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Summary. We take a pragmatic approach to numerical integration of unbounded
functions. In this context we discuss and evaluate the practical application of a
method suited also for non-specialists and application developers. We will show that
this method can be applied to a rich body of functions, and evaluate it’s merits in
comparison to other methods for integration of unbounded integrals. Furthermore,
we will give experimental results to illustrate certain issues in the actual application
and to confirm theoretic results.

1 Introduction

The basic concept of any QMC method for numerical integration is to ap-
proximate the integral by a finite sum, such that

I(f) :=
∫

Us

f(x)dx ≈ 1
N

N∑
n=1

f(xn) =: I ′N (f)

where xn are suitably chosen and Us is the unit cube. To identify suitable,
i.e. uniformly distributed, points xn the star discrepancy is defined as

D∗
N := D∗

N(x1, . . . , xn) = sup
J∈F

∥∥∥∥#{x|x ∈ J}
N

−m(J)
∥∥∥∥

where F is the family of all subintervals of the form J =
∏d

i=1[0, ti) ∈ Us

with volume m(J). The approximation error

EN (f) := |I ′N (f)− I(f)|
depends on D∗

N and the variation V (f) in the sense of Hardy and Krause, see
[Nie92] or [Owe04b] for details, of the function f . The dependency is stated
in the Koksma-Hlawka inequality
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EN (f) ≤ V (f)D∗
N (f)

which is the fundamental error bound for quasi-Monte Carlo methods.
A big problem with numerical integration is the fact that the variation is

rather restrictive. Even simple functions like m(x) = max(x1 +x2 +x3− 1, 0)
are of unbounded variation V (m) = ∞, see [Owe04b]. Also if a function is
unbounded the variation is unbounded resulting in an error estimate EN (f) ≤
∞.

There have already been a number of methods proposed in literature which
aim at tackling the problem of numerically integrating unbounded functions,
these will be described in Section 2. The method proposed in this work is
discussed in detail in Section 3. In Section 4 we give experimental results which
indicate that the method may even be applied to functions not contained in
the restrictive class of functions it is proved for, associated problems are also
discussed.

2 Methods for the Numerical Integration of Unbounded
Functions

In the case of singularities the Koksma-Hlawka inequality becomes meaning-
less since functions containing singularities are unbound and thus of infinite
variation. When examining methods of numerical integration for integrands
with singularities usually the distinction is made whether the singularities are
in the interior of the unit cube or on the boundary.

2.1 Singularities on the Boundary

Sobol’ [Sob73] investigated a number of functions which have singularities in
the origin. By restricting the growth of the integral by

DN

∫ 1

aN

|f(x)|dx = o(N)

for N →∞, where aN = min1≤i≤N xi, he shows that

lim
N→∞

1
N

N∑
µ=1

f(Pµ) =
∫

Us

f(P )dP

holds, but unfortunately fails to give an error bound. He allows one dimen-
sional functions f(x) to have a rational singularity 0 < ξ < 1 but reduces
them to functions with singularities in the origin. In the multi dimensional
case Sobol’s test function is f(x) = x−β1

1 · · ·x−βs
s where the growth condition

holds if ∀i βi < 1.
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An important class of methods deals with point generation sequences
which avoid the corners. Owen [Owe04a] deals with singularities by replacing
the part of the function which is not touched by the numerical integration,
i.e. the part lying in the hyperbolic or L-shaped region avoided by the Hal-
ton sequence, by a bounded extension of the function. This way he attains a
finite variation for the function and can prove error bounds for the numerical
integration.

Definition 1. Let 1 > ǫ > 0 then the following regions are subsets of the
s-dimensional unit cube Us = [0, 1]s

Ho(ǫ) = {x ∈ Us|
s∏

i=1

xi ≥ ǫ} H(ǫ) = {x ∈ Us|
s∏

i=1

min(xi, 1− xi) ≥ ǫ}

Lo(ǫ) = {x ∈ Us| s
min

1≤i≤s
xi ≥ ǫ} L(ǫ) = {x ∈ Us| min

1≤i≤s
min(xi, 1− xi) ≥ ǫ}.

The region Ho excludes a hyperbolic region near the origin and H excludes
hyperbolic regions near all corners of the unit cube. Likewise, Lo excludes a
L-shaped region near the origin and L near all corners.

Definition 2. Let 1 > ǫ > 0, then if a sequence of N points PN which fulfills

∀x ∈ PN ⇒ x ∈ Ho(ǫ)

we say the sequence avoids the origin in a hyperbolic fashion. The same holds
for H ( avoids all corners), Lo ( in an L-shaped fashion) and L ( avoids all
corners).

