scaled with that in mind. This pre-

vents bandwidth problems and still enables us to do scaling,

the only drawback is that we loose the full flexibility of the

wavelet codec once the gBSD is generated. However, for

generation of the gBSD we still enjoy that same flexibility.

Since the bitstream does not need to be altered we can tailor

the gBSD specifically to any application scenario given.

Overall we have seen that there is a cost involved in using

gBSD to enable in-network adaptation. On the other hand

we can bring the flexibility of wavelet based codecs to the

network. This brings us closer to the UMA idea of serving

every possible end device in a flexible way without having

to re-encode the video sequence when new application sce-

narios arise.

References

[1] N. Adami, A. Signoroni, and R. Leonardi. State-of-

the-art and trends in scalable video compression with

wavelet-based approaches. Circuits and Systems for

Video Technology, IEEE Transactions on, 17(9):1238–

1255, Sept. 2007.

[2] C. J. Augeri, D. A. Bulutoglu, B. E. Mullins, R. O.

Baldwin, and I. L. C. Baird. An analysis of xml

compression efficiency. In ExpCS ’07: Proceedings

of the 2007 workshop on Experimental computer sci-

ence, page 7, New York, NY, USA, 2007. ACM.

[3] H. Eeckhaut, H. Devos, P. Lambert, D. De Schrijver,

W. Van Lancker, V. Nollet, P. Avasare, T. Clerckx,

F. Verdicchio, M. Christiaens, P. Schelkens, R. Van de

Walle, and D. Stroobandt. Scalable, wavelet-based

video: From server to hardware-accelerated client.

Multimedia, IEEE Transactions on, 9(7):1508–1519,

Nov. 2007.

[4] S.-T. Hsiang and J. W. Woods. Embedded video

coding using invertible motion compensated 3-D sub-

band/wavelet filter bank. Signal Processing: Image

Communication, 16(8):705–724,May 2001.

[5] ISO/IEC 21000-7:2007. Information technology –

Multimedia framework (MPEG-21) – Part 7: Digital

Item Adaptation, Nov. 2007.

[6] R. Kuschnig, I. Kofler, M. Ransburg, and H. Hellwag-

ner. Design options and comparison of in-network

H.264/SVC adaptation. Journal of Visual Communi-

cation and Image Representation, Dec. 2008.

[7] L. Lima, F. Manerba, N. Adami, A. Signoroni, and

R. Leonardi. Wavelet-based encoding for HD applica-

tions. In Multimedia and Expo, 2007 IEEE Interna-

tional Conference on, pages 1351–1354, July 2007.

[8] G. Panis, A. Hutter, J. Heuer, H. Hellwagner,

H. Kosch, C. Timmerer, S. Devillers, and M. Amielh.

Bitstream syntax description: a tool for multimedia re-

source adaptation within MPEG-21. In Special Issue

on Multimedia Adaptation, volume 18 of Signal Pro-

cessing: Image Communication, pages 721–747, Sept.

2003.

[9] Timmerer, C., Kofler, I., Liegl, J., and Hellwagner,

H. An Evaluation of Existing Metadata Compression

and Encoding Technologies for MPEG-21 Applica-

tions. In Proceedings of the 1st IEEE International

Workshop on Multimedia Information Processing and

Retrieval (IEEE-MIPR 2005), pages 534–539, Irvine,

California, USA, December 2005.

[10] A. Vetro, C. Christopoulos, and T. Ebrahimi. From

the guest editors - Universal multimedia access. IEEE

Signal Processing Magazine, 20(2):16 – 16, 2003.

[11] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M.

Peha. Streaming video over the internet: approaches

and directions. InCircuits and Systems for Video Tech-

nology, IEEE Transactions on, volume 11, pages 282–

300, Mar 2001.

[12] Y. Wu, A. Golwelkar, and J. W. Woods. MC-

EZBC video proposal from Rensselaer Poly-

technic Institute. ISO/IEC JTC1/SC29/WG11,

MPEG2004/M10569/S15, Mar. 2004.