Remark 1. It is not unusual to differentiate between corners since a given
sequence usually doesn’t avoid all corners to the same degree, i.e. with the
same ǫ.

Owen shows that the Halton sequences avoid all corners in a hyperbolical
sense. He also shows that for a finite C > 0 the Halton points x1, . . . , xn avoid
the hyperbolic region {x|∏j xj ≤ Cn−1}, while independent uniform points
xn enter that region infinitely often, with probability one. It is also shown
that while points from the Halton sequence avoid the 0 and 1 corner stronger
than independent uniform points do this doesn’t hold for all other corners.
To show an error bound for numerical integration with point sequences which
avoid the origin in a hyperbolic {x ∈ [0, 1]d|∏1≤i≤d xi ≥ ǫ} or L-shaped
{x ∈ [0, 1]d|min1≤i≤d xi ≥ ǫ} way Owen also imposes growth conditions on
the functions.

Hartinger et al. show in [HKZ05] that generalized Niederreiter sequences
possess corner avoidance properties similar to Halton sequences around the
origin. They also show the corner avoidance rates for Halton and Faure se-
quences for corners different than the origin. To get efficient QMC rules for the
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integrands one has to find point sets satisfying the condition
∏s

i=1 x
(i)
n ≥ cN−r

with small r as stated in [Owe04a] or for an all corner case when the avoidance
condition is written as min1≤n≤N

∏s
i=1 min(1− x

(i)
n , x

(i)
n ) ≥ cN−r.

They show that for each point xn, 0 ≤ n < bl, of a generalized Niederreiter
(t, s)-sequence in base b the bound

∏s
i=1 x

(i)
n ≥ b−l−t−s holds.

Kainhofer, Hartinger, and Tichy [HKT04] also dealt with QMC methods
for multidimensional integrals with respect to a measure other than the uni-
form distribution. They allow the integrand to be unbounded on the lower
boundary of the interval and justify the “strategy of ignoring the singu-
larity” by using weighted integration with a non-uniform distribution. This
means integration problems of the form I[a,b] :=

∫
[a,b] f(x)dH(x) where H

denotes a s-dimensional distribution with support K = [a,b] ⊂ Rs and f
is a function with singularities on the left boundary of K. To use a gen-
eralized version of the Koksma-Hlawka inequality they have to define a H-
discrepancy of ω = (y1, . . .) which measures the distribution properties of the
sequence. It is defined as DN,H(ω) = supJ⊂K |N−1AN (J, ω) − H(J)| where
AN counts the number of elements in (y1, . . . , yN ) falling into the interval J,
e.g. AN (J, ω) =

∑s
n=1 χJ (yn), and H(J) denotes the probability of J ⊂ K

under H . With this DN,H they can define the Koksma-Hlawka inequality for
this case as |IK −N−1

∑N
n=1 f(yn)| ≤ V (f)DN,H(ω).

While the authors state that there is a certain lack of sequences with low
H-discrepancy they also propose a technique for constructing such sequences
by using the Hlawka and Mück method [HM72]. However, for such a sequence
ω̃ there might be some elements ỹk which attain 0. Since the singularities of
f(x) are on the lower boundary these sequences are not directly suited to be
used with the numerical integration, however a simple change is proposed,
generating a new sequence ω̄.

For the multi-dimensional case the idea is basically the same, Kainhofer
et al. state a convergence criterion as follows. Similar to the one-dimensional
case the construction of H-distributed sequences leads to problems when using
Hlawkas method. However an adjustment to the generated sequence is given
by the authors.

In [HK05] Hartinger and Kainhofer deal with the problem of generating
low discrepancy sequences with an arbitrary distribution H . While they did
so before ([HKT04]) they identify some disadvantages which carry over to the
transformed sequence they proposed. They specifically deal with the property
of the Hlawka-Mück method that for some applications the points of the
generated sequence of a set with cardinality N lie on a lattice with spacing
1/N . Their solution is to use a smoothed approximation where the values
between the jumps are interpolated in the empirical distribution function.

In order to integrate functions with singularities at the boundary it will
be convenient to shift the interpolated sequences in an appropriate way to
avoid regions that lie too close to that singularity. The authors define how to
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generate a new sequence ω̂ from the constructed sequence ω̄ which has the
same distance to the boundaries as the original sequence ω.

They show, by utilizing the same techniques as Owen in [Owe04a], that
the sequence can be used to integrate improper integrals which have a singu-
larity in the corner. They also show an error estimate for the L-shaped and
hyperbolic corner avoidance cases.

De Doncker [dDG03] reduces the error rate of the methods of Klinger and
Sobol’ by constructing extensions which reduce the approximation error. She
looks at the leading asymptotic order of the error and generates extrapola-
tions for such functions in such a way that error terms vanish. She has shown
that for one dimensional functions with algebraic end point singularities her
method works very well. Furthermore, it gains significant convergence accel-
eration when applied to some logarithmic and interior algebraic singularities.
Additionally an asymptotic error expansion was derived for integrands with
algebraic singularities at the boundaries of the d-dimensional unit cube.

The improvements were found to occur in stages, as each error term van-
ishes. She also states that further research is needed to determine conditions
for which an exact order of leading error terms can be established, and thus
a proper extrapolation can be made.

2.2 Singularities in the Interior

In [Owe04c] Owen applied and extended his results from [Owe04a] to singu-
larities z ∈ [1, 0]d inside the unit cube. However since the sequences do not
avoid the region of the singularity, which can be in the interior of the unit
cube, he proposes using the extended function f̃ instead of the original func-
tion f for numerical integration. Like in [Owe04a] he requires the function
to obey a growth condition. He then defines an extendible region K around
singularity z for which ||x − z||p ≥ ν holds for some ν > 0, additionally
he defines an anchor c ∈ K for which rect[c, y] ⊂ K ∀y ∈ K holds, where
rect[x, y] =

∏s
i=1[min(xi, yi), max(xi, yi)] is the rectangular hull of x and y,

thus he can use Sobol’s extension f̃(x). With the help of the extendible re-
gion, f̃ and the growth condition he gives an error estimate for any Lebesgue
measurable function f for the integration.

However, Owen states in the conclusion that it is not clear if such a good
extension to f can be found for arbitrary level sets.

Klinger [Kli97] shows that the numerical integration of a function is still
possible when it has a singularity in the origin, or can be transformed such that
the singularity is in the origin, by removing the point closest to the origin from
the integration. This basically excludes an elemental interval containing the
origin from the estimation, for Halton sequences he defines similar intervals.
Only Halton and (0, s)-sequences are used and Klinger uses the properties of
elemental intervals to find points which are near the singularity and thus not
included in the numerical integration. While the (0, s)-sequence is a Niederre-
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iter sequence, and thus a notion of elemental intervals already exits, Klinger
needs to define a similar notion for Halton sequences:

Let ak be positive rational numbers which satisfy
∑s

k=1 1/ak ≥ 1 and
define positive numbers, coprime integers pk, qk by pk/qk := ak. Now let
R =

∏s
k=1[δk(δk − CN−1/ak), (1 − δk)CN−1/ak + δk) where δk ∈ {0, 1} and

C = min1≤k≤s b−qk

k . Then at most one of the first N points x0, . . . , xN of
Halton’s sequence falls into R.

Consequently Klinger states that since x0 = 0, this argument also shows
that none of the first N points of a Halton sequence xn fall into the above
interval when δk = 0 for all 1 ≤ k ≤ s. He gives the error bounds for Halton
and (0, s)-sequences.

The computational experiments included in the paper compare the error
bounds of the Halton, Sobol’ and Niederreiter sequences. The error bounds
are shown to be reasonable and also that Halton sequences have, for low di-
mension, basically the same characteristics as Sobol’ or Niederreiter sequences
but are less computationally expensive. For high dimension, shown for dimen-
sion 10 in the experiments, Halton sequences are worse for at least moderate N.

The method proposed in the next section is rather simple in application,
and can deal with arbitrary patterns of singularities. However, this entails a
rather problematic (at least theoretical) restriction to the class of functions
to which it can be applied.

3 A Pragmatic Approach

A number of people, starting with Sobol’ in [Sob73], have conducted research
for error bounds for improper integrals. One of the more recent results is by
Zinterhof [Zin02].

Definition 3. For a function f(x) and a B > 0 the functions fB(x) and
f̂B(x) are defined as

fB(x) =

{
f(x) |f(x)| ≤ B

0 |f(x)| > B

f̂B(x) =

{
0 |f(x)| ≤ B

f(x) |f(x)| > B.

Definition 4. Consider the class of s-variate functions, f(x1, . . . , xs) 0 ≤
xi ≤ 1 i = 1, . . . , s, consisting of all functions which fulfill

(a) I(|f̂B |) = O(B−β) for some β > 0
(b) V (fB) = O(Bγ) for some γ ≥ 1.

This class will be called C(β, γ).



A Pragmatic view on Numerical Integration of Unbounded Functions 7

Theorem 1. Let f ∈ C(β, γ), D∗
N be the discrepancy of the set of nodes

x1, . . . ,xn and B = D∗
N
−1/(β+γ), then the estimate

I(f) =
1
N

N∑
n=1

fB(xn) + O(D∗
N

β/(β+γ))

holds, where I(f) = I(fB) + I(f̂B).

Proof. From
I(f) = I(fB) + I(f̂B)

using the Hlawka-Koksma inequality we get∣∣∣∣∣I(fB)− 1
N

N∑
n=1

fB(xn)

∣∣∣∣∣ ≤ V (fB)D∗
N ≤ C1(f)BγD∗

N

and from condition (a) we get

|I(f̂B)| ≤ C2(f)B−β .

Consequently

EN =

∣∣∣∣∣I(f)− 1
N

N∑
n=1

fB(xn)

∣∣∣∣∣ ≤ C1(f)BγD∗
N + C2(f)B−β ,

which takes it’s minimum of order when using

B = D∗
N

−1
β+γ .

Thus for an error estimate we get

EN ≤ C(f)D∗
N

β/(β+γ)

where C(f) is a constant depending on f .

Remark 2. Zinterhof [Zin02] also shows that the error bound is optimal.

Remark 3. Since the optimal B is depending on D∗
N , β and γ it is in any case

depending on N . Also, if either of D∗
N , β or γ is depending on s then B is

also depending on s.

3.1 The Class D(β, γ)

An important issue remains: the richness of the class C(β, γ). Generally if
the jump line, i.e. f(x) = B, x ∈ Us, is not axis parallel the variation is
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unbounded and consequently f /∈ C(β, γ) since condition (b) (in Definition 4)
is violated 3. It can clearly be seen that the class C(β, γ) is very restrictive.

Consider the class T of bounded step functions t ∈ T , t(x1, ..., xs) : Us →
C. These are functions which are piecewise constant on Us where Us is
partitioned into a finite number of, pairwise disjoint, intervals of the form∏s

i=1[ai, bi). All functions t ∈ T are of bounded variation.

Definition 5. Let the class D(β, γ) be defined as D(β, γ) := {f |f ∈ C(β, γ)
and fB ∈ T }. If it is clear from context we will abbreviate and write D.

Remark 4. Using the definition of D we can easily state T ⊂ D ⊂ C :=
C(β, γ).

It is well known that if g ∈ L1, which implies
∫

Us |g(x)|dx < ∞, then there
exists for every ǫ > 0 a tǫ(x) ∈ T such that∫

Us

|g(x)− tǫ(x)|dx < ǫ.

Also since T ⊂ D we can easily write∫
Us

|g(x)− dǫ(x)|dx < ǫ,

with dǫ(x) ∈ D. Generally, the functions ∈ D will approximate a given func-
tion g ∈ C ⊂ L1 better than functions ∈ T .

In any case, C is rich since T is rich and T ⊂ C. The restrictiveness of
C(β, γ) is a direct result of the restrictiveness of the variation in the sense of
Hardy and Krause.

3.2 The function f(x) = max(x1, ..., xs)−β

Now let us consider the function f = 1
max(x1,...,xs)β with 0 < β < 1. Certainly

f /∈ T and limx→0 f(x) = ∞, thus if we can show that f ∈ C we have T ( C.
To do this we need to estimate the integral value and variation of the function
f to see if conditions (a) and (b) in Definition 4 are met.

Integral Value

Theorem 2. Let f = 1
max(x1,...,xs)β with 0 < β < 1, then

∫
Is f(x)dx = s

s−β

0 < β < 1.

Proof. With induction. For s = 1 the claim holds since
∫ 1

0
x−β

1 dx1 =
1

−β+1x−β+1
1 |10 = 1

1−β .
Now
3Thanks to Reinhold Kainhofer for pointing this out.
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0

. . .

∫ 1

0

max(x1, . . . , xs)−βdx1 . . . dxs =

=
∫ 1

0

(∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xs)−βdx1 . . . dxs−1

)
dxs =

=
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)−βdxs.

Let us consider
∫ 1

0
max(x1, . . . , xs−1, xs)−βdxs, and let x̂s := max(x1, . . . , xs−1),

thus
∫ 1

0 max(x1, . . . , xs−1, xs)−βdxs =
∫ 1

0 max(x̂s, xs)−βdxs where

max(x̂s, xs) =

{
xs xs ≥ x̂s

x̂s xs < x̂s.

Thus∫ 1

0

max(x̂s, xs)−βdxs =
∫ x̂s

0

x̂−β
s dxs +

∫ 1

x̂s

x−β
s dxs =

−βx̂−β+1
s + 1
1− β

.

Now we have∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)−βdxs =

=
∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1
1− βx̂−β+1

s

1− β
=

=
1

1− β

[
1− β

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , x
−β+1
s−1 dx1 . . . dxs−1

]
.

Now using the induction hypothesis we get∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs−1

∫ 1

0

max(x1, . . . , xs)−βdxs =

=
1

1− β

[
1− β

s− 1
s− 1− β + 1

]
=

s− β − sβ + β

(1− β)(s− β)
=

s

s− β
.

Remark 5. In a similar fashion we obtain
∫

Is f̂B(x)dx = s
s−β ( 1

B )
s−β

β .

Variation

Definition 6. Let P be the set of all partitions of the s-dimensional unit cube
Is then the variation of a function f in the sense of Vitali is defined as

VV (f) := sup
P∈P

∑
p∈P

|∆(f ; p)|,

where ∆(f ; p) is the s-fold alternate sum, i.e. adjacent corners have opposite
sign, of the function values on the corners of the interval p.
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Definition 7. Let n ∈ N and 0 = t0 < . . . < tn−1 < tn = 1, ti ∈ Is 0 ≤ i ≤
n. Now let Zs(t0, . . . , tn) = {{t1, . . . , tn}s} be the set of s-tuples formed by
t0, . . . , tn. A partition P of s-dimensional unit cube Is = [0, 1)s is called valid
partition if there is exists a Zs(t0, . . . , tn) such that P = {{[t0, t1), [t1, t2),
. . . , [tn−1, tn)}s} where [tk−1, tk)[tl−1, tl) = [tk−1, tk) × [tl−1, tl). We say the
partition P belongs to Zs(t0, . . . , tn) and write P (Zs(t0, . . . , tn)).

Remark 6. From the construction of Zs(t0, . . . , tn) it follows that for a valid
partition only the intervals of the form [tk−1, tk) × · · · × [tk−1, tk) 1 ≤ k ≤ n
cross the principal diagonal, i.e. the restriction of the principal diagonal of the
unit cube to such an interval is the principal diagonal of the interval.

Remark 7. Every partition of Is can be refined to a valid partition.

Lemma 1. VV (max(x1, . . . , xs)) = 1 for (x1, . . . , xs) ∈ Is.

Proof. The function f(x1, . . . , xs) = max(x1, . . . , xs) fulfills max(x1, . . . , xk−1,
xk, xk+1, . . . , xs) = xk for max(x1, . . . , xk−1, xk+1, . . . , xs) ≤ xk. Let In1,...,ns =
[tn1−1, tn1)×· · ·×[tns−1, tns) be an interval of the valid partition P (Zs(t0, . . . , tn)),
which doesn’t cross the principal diagonal (x1, . . . , xs) = t(1, . . . , 1) 0 ≤
t ≤ 1. Now we can write VV (f ; In1,...,ns) = |∑1

τ1=0 · · ·
∑1

τs=0 (−1)τ1+···+τs

max(tn1−1 + τ1(tn1 − tn1−1), . . . , tns−1 + τs(tns − tns−1)|. Since In1,...,ns is not
on the principal diagonal of Is there is a k0, 1 ≤ k0 ≤ s such that

max
(
tn1−1 + τ1(tn1 − tn1−1), . . . , tnk0−1+

τk0(tnk0
− tnk0−1), tnk0

, tnk0+1 + τk0+1(tnk0
− tnk0−1), . . .

)
= tnk0

and

max (tn1−1 + τ1(tn1 − tn1−1), . . . , tns−1 + τs(tns − tns−1)) =
= tnk0−1 + τk0(tnk0

− tnk0−1)

for all τ1, . . . , τk0−1, τk0+1, . . . , τs, ∀i : τi ∈ {0, 1}.
It follows that

VV (f ; In1,...,ns) =

∣∣∣∣∣
1∑

τ1=0

. . .

1∑
τk0−1=0

1∑
τk0+1=0

. . .

1∑
τs=0

(−1)τ1+···+τk0−1+τk0+1+···+τs(tnk0
− tnk0−1)

∣∣∣∣∣ =

= (tnk0
− tnk0−1)

∣∣∣∣∣
1∑

τ1=0

. . .

1∑
τk0−1=0

1∑
τk0+1=0

. . .

1∑
τs=0

(−1)τ1+···+τk0−1+τk0+1+···+τs

∣∣∣∣∣ = 0.



A Pragmatic view on Numerical Integration of Unbounded Functions 11

If on the other hand In1,...,ns lies on the principal diagonal of Is, then
n1 = · · · = ns = n0 and In1,...,ns=In0,...,n0= [tn0−1, tn0)× [tn0−1, tn0)× . . .×
[tn0−1, tn0), then

VV (f ; In0,...,n0) =

∣∣∣∣∣
1∑

τ1=0

. . .

1∑
τs=0

(−1)τ1+···+τs

max (tn0−1 + τ1(tn0 − tn0−1), . . . , tn0−1 + τs(tn0 − tn0−1))

∣∣∣∣∣ =

=

∣∣∣∣∣
1∑

τ1,...,τs=0

(−1)τ1+···+τstn0−1 max(τ1, . . . , τs)(tn0 − tn0−1)

∣∣∣∣∣ =

=

∣∣∣∣∣tn0−1

1∑
τ1,...,τs=0

(−1)τ1+···+τs +

(tn0 − tn0−1)

(
1∑

τ1,...,τs=0

(−1)τ1+···+τs −
1∑

τ1,...,τs=0

(−1)τ1+···+τs

)∣∣∣∣∣ =

= |tn0−10 + (tn0 − tn0−1)(0 − 1)| = tn0 − tn0−1.

Then holds VV (f ; Is) =
∑n

n0=1(tn0 − tn0−1) = 1, where VV (f ; Is) is at-
tained already at the principal diagonal of Is.

Remark 8. If g(x) in [0, 1] is monotone or of finite variation Var(g) then
VV (g(max(x1, . . . , xs); Is)) = |g(1) − g(0)| or VV (g(max(x1, . . . , xs); Is)) =
Var(g).

Remark 9. Let 0 ≤ ak < bk, 1 ≤ k ≤ s then for Ia,b =
∏s

k=1[ak, bk) we
analogously get VV (g(max(x1, . . . , xs)); Ia,b) = |g(b)− g(a)| for a1 = · · · = as

and b1 = · · · = bs, otherwise VV (g(max(x1, . . . , xs)); Ia,b) = 0. The variation
in the sense of Vitali of functions g(max(x1, . . . , xs)) is concentrated on the
principal diagonal of the unit cube.

Remark 10. For functions f = g(max(x1, . . . , xs))

VHK(f ; Is) = VV (f ; Is)

holds. The variation in the sense of Hardy and Krause is defined as

VHK(f ; Ia,b) =
∑

J⊂Is

VV (f ; J)

where J are all k-dimensional faces {(u1, . . . , us) ∈ Is|uj = 1, j 6= i1, . . . , ik}
with 1 ≤ k ≤ s and 1 ≤ i1 < · · · < ik ≤ s. Since for k < s there are
some uj = 1, the function f = g(max(x1, . . . , xt−1, 1, xt+1, . . . , xs)) = g(1),
t 6= i1, . . . , ik, is constant and consequently VV (f ; J) = 0, ∀J ( Is.
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Let now g(x) = 1/xβ, 0 < x ≤ 1, 0 < β < 1 and fβ(x1, . . . , xs) =
1/ max(x1, . . . , xs)β , (x1, . . . , xs) ∈ Is. Now let

f̂β,B =

{
0 fβ(x1, . . . , xs) > B, max(x1, . . . , xs) < 1/Bβ = B′

fβ(x1, . . . , xs) fβ(x1, . . . , xs) ≤ B, max(x1, . . . , xs) ≥ 1/Bβ = B′,

and

f̃β,B =

{
fβ(B′, . . . , B′) = B fβ(x1, . . . , xs) > B

fβ(x1, . . . , xs) fβ(x1, . . . , xs) ≤ B,

and

χβ,B =

{
B fβ(x1, . . . , xs) > B

0 fβ(x1, . . . , xs) ≤ B,

and clearly f̃β,B = f̂β,B + χβ,B. It can be easily seen that VV (χβ,B; Is) =
B and from the remarks before we know that VV (f̃β,B) = |g(0) − g(1)| =
B − 1. Consequently, VV (f̂β,B; Is) = VV (f̃β,B − χβ,B; Is) ≤ VV (f̃β,B; Is) +
VV (χβ,B; Is) = 2B − 1.

Thus we have finally shown that f(x)(= max(x)−β), 0 < β < 1 is in
C( s−β

β , 1).

Remark 11. Since max(x)−β ∈ C( s−β
β , 1), 0 < β < 1, we also know that the

error takes it’s minimum when B = D∗
N

−β
s (c.f.: proof of Theorem1).

4 Experimental Results

First, we want to investigate the behavior of function f(x) = max(x1, ..., xs)−β

as discussed in the last section in numerical experiments. As point sequence we
used the Zinterhof sequence [Zin69], which is a special case of Weyl sequences
defined as follows

xn = ({ne1/1}, . . . , {ne1/s}), n = 1, 2, 3, . . . ,

for points n = 1, 2, ... and dimension s. Note that the Zinterhof sequence has
certain corner avoidance properties as well, which is due to the high degree
of irrationality of the generated points. Caused by corresponding diophantine
properties this is true not only for the origin but for all rational points as well.
For the calculation of the bound B we use the bound of the discrepancy given
by LeVeques inequality [KY81] and the diaphony of the Zinterhof sequence
[Zin69].

Figure 1 displays the results for the original and integral preserving trans-
formed function (transformed in such a way as to get singularities in the
interior of the unit interval as well as on the border)
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max = max(x1, ..., xs)−0.5, max ′ = max({5x1}, ..., {5xs})−0.5

respectively, where {x} is the remainder of x. We let N run and hold B = 2
(according to Remark 11) fixed for dimensions 10 and 15 (labeled d10 and
d15 respectively).

Remark 12. We hold B fixed at a value which is calculated for N = 107 so
that we will get the best result towards the end of calculation. If we wanted
the lowest error for each N we would have to let B vary accordingly.

As expected, the the error rates are very good, especially towards higher N .
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Fig. 1. Functions max and max′ for dimension 10 and 15 with B = 2, relative error
over N .

Theoretically, we are restricted to functions of class C, practically how-
ever the method can be applied to a wider range of functions. Consider the
functions

f1 =
s∏

i=1

1
x0.5

i

, f2 =
s∏

i=1

1
ln( 1

xi
)0.5

where f1
B and f2

B both have non axis parallel jump curves and consequently
infinity variation.

Remark 13. The integral values over the s-dimensional unit cube for f1
α(x) =∏s

i=1 x−α
i and f2

α(x) =
∏s

i=1 ln(1/xi)α−1, 0 < α < 1, are
∫

Us f1
α(x)dx =

(1/(1− α))s and
∫

Us f2
α(x)dx = Γ (α)s respectively.

Experimentally, functions f1 and f2 can be integrated using our technique,
even though their bound representations for this method have infinite varia-
tion, c.f. Definition 4 condition (b). For a test we used a fixed B = 109, which
also hints at a serious problem with this method if f /∈ C. Since the variations
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of f1
B and f2

B are infinite we can not obtain a β and thus no optimal bound
B using dimension 10 and 15.

Figure 2 left hand side shows the results for function f1 over the number
of points N , and the right side shows the results for the integral preserving
transformation

f ′1 =
s∏

i=1

1
{5xi}0.5

where {x} is again the remainder of x.
The figures show that the estimation converges toward a fixed error, this is

to be expected since we will by construction always miss I(f̂B) (see Theorem 1)
since we kept B fixed while it is actually a function of the discrepancy and
thus of N . The difference in error between dimension 10 and 15 is a well known
phenomenon (curse of dimensionality). However, given that we can somehow
obtain the proper bound B for the number of points N used for the integration
the error converges even though f1 (and f1

B) is of unbounded variation.
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Fig. 2. Functions f1 and f ′1 for dimension 10 and 15 with B = 109, relative error
over N .

Keeping the bound B fixed and again using dimensions 10 and 15 we
will likely experience problems in the integration when we turn to another
function. To illustrate this we used function f2, and an integral preserving
transformation as follows

f ′2 =
s∏

i=1

1
ln( 1

{5xi} )
0.5

,

shown in Fig. 3 left and right hand side respectively. When the bound is
chosen too low the results usually becomes stable quickly with a high error,
stemming again from f̂2

B. In this case the bound was chosen too high, i.e. we
would need to use more points N to get to the region where B is optimal. This
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can be seen from the overshoots, usually high error rates at the beginning,
due to points falling near the jump curve, thus early introducing high values,
i.e. close to B, to the estimation. These will usually vanish when the number
of points is high enough to get a fine grained sampling of the unit cube but
will stay visible a long time. So while the method works, experimentally, even
for functions not in C this poses the problem of estimating a proper B to be
used in the integration.
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Fig. 3. Functions f2 and f ′2 for dimension 10 and 15 with B = 109, relative error
over N .

To illustrate the effect B has on the integration we use a fixed number of
points N = 106 and let B vary. The result of this test, again for functions f1

and f2 in dimensions 10 and 15, is given in Fig. 4. What can be seen is that the
bound depends not only on the number of points but also on the dimension,
which is not surprising since it depends on the discrepancy. Also, for f2, there
is an interval of B where the integration holds, while on the other hand we
get an increase in error as we move away from that interval. Also, since the
bound is depending on the discrepancy, which in turn depends on the number
of points and the dimension, the bound is a function of the dimension leading
to quite some error in dimension 15 where the approximation was very close
for dimension 10.

Finally, we consider a function which can not be reduced to singularities
along the border or in the corner. Consider the function (again with integral
preserving transformation)

m =
s−1∑
i=1

1
|xi − xi+1|0.5

, m′ =
s−1∑
i=1

1
|{5xi} − {5xi+1}|0.5

.

Remark 14. The integral value of mα(x) =
∑s−1

i=1 |xi − xi+1|−α, 0 < α < 1
over the s-dimensional unit cube Us is

∫
Us mα(x)dx = 2(s−1)/(1−α)(2−α).
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Fig. 4. Functions f1 and f2 for dimension 10 and 15 with N = 106, relative error
over B.

Remark 15. The function mα has a singularity along the s − 1 dimensional
manifold R = ∪i=1,...,s−1Ri, where Ri = {x|x ∈ Us, xi = xi+1}, i = 1, . . . , s−
1.

Remark 16. If we use a step function mM to approximate m with M intervals
we can give a bound for the variation as VHK (mM ) ≤ M2ss

(
s

⌊s/2⌋
)
B = O(B).

Furthermore the integral of m̂B can easily calculated as
∫

Us m̂αB(x)dx =
(2(s− 1)/(1− α)(2 − α))B−2α+α2

= O(B−(2α−α2)) thus m ∈ D(α2 − 2α, 1).
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Fig. 5. Functions m and m′ for dimension 10 and 15 with B = 104, relative error
over N .

For m and m′ we used B = 104 (according to Remark 16), again for
both dimension 10 and 15, and the results are given in Fig. 5. As expected
(since we use a single fixed B) the error at the beginning is quite high but
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swiftly falls to ”normal” levels. Somewhat more important is the rather good
convergence when considering that this functions singularity is more severe
than the singularity of the two previous functions.

Since we only used an estimation for B we can not expect the numerical
integration to be optimal, so now we will assess how good the approximation
actually is. For this purpose, we integrated m in dimension 10 for different
values of B. The results are given in Fig. 6, the left side gives the relative error
over N for different values of B and the right side gives the number of points
for which the function value exceeded B for a fixed N = 107. On the left side
we see that for a lower B the error is increased and if we set B to high the error
increases again. Overall our estimated B seems to be a bit too low and some
value between 104 and 2 104 would have been the best fit. This is affirmed by
the right hand side of the figure, where we see that the difference between 104

and 2 104 is more than one point (otherwise it would not be possible to get
results between these two values on the left hand side). Overall we see that
with a function approximation using class D(β, γ) it is hard to get the best
approximation but it is certainly possible to get a good approximation. Also,
when we look at the left hand side we see that for B = 104 and B = 2 104 the
error increases again after about N = 6 106. This is a further evidence that
the choice of B is vital for the integration.
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Fig. 6. The effects of different values of B for the function m.

5 Conclusion

We have shown that the proposed method can be used to numerically integrate
over a rich class of functions C(β, γ). The method also works experimentally
on an even bigger class of functions with the problem that some parameters,
i.e. the bound B, cannot be chosen specifically for the function. Furthermore,
the bound can be applied during runtime, and thus the method can be applied
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to the function directly. Also, the method is not restricted to singularities
on the boundary or in the corner. Thus this method is extremely easy to
implement and apply, even for non specialists.

However, even if a function is of class C we face the problem that we have
to know the number of points beforehand to choose an optimal B. Also, since
we need β and γ to choose optimal parameters for the numerical integration
the function must be well known. This is theoretically of no importance but
practically can prevent (optimal) integration.
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sity of Košice, ed.), TULIP, May 2002, pp. 109–115.


